LiU-FP2010 Part II: Lecture 6

More about Monads and Other Notions of Effectful Computation

Henrik Nilsson

University of Nottingham, UK

6 6 9.1/83 LIU-FP2010 Part II: Lecture 6 - p.1/83

This Lecture

- Monads in Haskell
- · Some standard monads
- · Combining effects: monad transformers
- Arrows
- FRP and Yampa

UIU-FP2010 Part II: Lecture 6 – p.2/83

Monads in Haskell

In Haskell, the notion of a monad is captured by a *Type Class*:

```
class Monad m where
  return :: a -> m a
  (>>=) :: m a -> (a -> m b) -> m b
```

Allows names of the common functions to be overloaded and sharing of derived definitions.

The Maybe Monad in Haskell

LiU-FP2010 Part II: Lecture 6 - p.4/83

Exercise 1: A State Monad in Haskell

Haskell 98 does not permit type synonyms to be instances of classes. Hence we have to define a new type:

```
newtype S a = S (Int -> (a, Int))
unS :: S a -> (Int -> (a, Int))
unS (S f) = f
```

Provide a Monad instance for S.

 \circ \circ \circ \circ \circ LIU-FP2010 Part II: Lecture $6-\rho.5'83$

Exercise 1: Solution

```
instance Monad S where
  return a = S (\s -> (a, s))

m >>= f = S $ \s ->
  let (a, s') = unS m s
  in unS (f a) s'
```

Monad-specific Operations (1)

To be useful, monads need to be equipped with additional operations specific to the effects in question. For example:

```
fail :: String -> Maybe a
fail s = Nothing

catch :: Maybe a -> Maybe a -> Maybe a
ml 'catch' m2 =
    case ml of
        Just _ -> ml
        Nothing -> m2
```

Monad-specific Operations (2)

Typical operations on a state monad:

```
set :: Int -> S ()
set a = S (\_ -> ((), a))
get :: S Int
get = S (\s -> (s, s))
```

Moreover, need to "run" a computation. E.g.:

```
runS :: S a -> a
runS m = fst (unS m 0)
```

The do-notation (1)

Haskell provides convenient syntax for programming with monads:

```
a <- exp_1
b <- exp_2
return exp_3
```

is syntactic sugar for

```
exp_1 >>= \a ->
exp_2 >>= \b ->
return exp_3
```

LIU-FP2010 Part II: Lecture 6 - p.9/83

The do-notation (2)

Computations can be done solely for effect, ignoring the computed value:

```
\begin{array}{c} \operatorname{do} \\ & exp_1 \\ & exp_2 \\ & \operatorname{return} & exp_3 \end{array}
```

is syntactic sugar for

```
exp_1 >>= \setminus_- ->
exp_2 >>= \setminus_- ->
return exp_3
```

LiU-FP2010 Part II: Lecture 6 - p.10/83

The do-notation (3)

A let-construct is also provided:

is equivalent to

```
do  \begin{tabular}{ll} $\tt a <- \ return \ $exp_1$ \\ $\tt b <- \ return \ $exp_2$ \\ $\tt return \ $exp_3$ \\ \end{tabular}
```

Numbering Trees in do-notation

The Compiler Fragment Revisited (1)

Given a suitable "Diagnostics" monad D that collects error messages, enterVar can be turned from this:

UU-FP2010 Part II: Lecture 6 - p. 13/83

The Compiler Fragment Revisited (2)

```
identDefs l env [] = ([], env, [])
identDefs l env ((i,t,e) : ds) =
    ((i,t,e') : ds', env'', msl++ms2++ms3)
    where
    (e', msl) = identAux l env e
    (env', ms2) =
        case enterVar i l t env of
        Left env' -> (env', [])
        Right m -> (env, [m])
    (ds', env'', ms3) =
    identDefs l env' ds
```

The Compiler Fragment Revisited (3)

into this:

(Suffix D just to remind us the types have changed.)

The Compiler Fragment Revisited (4)

Compare with the "core" identified earlier!

```
identDefs l env [] = ([], env)
identDefs l env ((i,t,e) : ds) =
   ((i,t,e') : ds', env'')
   where
    e' = identAux l env e
    env' = enterVar i l t env
   (ds', env'') = identDefs l env' ds
```

The monadic version is very close to ideal, without sacrificing functionality, clarity, or pureness!

LUU-FP2010 Part II: Lecture 6 – p. 16/83

The List Monad

Computation with many possible results, "nondeterminism":

```
instance Monad [] where
  return a = [a]
  m >>= f = concat (map f m)
  fail s = []
```

Example: Result:

```
x \leftarrow [1, 2] [(1,'a'),(1,'b'),

y \leftarrow ['a', 'b'] (2,'a'),(2,'b')]

return (x,y)
```

The Reader Monad

Computation in an environment:

```
instance Monad ((->) e) where
   return a = const a
   m >>= f = \e -> f (m e) e

getEnv :: ((->) e) e
getEnv = id
```

LiU-FP2010 Part II: Lecture 6 - p.18/83

The Haskell IO Monad

In Haskell, IO is handled through the IO monad. IO is *abstract*! Conceptually:

```
newtype IO a = IO (World -> (a, World))
```

Some operations:

```
putChar :: Char -> IO ()
putStr :: String -> IO ()
putStrLn :: String -> IO ()
getChar :: IO Char
getLine :: IO String
qetContents :: String
```

UU-FP2010 Part II: Lecture 6 – p. 19/83

Monad Transformers (1)

What if we need to support more than one type of effect?

For example: State and Error/Partiality?

We could implement a suitable monad from scratch:

```
newtype SE s a = SE (s \rightarrow Maybe (a, s))
```


Monad Transformers (2)

However:

 Not always obvious how: e.g., should the combination of state and error have been

```
newtype SE s a = SE (s \rightarrow (Maybe a, s))
```

 Duplication of effort: similar patterns related to specific effects are going to be repeated over and over in the various combinations.

Monad Transformers (3)

Monad Transformers can help:

- A monad transformer transforms a monad by adding support for an additional effect.
- A library of monad transformers can be developed, each adding a specific effect (state, error, ...), allowing the programmer to mix and match.
- A form of aspect-oriented programming.

LIU-FP2010 Part II: Lecture 6 – p.22/83

Monad Transformers in Haskell (1)

 A monad transformer maps monads to monads. Represented by a type constructor T of the following kind:

```
T :: (* -> *) -> (* -> *)
```

 Additionally, a monad transformer adds computational effects. A mapping lift from computations in the underlying monad to computations in the transformed monad is needed:

```
lift :: M a -> T M a
```

Monad Transformers in Haskell (2)

 These requirements are captured by the following (multi-parameter) type class:

Classes for Specific Effects

A monad transformer adds specific effects to **any** monad. Thus the effect-specific operations needs to be overloaded. For example:

```
class Monad m => E m where
    eFail :: m a
    eHandle :: m a -> m a -> m a

class Monad m => S m s | m -> s where
    sSet :: s -> m ()
    sGet :: m s
```

The Identity Monad

We are going to construct monads by successive transformations of the identity monad:

```
newtype I a = I a
unI (I a) = a

instance Monad I where
   return a = I a
   m >>= f = f (unI m)

runI :: I a -> a
runI = unI
```

The Error Monad Transformer (1)

```
newtype ET m a = ET (m (Maybe a))
unET (ET m) = m
```

Any monad transformed by ET is a monad:

```
instance Monad m => Monad (ET m) where
  return a = ET (return (Just a))

m >>= f = ET $ do
    ma <- unET m
    case ma of
        Nothing -> return Nothing
        Just a -> unET (f a)
```

The Error Monad Transformer (2)

We need the ability to run transformed monads:

```
runET :: Monad m => ET m a -> m a
runET etm = do
    ma <- unET etm
    case ma of
        Just a -> return a
        Nothing -> error "Should not happen"
```

ET is a monad transformer:

The Error Monad Transformer (3)

Any monad transformed by ET is an instance of E:

```
instance Monad m => E (ET m) where
  eFail = ET (return Nothing)
  m1 'eHandle' m2 = ET $ do
      ma <- unET m1
      case ma of
          Nothing -> unET m2
          Just _ -> return ma
```

The Error Monad Transformer (4)

A state monad transformed by \mathtt{ET} is a state monad:

```
instance S m s => S (ET m) s where
    sSet s = lift (sSet s)
    sGet = lift sGet
```

Exercise 2: Running Transf. Monads

Let

```
ex2 = eFail 'eHandle' return 1
```

- Suggest a possible type for ex2.
 (Assume 1 :: Int.)
- 2. Given your type, use the appropriate combination of "run functions" to run ex2.

• • • • • • LIU-FP2010 Part II: Lecture 6 - p. 31/83

Exercise 2: Solution

```
ex2 :: ET I Int
ex2 = eFail 'eHandle' return 1
ex2result :: Int
ex2result = runI (runET ex2)
```

The State Monad Transformer (1)

```
newtype ST s m a = ST (s \rightarrow m (a, s))
unST (ST m) = m
```

Any monad transformed by ST is a monad:

```
instance Monad m => Monad (ST s m) where
  return a = ST (\s -> return (a, s))

m >>= f = ST $ \s -> do
      (a, s') <- unST m s
  unST (f a) s'</pre>
```

The State Monad Transformer (2)

We need the ability to run transformed monads:

```
runST :: Monad m => ST s m a -> s -> m a
runST stf s0 = do
    (a, _) <- unST stf s0
return a</pre>
```

ST is a monad transformer:

The State Monad Transformer (3)

Any monad transformed by ST is an instance of S:

```
instance Monad m => S (ST s m) s where
    sSet s = ST (\_ -> return ((), s))
    sGet = ST (\s -> return (s, s))
```

An error monad transformed by ST is an error monad:

```
instance E m => E (ST s m) where
    eFail = lift eFail
    ml 'eHandle' m2 = ST $ \s ->
        unST m1 s 'eHandle' unST m2 s
```

Exercise 3: Effect Ordering

Consider the code fragment

```
ex3a :: (ST Int (ET I)) Int
ex3a = (sSet 42 >> eFail) 'eHandle' sGet
```

Note that the exact same code fragment also can be typed as follows:

```
ex3b :: (ET (ST Int I)) Int
ex3b = (sSet 42 >> eFail) 'eHandle' sGet
What is

runI (runET (runST ex3a 0))
runI (runST (runET ex3b) 0)
```

Exercise 3: Solution

```
runI (runET (runST ex3a 0)) = 0
runI (runST (runET ex3b) 0) = 42
```

Why? Because:

```
ST s (ET I) a \cong s -> (ET I) (a, s)

\cong s -> I (Maybe (a, s))

\cong s -> Maybe (a, s)

ET (ST s I) a \cong (ST s I) (Maybe a)

\cong s -> I (Maybe a, s)

\cong s -> (Maybe a, s)
```

Exercise 4: Alternative ST?

To think about.

Could ${\tt ST}$ have been defined in some other way, e.g.

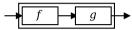
```
newtype ST s m a = ST (m (s -> (a, s)))
or perhaps
newtype ST s m a = ST (s -> (m a, s))
```

Problems with Monad Transformers

- With one transformer for each possible effect, we get a lot of combinations: the number grows quadratically; each has to be instantiated explicitly.
- Jaskelioff (2008,2009) has proposed a possible, more extensible alternative.

Arrows (1)

System descriptions in the form of block diagrams are very common. Blocks have inputs and outputs and can be combined into larger blocks. For example, serial composition:



A *combinator* can be defined that captures this idea:

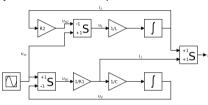
(>>>) :: B a b -> B b c -> B a c

6 LIU-FP2010 Part II: Lecture 6 - p.40/83

0 0 0 0 LIU-FP2010 Part II: Lecture 6 – p.41/83

Arrows (2)

But systems can be complex:



How many and what combinators do we need to be able to describe arbitrary systems?

Arrows (3)

John Hughes' arrow framework:

- Abstract data type interface for function-like types (or "blocks", if you prefer).
- Particularly suitable for types representing process-like computations.
- Related to *monads*, since arrows are computations, but more general.
- Provides a minimal set of "wiring" combinators.

What is an arrow? (1)

- A type constructor a of arity two.
- Three operators:
 - lifting:

```
arr :: (b->c) -> a b c
```

- composition:

```
(>>>) :: a b c -> a c d -> a b d
```

widenina:

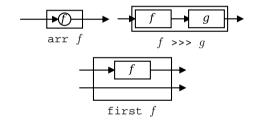
```
first :: a b c -> a (b,d) (c,d)
```

· A set of algebraic laws that must hold.

LiU-FP2010 Part II: Lecture 6 - p.43/83

What is an arrow? (2)

These diagrams convey the general idea:



The Arrow class

In Haskell, a *type class* is used to capture these ideas (except for the laws):

```
class Arrow a where
    arr :: (b -> c) -> a b c
    (>>>) :: a b c -> a c d -> a b d
    first :: a b c -> a (b,d) (c,d)
```

LIU-FP2010 Part II: Lecture 6 - p.39/83

.

LiU-FP2010 Part II: Lecture 6 - p.45/83

Functions are arrows (1)

Functions are a simple example of arrows, with (->) as the arrow type constructor.

Exercise 5: Suggest suitable definitions of

- arr
- (>>>)
- first

for this case!

(We have not looked at what the laws are yet, but they are "natural".)

LIU-FP2010 Part II: Lecture 6 - p.46/83

Functions are arrows (2)

Solution:

• arr = id
To see this, recall

id :: t -> t arr :: (b->c) -> a b c

Instantiate with

a = (->)t = b->c = (->) b c

Functions are arrows (3)

• f >>> g = a -> g (f a) **or**

• (>>>) = flip (.)

• first $f = (b,d) \rightarrow (f b,d)$

Functions are arrows (4)

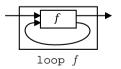
Arrow instance declaration for functions:

instance Arrow (->) where
 arr = id
 (>>>) = flip (.)
 first f = \((b,d) -> (f b,d))

Some arrow laws

The loop combinator (1)

Another important operator is loop: a fixed-point operator used to express recursive arrows or *feedback*:



The loop combinator (2)

Not all arrow instances support loop. It is thus a method of a separate class:

class Arrow a => ArrowLoop a where
 loop :: a (b, d) (c, d) -> a b c

Remarkably, the four combinators arr, >>>, first, and loop are sufficient to express any conceivable wiring!

LIU-FP2010 Part II: Lecture 6 - p.521

Some more arrow combinators (1)

```
second :: Arrow a =>
    a b c -> a (d,b) (d,c)

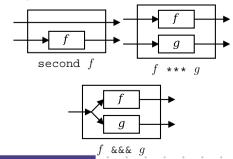
(***) :: Arrow a =>
    a b c -> a d e -> a (b,d) (c,e)

(&&&) :: Arrow a =>
    a b c -> a b d -> a b (c,d)
```

LIU-FP2010 Part II: Lecture 6 - p.53/83

Some more arrow combinators (2)

As diagrams:



Some more arrow combinators (3)

```
second :: Arrow a => a b c -> a (d,b) (d,c)
second f = arr swap >>> first f >>> arr swap
swap (x,y) = (y,x)

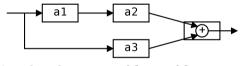
(***) :: Arrow a =>
    a b c -> a d e -> a (b,d) (c,e)
f *** g = first f >>> second g

(&&&) :: Arrow a => a b c -> a b d -> a b (c,d)
f &&& g = arr (\x->(x,x)) >>> (f *** g)
```

LIU-FP2010 Part II: Lecture 6 - p.55/83

Exercise 6

Describe the following circuit using arrow combinators:

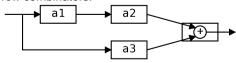


a1, a2, a3 :: A Double Double

0 0 0 0 0

Exercise 6: One solution

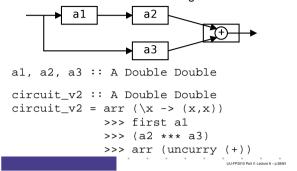
Exercise 3: Describe the following circuit using arrow combinators:



a1, a2, a3 :: A Double Double

Exercise 6: Another solution

Exercise 3: Describe the following circuit:



The arrow do notation (1)

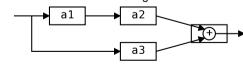
Ross Paterson's do-notation for arrows supports pointed arrow programming. Only syntactic sugar.

$$\begin{array}{c} \operatorname{proc}\ pat\ ->\operatorname{do}\ [\operatorname{rec}\]\\ pat_1 <-\operatorname{sfex} p_1 -<\operatorname{ex} p_1\\ pat_2 <-\operatorname{sfex} p_2 -<\operatorname{ex} p_2\\ \dots\\ pat_n <-\operatorname{sfex} p_n -<\operatorname{ex} p_n\\ \operatorname{return} A -<\operatorname{ex} p \end{array}$$

Also: let pat = exp $\equiv pat < - arrid - < exp$

The arrow do notation (2)

Let us redo exercise 3 using this notation:



circuit_v4 :: A Double Double
circuit_v4 = proc x -> do
 y1 <- a1 -< x
 y2 <- a2 -< y1
 y3 <- a3 -< x
 returnA -< y2 + y3</pre>

The arrow do notation (3)

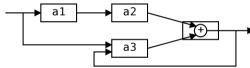
We can also mix and match:



LIU-FP2010 Part It: Lecture 6 – p.61/83

The arrow do notation (4)

Recursive networks: do-notation:

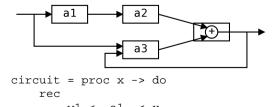


a1, a2 :: A Double Double
a3 :: A (Double, Double) Double

Exercise 5: Describe this using only the arrow combinators.

LiU-FP2010 Part II: Lecture 6 - p.62/83

The arrow do notation (5)



rec y1 <- a1 -< x y2 <- a2 -< y1 y3 <- a3 -< (x, y) let y = y2 + y3 returnA -< y

LIU-FP2010 Part II: Lecture 6 - p.63/83

Arrows and Monads (1)

Arrows generalize monads: for every monad type there is an arrow, the *Kleisli category* for the monad:

```
newtype Kleisli m a b = K (a -> m b)
instance Monad m => Arrow (Kleisli m) where
    arr f = K (\b -> return (f b))
    K f >>> K g = K (\b -> f b >>= g)
```

Arrows and Monads (2)

But not every arrow is a monad. However, arrows that support an additional apply operation **are** effectively monads:

```
apply :: Arrow a => a (a b c, b) c
```

Exercise 7: Verify that

```
newtype M b = M (A () b)
```

is a monad if A is an arrow supporting apply; i.e., define return and bind in terms of the arrow operations (and verify that the monad laws hold).

LIU-FP2010 Part II: Lecture 6 - p.65/83

An application: FRP

Functional Reactive Programming (FRP):

- Paradigm for reactive programming in a functional setting:
 - Input arrives incrementally while system is running.
 - Output is generated in response to input in an interleaved and *timely* fashion.
- Originated from Functional Reactive Animation (Fran) (Elliott & Hudak).
- Has evolved in a number of directions and into different concrete implementations.

Yampa

Yampa:

- The most recent Yale FRP implementation.
- Embedding in Haskell (a Haskell library).
- Arrows used as the basic structuring framework.
- Continuous time.
- Discrete-time signals modelled by continuous-time signals and an option type.
- Advanced switching constructs allows for highly dynamic system structure.

LIU-FP2010 Part II: Lecture 6 – p.67/83

0 0 0 0 0 0 LIU-FP2010 Part II: Lecture 6 - p.68/83

Related languages

FRP related to:

- Synchronous languages, like Esterel, Lucid Synchrone.
- · Modeling languages, like Simulink.

Distinguishing features of FRP:

- First class reactive components.
- Allows highly dynamic system structure.
- Supports hybrid (mixed continuous and discrete) systems.

FRP applications

Some domains where FRP has been used:

- Graphical Animation (Fran: Elliott, Hudak)
- Robotics (Frob: Peterson, Hager, Hudak, Elliott, Pembeci, Nilsson)
- Vision (FVision: Peterson, Hudak, Reid, Hager)
- GUIs (Fruit: Courtney)
- Hybrid modeling (Nilsson, Hudak, Peterson)

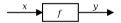
Yampa?

Yampa is a river with long calmly flowing sections and abrupt whitewater transitions in between.

A good metaphor for hybrid systems!

Signal functions

Key concept: functions on signals.



Intuition:

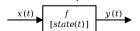
```
\begin{array}{l} \operatorname{Signal} \ \alpha \ \approx \ \operatorname{Time} \rightarrow \alpha \\ x \ :: \ \operatorname{Signal} \ \operatorname{T1} \\ y \ :: \ \operatorname{Signal} \ \operatorname{T2} \\ \operatorname{SF} \ \alpha \ \beta \ \approx \ \operatorname{Signal} \ \alpha \ \rightarrow \operatorname{Signal} \ \beta \\ f \ :: \ \operatorname{SF} \ \operatorname{T1} \ \operatorname{T2} \end{array}
```

Additionally: *causality* requirement.

Signal functions and state

Alternative view:

Signal functions can encapsulate state.



state(t) summarizes input history $x(t'), t' \in [0, t]$.

Functions on signals are either:

- **Stateful**: y(t) depends on x(t) and state(t)
- **Stateless**: y(t) depends only on x(t)

Yampa and Arrows

SF is an arrow. Signal function instances of core combinators:

But apply has no useful meaning. Hence SF is **not** a monad.

U-FP2010 Part II: Lecture 6 – p.73/83

Some further basic signal functions

• identity :: SF a a identity = arr id

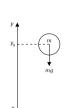
• constant :: b -> SF a b
constant b = arr (const b)

• integral :: VectorSpace a s=>SF a a

• time :: SF a Time
time = constant 1.0 >>> integral

• (^<<) :: (b->c) -> SF a b -> SF a c f (^<<) sf = sf >>> arr f

Example: A bouncing ball



$$y = y_0 + \int v \, \mathrm{d}t$$
$$v = v_0 + \int -9.81$$

On impact:

$$v = -v(t-)$$

(fully elastic collision)

Part of a model of the bouncing ball

Free-falling ball:

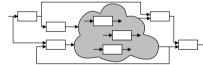
```
type Pos = Double
type Vel = Double

fallingBall ::
    Pos -> Vel -> SF () (Pos, Vel)
fallingBall y0 v0 = proc () -> do
    v <- (v0 +) ^<< integral -< -9.81
    y <- (y0 +) ^<< integral -< v
    returnA -< (y, v)</pre>
```

UU-FP2010 Part II: Lecture 6 – p.76/83

Dynamic system structure

Switching allows the structure of the system to evolve over time:



Example: Space Invaders

Overall game structure



Reading (1)

- Nick Benton, John Hughes, Eugenio Moggi. Monads and Effects. In *International Summer School on Applied Semantics* 2000, Caminha, Portugal, 2000.
- Sheng Liang, Paul Hudak, Mark Jones. Monad Transformers and Modular Interpreters. In Proceedings of the 22nd ACM Symposium on Principles of Programming Languages (POPL'95), January 1995, San Francisco, California

Reading (2)

- Mauro Jaskelioff. Monatron: An Extensible Monad Transformer Library. In Implementation of Functional Languages (IFL'08), 2008.
- Mauro Jaskelioff. Modular Monad Transformers. In European Symposium on Programming (ESOP,09), 2009.

LiU-FP2010 Part II: Lecture 6 - p.81/83

Reading (3)

- John Hughes. Generalising monads to arrows. Science of Computer Programming, 37:67–111, May 2000
- John Hughes. Programming with arrows. In Advanced Functional Programming, 2004. To be published by Springer Verlag.
- Henrik Nilsson, Antony Courtney, and John Peterson.
 Functional reactive programming, continued. In Proceedings of the 2002 Haskell Workshop, pp. 51–64, October 2002.

LIU-FP2010 Part II: Lecture 6 - p.82/8

Reading (4)

- Paul Hudak, Antony Courtney, Henrik Nilsson, and John Peterson. Arrows, robots, and functional reactive programming. In Advanced Functional Programming, 2002. LNCS 2638, pp. 159–187.
- Antony Courtney, Henrik Nilsson, and John Peterson.
 The Yampa Arcade. In Proceedings of the 2003 ACM SIGPLAN Haskell Workshop (Haskell'03), Uppsala,
 Sweden, 2003, pp 7–18.