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This Lecture

• Monads in Haskell
• Some standard monads
• Combining effects: monad transformers
• Arrows
• FRP and Yampa
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Monads in Haskell

In Haskell, the notion of a monad is captured by
a Type Class:

class Monad m where

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

Allows names of the common functions to be
overloaded and sharing of derived definitions.
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The Maybe Monad in Haskell

instance Monad Maybe where

-- return :: a -> Maybe a

return = Just

-- (>>=) :: Maybe a -> (a -> Maybe b)

-- -> Maybe b

Nothing >>= _ = Nothing

(Just x) >>= f = f x
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Exercise 1: A State Monad in Haskell

Haskell 98 does not permit type synonyms to be
instances of classes. Hence we have to define a
new type:

newtype S a = S (Int -> (a, Int))

unS :: S a -> (Int -> (a, Int))

unS (S f) = f

Provide a Monad instance for S.
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Exercise 1: Solution

instance Monad S where

return a = S (\s -> (a, s))

m >>= f = S $ \s ->

let (a, s’) = unS m s

in unS (f a) s’
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Monad-specific Operations (1)

To be useful, monads need to be equipped with
additional operations specific to the effects in
question. For example:

fail :: String -> Maybe a

fail s = Nothing

catch :: Maybe a -> Maybe a -> Maybe a

m1 ‘catch‘ m2 =

case m1 of

Just _ -> m1

Nothing -> m2
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Monad-specific Operations (2)

Typical operations on a state monad:

set :: Int -> S ()

set a = S (\_ -> ((), a))

get :: S Int

get = S (\s -> (s, s))

Moreover, need to “run” a computation. E.g.:

runS :: S a -> a

runS m = fst (unS m 0)
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The do-notation (1)

Haskell provides convenient syntax for
programming with monads:

do

a <- exp
1

b <- exp
2

return exp3

is syntactic sugar for

exp
1

>>= \a ->

exp
2

>>= \b ->

return exp
3
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The do-notation (2)

Computations can be done solely for effect,
ignoring the computed value:

do

exp
1

exp
2

return exp3

is syntactic sugar for

exp
1

>>= \_ ->

exp
2

>>= \_ ->

return exp
3
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The do-notation (3)

A let -construct is also provided:

do

let a = exp
1

b = exp
2

return exp3

is equivalent to

do

a <- return exp
1

b <- return exp
2

return exp3
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Numbering Trees indo-notation

numberTree :: Tree a -> Tree Int

numberTree t = runS (ntAux t)

where

ntAux :: Tree a -> S (Tree Int)

ntAux (Leaf _) = do

n <- get

set (n + 1)

return (Leaf n)

ntAux (Node t1 t2) = do

t1’ <- ntAux t1

t2’ <- ntAux t2

return (Node t1’ t2’)
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The Compiler Fragment Revisited (1)

Given a suitable “Diagnostics” monad D that
collects error messages, enterVar can be
turned from this:

enterVar :: Id -> Int -> Type -> Env

-> Either Env ErrorMgs

into this:

enterVarD :: Id -> Int -> Type -> Env

-> D Env

and then identDefs from this . . .
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The Compiler Fragment Revisited (2)

identDefs l env [] = ([], env, [])

identDefs l env ((i,t,e) : ds) =

((i,t,e’) : ds’, env’’, ms1++ms2++ms3)

where

(e’, ms1) = identAux l env e

(env’, ms2) =

case enterVar i l t env of

Left env’ -> (env’, [])

Right m -> (env, [m])

(ds’, env’’, ms3) =

identDefs l env’ ds
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The Compiler Fragment Revisited (3)

into this:

identDefsD l env [] = return ([], env)

identDefsD l env ((i,t,e) : ds) = do

e’ <- identAuxD l env e

env’ <- enterVarD i l t env

(ds’, env’’) <- identDefsD l env’ ds

return ((i,t,e’) : ds’, env’’)

(Suffix D just to remind us the types have
changed.)
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The Compiler Fragment Revisited (4)

Compare with the “core” identified earlier!

identDefs l env [] = ([], env)

identDefs l env ((i,t,e) : ds) =

((i,t,e’) : ds’, env’’)

where

e’ = identAux l env e

env’ = enterVar i l t env

(ds’, env’’) = identDefs l env’ ds

The monadic version is very close to ideal,
without sacrificing functionality, clarity, or
pureness!

LiU-FP2010 Part II: Lecture 6 – p.16/83

The List Monad

Computation with many possible results,
“nondeterminism”:

instance Monad [] where

return a = [a]

m >>= f = concat (map f m)

fail s = []

Example:

x <- [1, 2]

y <- [’a’, ’b’]

return (x,y)

Result:

[(1,’a’),(1,’b’),

(2,’a’),(2,’b’)]

LiU-FP2010 Part II: Lecture 6 – p.17/83

The Reader Monad

Computation in an environment:

instance Monad ((->) e) where

return a = const a

m >>= f = \e -> f (m e) e

getEnv :: ((->) e) e

getEnv = id
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The Haskell IO Monad

In Haskell, IO is handled through the IO monad.
IO is abstract ! Conceptually:

newtype IO a = IO (World -> (a, World))

Some operations:

putChar :: Char -> IO ()

putStr :: String -> IO ()

putStrLn :: String -> IO ()

getChar :: IO Char

getLine :: IO String

getContents :: String
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Monad Transformers (1)

What if we need to support more than one type
of effect?

For example: State and Error/Partiality?

We could implement a suitable monad from
scratch:

newtype SE s a = SE (s -> Maybe (a, s))
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Monad Transformers (2)

However:
• Not always obvious how: e.g., should the

combination of state and error have been
newtype SE s a = SE (s -> (Maybe a, s))

• Duplication of effort: similar patterns related
to specific effects are going to be repeated
over and over in the various combinations.
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Monad Transformers (3)

Monad Transformers can help:
• A monad transformer transforms a monad

by adding support for an additional effect.
• A library of monad transformers can be

developed, each adding a specific effect
(state, error, . . . ), allowing the programmer to
mix and match.

• A form of aspect-oriented programming.
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Monad Transformers in Haskell (1)

• A monad transformer maps monads to
monads. Represented by a type constructor T
of the following kind:

T :: ( * -> * ) -> ( * -> * )

• Additionally, a monad transformer adds
computational effects. A mapping lift from
computations in the underlying monad to
computations in the transformed monad is
needed:

lift :: M a -> T M a
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Monad Transformers in Haskell (2)

• These requirements are captured by the
following (multi-parameter) type class:

class (Monad m, Monad (t m))

=> MonadTransformer t m where

lift :: m a -> t m a
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Classes for Specific Effects

A monad transformer adds specific effects to any
monad. Thus the effect-specific operations
needs to be overloaded. For example:

class Monad m => E m where

eFail :: m a

eHandle :: m a -> m a -> m a

class Monad m => S m s | m -> s where

sSet :: s -> m ()

sGet :: m s
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The Identity Monad

We are going to construct monads by successive
transformations of the identity monad:

newtype I a = I a

unI (I a) = a

instance Monad I where

return a = I a

m >>= f = f (unI m)

runI :: I a -> a

runI = unI
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The Error Monad Transformer (1)
newtype ET m a = ET (m (Maybe a))

unET (ET m) = m

Any monad transformed by ET is a monad:

instance Monad m => Monad (ET m) where

return a = ET (return (Just a))

m >>= f = ET $ do

ma <- unET m

case ma of

Nothing -> return Nothing

Just a -> unET (f a)
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The Error Monad Transformer (2)
We need the ability to run transformed monads:

runET :: Monad m => ET m a -> m a

runET etm = do

ma <- unET etm

case ma of

Just a -> return a

Nothing -> error "Should not happen"

ET is a monad transformer:

instance Monad m =>

MonadTransformer ET m where

lift m = ET (m >>= \a -> return (Just a))
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The Error Monad Transformer (3)

Any monad transformed by ET is an instance of E:

instance Monad m => E (ET m) where

eFail = ET (return Nothing)

m1 ‘eHandle‘ m2 = ET $ do

ma <- unET m1

case ma of

Nothing -> unET m2

Just _ -> return ma
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The Error Monad Transformer (4)

A state monad transformed by ET is a state
monad:

instance S m s => S (ET m) s where

sSet s = lift (sSet s)

sGet = lift sGet
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Exercise 2: Running Transf. Monads

Let

ex2 = eFail ‘eHandle‘ return 1

1. Suggest a possible type for ex2 .
(Assume 1 :: Int .)

2. Given your type, use the appropriate
combination of “run functions” to run ex2 .
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Exercise 2: Solution

ex2 :: ET I Int

ex2 = eFail ‘eHandle‘ return 1

ex2result :: Int

ex2result = runI (runET ex2)
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The State Monad Transformer (1)

newtype ST s m a = ST (s -> m (a, s))

unST (ST m) = m

Any monad transformed by ST is a monad:

instance Monad m => Monad (ST s m) where

return a = ST (\s -> return (a, s))

m >>= f = ST $ \s -> do

(a, s’) <- unST m s

unST (f a) s’
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The State Monad Transformer (2)

We need the ability to run transformed monads:

runST :: Monad m => ST s m a -> s -> m a

runST stf s0 = do

(a, _) <- unST stf s0

return a

ST is a monad transformer:

instance Monad m =>

MonadTransformer (ST s) m where

lift m = ST (\s -> m >>= \a ->

return (a, s))
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The State Monad Transformer (3)

Any monad transformed by ST is an instance of S:

instance Monad m => S (ST s m) s where

sSet s = ST (\_ -> return ((), s))

sGet = ST (\s -> return (s, s))

An error monad transformed by ST is an error
monad:

instance E m => E (ST s m) where

eFail = lift eFail

m1 ‘eHandle‘ m2 = ST $ \s ->

unST m1 s ‘eHandle‘ unST m2 s
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Exercise 3: Effect Ordering

Consider the code fragment

ex3a :: (ST Int (ET I)) Int

ex3a = (sSet 42 >> eFail) ‘eHandle‘ sGet

Note that the exact same code fragment also can
be typed as follows:

ex3b :: (ET (ST Int I)) Int

ex3b = (sSet 42 >> eFail) ‘eHandle‘ sGet

What is

runI (runET (runST ex3a 0))

runI (runST (runET ex3b) 0)
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Exercise 3: Solution

runI (runET (runST ex3a 0)) = 0

runI (runST (runET ex3b) 0) = 42

Why? Because:

ST s (ET I) a ∼= s -> (ET I) (a, s)
∼= s -> I (Maybe (a, s))
∼= s -> Maybe (a, s)

ET (ST s I) a ∼= (ST s I) (Maybe a)
∼= s -> I (Maybe a, s)
∼= s -> (Maybe a, s)
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Exercise 4: AlternativeST?

To think about.

Could ST have been defined in some other way,
e.g.

newtype ST s m a = ST (m (s -> (a, s)))

or perhaps

newtype ST s m a = ST (s -> (m a, s))
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Problems with Monad Transformers

• With one transformer for each possible effect,
we get a lot of combinations: the number
grows quadratically; each has to be
instantiated explicitly.

• Jaskelioff (2008,2009) has proposed a
possible, more extensible alternative.
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Arrows (1)

System descriptions in the form of block
diagrams are very common. Blocks have inputs
and outputs and can be combined into larger
blocks. For example, serial composition:

A combinator can be defined that captures this
idea:

(>>>) :: B a b -> B b c -> B a c
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Arrows (2)

But systems can be complex:

How many and what combinators do we need
to be able to describe arbitrary systems?
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Arrows (3)

John Hughes’ arrow framework:
• Abstract data type interface for function-like

types (or “blocks”, if you prefer).
• Particularly suitable for types representing

process-like computations.
• Related to monads, since arrows are

computations, but more general.
• Provides a minimal set of “wiring”

combinators.
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What is an arrow? (1)

• A type constructor a of arity two.
• Three operators:

- lifting:
arr :: (b->c) -> a b c

- composition:
(>>>) :: a b c -> a c d -> a b d

- widening:
first :: a b c -> a (b,d) (c,d)

• A set of algebraic laws that must hold.
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What is an arrow? (2)

These diagrams convey the general idea:

arr f f >>> g

first f
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The Arrow class

In Haskell, a type class is used to capture these
ideas (except for the laws):

class Arrow a where
arr :: (b -> c) -> a b c
(>>>) :: a b c -> a c d -> a b d
first :: a b c -> a (b,d) (c,d)
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Functions are arrows (1)

Functions are a simple example of arrows, with
(->) as the arrow type constructor.

Exercise 5: Suggest suitable definitions of
• arr

• (>>>)

• first

for this case!

(We have not looked at what the laws are yet, but
they are “natural”.)
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Functions are arrows (2)

Solution:
• arr = id

To see this, recall
id :: t -> t
arr :: (b->c) -> a b c

Instantiate with

a = (->)

t = b->c = (->) b c
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Functions are arrows (3)

• f >>> g = \a -> g (f a) or
• f >>> g = g . f or even
• (>>>) = flip (.)

• first f = \(b,d) -> (f b,d)
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Functions are arrows (4)

Arrow instance declaration for functions:

instance Arrow (->) where
arr = id
(>>>) = flip (.)
first f = \(b,d) -> (f b,d)
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Some arrow laws

(f >>> g) >>> h = f >>> (g >>> h)

arr (f >>> g) = arr f >>> arr g

arr id >>> f = f

f = f >>> arr id

first (arr f) = arr (first f)

first (f >>> g) = first f >>> first g
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The loop combinator (1)

Another important operator is loop : a fixed-point
operator used to express recursive arrows or
feedback :

loop f
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The loop combinator (2)

Not all arrow instances support loop . It is thus a
method of a separate class:

class Arrow a => ArrowLoop a where
loop :: a (b, d) (c, d) -> a b c

Remarkably, the four combinators arr , >>>,
first , and loop are sufficient to express any
conceivable wiring!
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Some more arrow combinators (1)

second :: Arrow a =>
a b c -> a (d,b) (d,c)

( *** ) :: Arrow a =>
a b c -> a d e -> a (b,d) (c,e)

(&&&) :: Arrow a =>
a b c -> a b d -> a b (c,d)
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Some more arrow combinators (2)

As diagrams:

second f
f *** g

f &&& g
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Some more arrow combinators (3)

second :: Arrow a => a b c -> a (d,b) (d,c)

second f = arr swap >>> first f >>> arr swap

swap (x,y) = (y,x)

( *** ) :: Arrow a =>

a b c -> a d e -> a (b,d) (c,e)

f *** g = first f >>> second g

(&&&) :: Arrow a => a b c -> a b d -> a b (c,d)

f &&& g = arr (\x->(x,x)) >>> (f *** g)
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Exercise 6

Describe the following circuit using arrow
combinators:

a1, a2, a3 :: A Double Double
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Exercise 6: One solution

Exercise 3: Describe the following circuit using
arrow combinators:

a1, a2, a3 :: A Double Double

circuit_v1 :: A Double Double
circuit_v1 = (a1 &&& arr id)

>>> (a2 *** a3)
>>> arr (uncurry (+))
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Exercise 6: Another solution

Exercise 3: Describe the following circuit:

a1, a2, a3 :: A Double Double

circuit_v2 :: A Double Double
circuit_v2 = arr (\x -> (x,x))

>>> first a1
>>> (a2 *** a3)
>>> arr (uncurry (+))
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The arrow do notation (1)

Ross Paterson’s do-notation for arrows supports
pointed arrow programming. Only syntactic
sugar.

proc pat -> do [ rec ]
pat1 <- sfexp1 -< exp1

pat2 <- sfexp2 -< exp2

. . .
pat

n
<- sfexp

n
-< exp

n

returnA -< exp

Also: let pat = exp ≡ pat <- arr id -< exp
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The arrow do notation (2)

Let us redo exercise 3 using this notation:

circuit_v4 :: A Double Double
circuit_v4 = proc x -> do

y1 <- a1 -< x
y2 <- a2 -< y1
y3 <- a3 -< x
returnA -< y2 + y3
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The arrow do notation (3)

We can also mix and match:

circuit_v5 :: A Double Double
circuit_v5 = proc x -> do

y2 <- a2 <<< a1 -< x
y3 <- a3 -< x
returnA -< y2 + y3
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The arrow do notation (4)

Recursive networks: do-notation:

a1, a2 :: A Double Double
a3 :: A (Double,Double) Double

Exercise 5: Describe this using only the arrow
combinators.
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The arrow do notation (5)

circuit = proc x -> do
rec

y1 <- a1 -< x
y2 <- a2 -< y1
y3 <- a3 -< (x, y)
let y = y2 + y3

returnA -< y
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Arrows and Monads (1)

Arrows generalize monads: for every monad type
there is an arrow, the Kleisli category for the
monad:

newtype Kleisli m a b = K (a -> m b)

instance Monad m => Arrow (Kleisli m) where

arr f = K (\b -> return (f b))

K f >>> K g = K (\b -> f b >>= g)
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Arrows and Monads (2)

But not every arrow is a monad. However, arrows
that support an additional apply operation are
effectively monads:

apply :: Arrow a => a (a b c, b) c

Exercise 7: Verify that

newtype M b = M (A () b)

is a monad if A is an arrow supporting apply ; i.e.,

define return and bind in terms of the arrow

operations (and verify that the monad laws hold).
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An application: FRP

Functional Reactive Programming (FRP):
• Paradigm for reactive programming in a

functional setting:
- Input arrives incrementally while system

is running.
- Output is generated in response to input in

an interleaved and timely fashion.
• Originated from Functional Reactive

Animation (Fran) (Elliott & Hudak).
• Has evolved in a number of directions and

into different concrete implementations.
LiU-FP2010 Part II: Lecture 6 – p.66/83

Yampa

Yampa:
• The most recent Yale FRP implementation.
• Embedding in Haskell (a Haskell library).
• Arrows used as the basic structuring

framework.
• Continuous time.
• Discrete-time signals modelled by

continuous-time signals and an option type.
• Advanced switching constructs allows for

highly dynamic system structure.
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Related languages

FRP related to:
• Synchronous languages, like Esterel, Lucid

Synchrone.
• Modeling languages, like Simulink.

Distinguishing features of FRP:
• First class reactive components.
• Allows highly dynamic system structure.
• Supports hybrid (mixed continuous and

discrete) systems.
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FRP applications

Some domains where FRP has been used:
• Graphical Animation (Fran: Elliott, Hudak)
• Robotics (Frob: Peterson, Hager, Hudak,

Elliott, Pembeci, Nilsson)
• Vision (FVision: Peterson, Hudak, Reid,

Hager)
• GUIs (Fruit: Courtney)
• Hybrid modeling (Nilsson, Hudak, Peterson)
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Yampa?
Yampa is a river with long calmly flowing sections
and abrupt whitewater transitions in between.

A good metaphor for hybrid systems!
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Signal functions

Key concept: functions on signals.

Intuition:

Signal α ≈ Time→α

x :: Signal T1
y :: Signal T2
SF α β ≈ Signal α →Signal β

f :: SF T1 T2

Additionally: causality requirement.
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Signal functions and state

Alternative view:

Signal functions can encapsulate state.

state(t) summarizes input history x(t′), t′ ∈ [0, t].

Functions on signals are either:
• Stateful : y(t) depends on x(t) and state(t)

• Stateless: y(t) depends only on x(t)
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Yampa and Arrows

SF is an arrow. Signal function instances of core
combinators:

• arr :: (a -> b) -> SF a b

• >>> :: SF a b -> SF b c -> SF a c

• first :: SF a b -> SF (a,c) (b,c)

• loop :: SF (a,c) (b,c) -> SF a b

But apply has no useful meaning. Hence SF is
not a monad.

LiU-FP2010 Part II: Lecture 6 – p.73/83

Some further basic signal functions

• identity :: SF a a
identity = arr id

• constant :: b -> SF a b
constant b = arr (const b)

• integral :: VectorSpace a s=>SF a a

• time :: SF a Time
time = constant 1.0 >>> integral

• (^<<) :: (b->c) -> SF a b -> SF a c
f (^<<) sf = sf >>> arr f
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Example: A bouncing ball

y = y0 +

∫
v dt

v = v0 +

∫
−9.81

On impact:

v = −v(t−)

(fully elastic collision)
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Part of a model of the bouncing ball

Free-falling ball:

type Pos = Double

type Vel = Double

fallingBall ::

Pos -> Vel -> SF () (Pos, Vel)

fallingBall y0 v0 = proc () -> do

v <- (v0 +) ˆ<< integral -< -9.81

y <- (y0 +) ˆ<< integral -< v

returnA -< (y, v)
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Dynamic system structure

Switching allows the structure of the system to
evolve over time:
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Example: Space Invaders
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Overall game structure

gun

alien

bullet

alien

...

killOrSpawn

ObjInput ObjOutput

} [ObjectOutput]

dpSwitch

route
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• Nick Benton, John Hughes, Eugenio Moggi. Monads
and Effects. In International Summer School on
Applied Semantics 2000, Caminha, Portugal, 2000.

• Sheng Liang, Paul Hudak, Mark Jones. Monad
Transformers and Modular Interpreters. In Proceedings
of the 22nd ACM Symposium on Principles of
Programming Languages (POPL’95), January 1995,
San Francisco, California
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Reading (2)

• Mauro Jaskelioff. Monatron: An Extensible Monad
Transformer Library. In Implementation of Functional
Languages (IFL’08), 2008.

• Mauro Jaskelioff. Modular Monad Transformers. In
European Symposium on Programming (ESOP,09),
2009.
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Reading (3)

• John Hughes. Generalising monads to arrows. Science
of Computer Programming, 37:67–111, May 2000

• John Hughes. Programming with arrows. In Advanced
Functional Programming, 2004. To be published by
Springer Verlag.

• Henrik Nilsson, Antony Courtney, and John Peterson.
Functional reactive programming, continued. In
Proceedings of the 2002 Haskell Workshop, pp. 51–64,
October 2002.
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Reading (4)

• Paul Hudak, Antony Courtney, Henrik Nilsson, and
John Peterson. Arrows, robots, and functional reactive
programming. In Advanced Functional Programming,
2002. LNCS 2638, pp. 159–187.

• Antony Courtney, Henrik Nilsson, and John Peterson.
The Yampa Arcade. In Proceedings of the 2003 ACM
SIGPLAN Haskell Workshop (Haskell’03), Uppsala,
Sweden, 2003, pp 7–18.
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