
LiU-FP2010 Part II: Lecture 6
More about Monads and Other Notions of Effectful

Computation

Henrik Nilsson

University of Nottingham, UK

LiU-FP2010 Part II: Lecture 6 – p.1/83

This Lecture

• Monads in Haskell
• Some standard monads
• Combining effects: monad transformers
• Arrows
• FRP and Yampa

LiU-FP2010 Part II: Lecture 6 – p.2/83

Monads in Haskell

In Haskell, the notion of a monad is captured by
a Type Class:

class Monad m where

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

Allows names of the common functions to be
overloaded and sharing of derived definitions.

LiU-FP2010 Part II: Lecture 6 – p.3/83

The Maybe Monad in Haskell

instance Monad Maybe where

-- return :: a -> Maybe a

return = Just

-- (>>=) :: Maybe a -> (a -> Maybe b)

-- -> Maybe b

Nothing >>= _ = Nothing

(Just x) >>= f = f x

LiU-FP2010 Part II: Lecture 6 – p.4/83

Exercise 1: A State Monad in Haskell

Haskell 98 does not permit type synonyms to be
instances of classes. Hence we have to define a
new type:

newtype S a = S (Int -> (a, Int))

unS :: S a -> (Int -> (a, Int))

unS (S f) = f

Provide a Monad instance for S.

LiU-FP2010 Part II: Lecture 6 – p.5/83

Exercise 1: Solution

instance Monad S where

return a = S (\s -> (a, s))

m >>= f = S $ \s ->

let (a, s’) = unS m s

in unS (f a) s’

LiU-FP2010 Part II: Lecture 6 – p.6/83

Monad-specific Operations (1)

To be useful, monads need to be equipped with
additional operations specific to the effects in
question. For example:

fail :: String -> Maybe a

fail s = Nothing

catch :: Maybe a -> Maybe a -> Maybe a

m1 ‘catch‘ m2 =

case m1 of

Just _ -> m1

Nothing -> m2
LiU-FP2010 Part II: Lecture 6 – p.7/83

Monad-specific Operations (2)

Typical operations on a state monad:

set :: Int -> S ()

set a = S (_ -> ((), a))

get :: S Int

get = S (\s -> (s, s))

Moreover, need to “run” a computation. E.g.:

runS :: S a -> a

runS m = fst (unS m 0)

LiU-FP2010 Part II: Lecture 6 – p.8/83

The do-notation (1)

Haskell provides convenient syntax for
programming with monads:

do

a <- exp
1

b <- exp
2

return exp3

is syntactic sugar for

exp
1

>>= \a ->

exp
2

>>= \b ->

return exp
3

LiU-FP2010 Part II: Lecture 6 – p.9/83

The do-notation (2)

Computations can be done solely for effect,
ignoring the computed value:

do

exp
1

exp
2

return exp3

is syntactic sugar for

exp
1

>>= _ ->

exp
2

>>= _ ->

return exp
3

LiU-FP2010 Part II: Lecture 6 – p.10/83

The do-notation (3)

A let -construct is also provided:

do

let a = exp
1

b = exp
2

return exp3

is equivalent to

do

a <- return exp
1

b <- return exp
2

return exp3

LiU-FP2010 Part II: Lecture 6 – p.11/83

Numbering Trees indo-notation

numberTree :: Tree a -> Tree Int

numberTree t = runS (ntAux t)

where

ntAux :: Tree a -> S (Tree Int)

ntAux (Leaf _) = do

n <- get

set (n + 1)

return (Leaf n)

ntAux (Node t1 t2) = do

t1’ <- ntAux t1

t2’ <- ntAux t2

return (Node t1’ t2’)
LiU-FP2010 Part II: Lecture 6 – p.12/83

The Compiler Fragment Revisited (1)

Given a suitable “Diagnostics” monad D that
collects error messages, enterVar can be
turned from this:

enterVar :: Id -> Int -> Type -> Env

-> Either Env ErrorMgs

into this:

enterVarD :: Id -> Int -> Type -> Env

-> D Env

and then identDefs from this . . .

LiU-FP2010 Part II: Lecture 6 – p.13/83

The Compiler Fragment Revisited (2)

identDefs l env [] = ([], env, [])

identDefs l env ((i,t,e) : ds) =

((i,t,e’) : ds’, env’’, ms1++ms2++ms3)

where

(e’, ms1) = identAux l env e

(env’, ms2) =

case enterVar i l t env of

Left env’ -> (env’, [])

Right m -> (env, [m])

(ds’, env’’, ms3) =

identDefs l env’ ds

LiU-FP2010 Part II: Lecture 6 – p.14/83

The Compiler Fragment Revisited (3)

into this:

identDefsD l env [] = return ([], env)

identDefsD l env ((i,t,e) : ds) = do

e’ <- identAuxD l env e

env’ <- enterVarD i l t env

(ds’, env’’) <- identDefsD l env’ ds

return ((i,t,e’) : ds’, env’’)

(Suffix D just to remind us the types have
changed.)

LiU-FP2010 Part II: Lecture 6 – p.15/83

The Compiler Fragment Revisited (4)

Compare with the “core” identified earlier!

identDefs l env [] = ([], env)

identDefs l env ((i,t,e) : ds) =

((i,t,e’) : ds’, env’’)

where

e’ = identAux l env e

env’ = enterVar i l t env

(ds’, env’’) = identDefs l env’ ds

The monadic version is very close to ideal,
without sacrificing functionality, clarity, or
pureness!

LiU-FP2010 Part II: Lecture 6 – p.16/83

The List Monad

Computation with many possible results,
“nondeterminism”:

instance Monad [] where

return a = [a]

m >>= f = concat (map f m)

fail s = []

Example:

x <- [1, 2]

y <- [’a’, ’b’]

return (x,y)

Result:

[(1,’a’),(1,’b’),

(2,’a’),(2,’b’)]

LiU-FP2010 Part II: Lecture 6 – p.17/83

The Reader Monad

Computation in an environment:

instance Monad ((->) e) where

return a = const a

m >>= f = \e -> f (m e) e

getEnv :: ((->) e) e

getEnv = id

LiU-FP2010 Part II: Lecture 6 – p.18/83

The Haskell IO Monad

In Haskell, IO is handled through the IO monad.
IO is abstract ! Conceptually:

newtype IO a = IO (World -> (a, World))

Some operations:

putChar :: Char -> IO ()

putStr :: String -> IO ()

putStrLn :: String -> IO ()

getChar :: IO Char

getLine :: IO String

getContents :: String

LiU-FP2010 Part II: Lecture 6 – p.19/83

Monad Transformers (1)

What if we need to support more than one type
of effect?

For example: State and Error/Partiality?

We could implement a suitable monad from
scratch:

newtype SE s a = SE (s -> Maybe (a, s))

LiU-FP2010 Part II: Lecture 6 – p.20/83

Monad Transformers (2)

However:
• Not always obvious how: e.g., should the

combination of state and error have been
newtype SE s a = SE (s -> (Maybe a, s))

• Duplication of effort: similar patterns related
to specific effects are going to be repeated
over and over in the various combinations.

LiU-FP2010 Part II: Lecture 6 – p.21/83

Monad Transformers (3)

Monad Transformers can help:
• A monad transformer transforms a monad

by adding support for an additional effect.
• A library of monad transformers can be

developed, each adding a specific effect
(state, error, . . .), allowing the programmer to
mix and match.

• A form of aspect-oriented programming.

LiU-FP2010 Part II: Lecture 6 – p.22/83

Monad Transformers in Haskell (1)

• A monad transformer maps monads to
monads. Represented by a type constructor T
of the following kind:

T :: (* -> *) -> (* -> *)

• Additionally, a monad transformer adds
computational effects. A mapping lift from
computations in the underlying monad to
computations in the transformed monad is
needed:

lift :: M a -> T M a

LiU-FP2010 Part II: Lecture 6 – p.23/83

Monad Transformers in Haskell (2)

• These requirements are captured by the
following (multi-parameter) type class:

class (Monad m, Monad (t m))

=> MonadTransformer t m where

lift :: m a -> t m a

LiU-FP2010 Part II: Lecture 6 – p.24/83

Classes for Specific Effects

A monad transformer adds specific effects to any
monad. Thus the effect-specific operations
needs to be overloaded. For example:

class Monad m => E m where

eFail :: m a

eHandle :: m a -> m a -> m a

class Monad m => S m s | m -> s where

sSet :: s -> m ()

sGet :: m s

LiU-FP2010 Part II: Lecture 6 – p.25/83

The Identity Monad

We are going to construct monads by successive
transformations of the identity monad:

newtype I a = I a

unI (I a) = a

instance Monad I where

return a = I a

m >>= f = f (unI m)

runI :: I a -> a

runI = unI

LiU-FP2010 Part II: Lecture 6 – p.26/83

The Error Monad Transformer (1)
newtype ET m a = ET (m (Maybe a))

unET (ET m) = m

Any monad transformed by ET is a monad:

instance Monad m => Monad (ET m) where

return a = ET (return (Just a))

m >>= f = ET $ do

ma <- unET m

case ma of

Nothing -> return Nothing

Just a -> unET (f a)
LiU-FP2010 Part II: Lecture 6 – p.27/83

The Error Monad Transformer (2)
We need the ability to run transformed monads:

runET :: Monad m => ET m a -> m a

runET etm = do

ma <- unET etm

case ma of

Just a -> return a

Nothing -> error "Should not happen"

ET is a monad transformer:

instance Monad m =>

MonadTransformer ET m where

lift m = ET (m >>= \a -> return (Just a))

LiU-FP2010 Part II: Lecture 6 – p.28/83

The Error Monad Transformer (3)

Any monad transformed by ET is an instance of E:

instance Monad m => E (ET m) where

eFail = ET (return Nothing)

m1 ‘eHandle‘ m2 = ET $ do

ma <- unET m1

case ma of

Nothing -> unET m2

Just _ -> return ma

LiU-FP2010 Part II: Lecture 6 – p.29/83

The Error Monad Transformer (4)

A state monad transformed by ET is a state
monad:

instance S m s => S (ET m) s where

sSet s = lift (sSet s)

sGet = lift sGet

LiU-FP2010 Part II: Lecture 6 – p.30/83

Exercise 2: Running Transf. Monads

Let

ex2 = eFail ‘eHandle‘ return 1

1. Suggest a possible type for ex2 .
(Assume 1 :: Int .)

2. Given your type, use the appropriate
combination of “run functions” to run ex2 .

LiU-FP2010 Part II: Lecture 6 – p.31/83

Exercise 2: Solution

ex2 :: ET I Int

ex2 = eFail ‘eHandle‘ return 1

ex2result :: Int

ex2result = runI (runET ex2)

LiU-FP2010 Part II: Lecture 6 – p.32/83

The State Monad Transformer (1)

newtype ST s m a = ST (s -> m (a, s))

unST (ST m) = m

Any monad transformed by ST is a monad:

instance Monad m => Monad (ST s m) where

return a = ST (\s -> return (a, s))

m >>= f = ST $ \s -> do

(a, s’) <- unST m s

unST (f a) s’

LiU-FP2010 Part II: Lecture 6 – p.33/83

The State Monad Transformer (2)

We need the ability to run transformed monads:

runST :: Monad m => ST s m a -> s -> m a

runST stf s0 = do

(a, _) <- unST stf s0

return a

ST is a monad transformer:

instance Monad m =>

MonadTransformer (ST s) m where

lift m = ST (\s -> m >>= \a ->

return (a, s))

LiU-FP2010 Part II: Lecture 6 – p.34/83

The State Monad Transformer (3)

Any monad transformed by ST is an instance of S:

instance Monad m => S (ST s m) s where

sSet s = ST (_ -> return ((), s))

sGet = ST (\s -> return (s, s))

An error monad transformed by ST is an error
monad:

instance E m => E (ST s m) where

eFail = lift eFail

m1 ‘eHandle‘ m2 = ST $ \s ->

unST m1 s ‘eHandle‘ unST m2 s

LiU-FP2010 Part II: Lecture 6 – p.35/83

Exercise 3: Effect Ordering

Consider the code fragment

ex3a :: (ST Int (ET I)) Int

ex3a = (sSet 42 >> eFail) ‘eHandle‘ sGet

Note that the exact same code fragment also can
be typed as follows:

ex3b :: (ET (ST Int I)) Int

ex3b = (sSet 42 >> eFail) ‘eHandle‘ sGet

What is

runI (runET (runST ex3a 0))

runI (runST (runET ex3b) 0)

LiU-FP2010 Part II: Lecture 6 – p.36/83

Exercise 3: Solution

runI (runET (runST ex3a 0)) = 0

runI (runST (runET ex3b) 0) = 42

Why? Because:

ST s (ET I) a ∼= s -> (ET I) (a, s)
∼= s -> I (Maybe (a, s))
∼= s -> Maybe (a, s)

ET (ST s I) a ∼= (ST s I) (Maybe a)
∼= s -> I (Maybe a, s)
∼= s -> (Maybe a, s)

LiU-FP2010 Part II: Lecture 6 – p.37/83

Exercise 4: AlternativeST?

To think about.

Could ST have been defined in some other way,
e.g.

newtype ST s m a = ST (m (s -> (a, s)))

or perhaps

newtype ST s m a = ST (s -> (m a, s))

LiU-FP2010 Part II: Lecture 6 – p.38/83

Problems with Monad Transformers

• With one transformer for each possible effect,
we get a lot of combinations: the number
grows quadratically; each has to be
instantiated explicitly.

• Jaskelioff (2008,2009) has proposed a
possible, more extensible alternative.

LiU-FP2010 Part II: Lecture 6 – p.39/83

Arrows (1)

System descriptions in the form of block
diagrams are very common. Blocks have inputs
and outputs and can be combined into larger
blocks. For example, serial composition:

A combinator can be defined that captures this
idea:

(>>>) :: B a b -> B b c -> B a c

LiU-FP2010 Part II: Lecture 6 – p.40/83

Arrows (2)

But systems can be complex:

How many and what combinators do we need
to be able to describe arbitrary systems?

LiU-FP2010 Part II: Lecture 6 – p.41/83

Arrows (3)

John Hughes’ arrow framework:
• Abstract data type interface for function-like

types (or “blocks”, if you prefer).
• Particularly suitable for types representing

process-like computations.
• Related to monads, since arrows are

computations, but more general.
• Provides a minimal set of “wiring”

combinators.

LiU-FP2010 Part II: Lecture 6 – p.42/83

What is an arrow? (1)

• A type constructor a of arity two.
• Three operators:

- lifting:
arr :: (b->c) -> a b c

- composition:
(>>>) :: a b c -> a c d -> a b d

- widening:
first :: a b c -> a (b,d) (c,d)

• A set of algebraic laws that must hold.

LiU-FP2010 Part II: Lecture 6 – p.43/83

What is an arrow? (2)

These diagrams convey the general idea:

arr f f >>> g

first f

LiU-FP2010 Part II: Lecture 6 – p.44/83

The Arrow class

In Haskell, a type class is used to capture these
ideas (except for the laws):

class Arrow a where
arr :: (b -> c) -> a b c
(>>>) :: a b c -> a c d -> a b d
first :: a b c -> a (b,d) (c,d)

LiU-FP2010 Part II: Lecture 6 – p.45/83

Functions are arrows (1)

Functions are a simple example of arrows, with
(->) as the arrow type constructor.

Exercise 5: Suggest suitable definitions of
• arr

• (>>>)

• first

for this case!

(We have not looked at what the laws are yet, but
they are “natural”.)

LiU-FP2010 Part II: Lecture 6 – p.46/83

Functions are arrows (2)

Solution:
• arr = id

To see this, recall
id :: t -> t
arr :: (b->c) -> a b c

Instantiate with

a = (->)

t = b->c = (->) b c

LiU-FP2010 Part II: Lecture 6 – p.47/83

Functions are arrows (3)

• f >>> g = \a -> g (f a) or
• f >>> g = g . f or even
• (>>>) = flip (.)

• first f = \(b,d) -> (f b,d)

LiU-FP2010 Part II: Lecture 6 – p.48/83

Functions are arrows (4)

Arrow instance declaration for functions:

instance Arrow (->) where
arr = id
(>>>) = flip (.)
first f = \(b,d) -> (f b,d)

LiU-FP2010 Part II: Lecture 6 – p.49/83

Some arrow laws

(f >>> g) >>> h = f >>> (g >>> h)

arr (f >>> g) = arr f >>> arr g

arr id >>> f = f

f = f >>> arr id

first (arr f) = arr (first f)

first (f >>> g) = first f >>> first g

LiU-FP2010 Part II: Lecture 6 – p.50/83

The loop combinator (1)

Another important operator is loop : a fixed-point
operator used to express recursive arrows or
feedback :

loop f

LiU-FP2010 Part II: Lecture 6 – p.51/83

The loop combinator (2)

Not all arrow instances support loop . It is thus a
method of a separate class:

class Arrow a => ArrowLoop a where
loop :: a (b, d) (c, d) -> a b c

Remarkably, the four combinators arr , >>>,
first , and loop are sufficient to express any
conceivable wiring!

LiU-FP2010 Part II: Lecture 6 – p.52/83

Some more arrow combinators (1)

second :: Arrow a =>
a b c -> a (d,b) (d,c)

(***) :: Arrow a =>
a b c -> a d e -> a (b,d) (c,e)

(&&&) :: Arrow a =>
a b c -> a b d -> a b (c,d)

LiU-FP2010 Part II: Lecture 6 – p.53/83

Some more arrow combinators (2)

As diagrams:

second f
f *** g

f &&& g
LiU-FP2010 Part II: Lecture 6 – p.54/83

Some more arrow combinators (3)

second :: Arrow a => a b c -> a (d,b) (d,c)

second f = arr swap >>> first f >>> arr swap

swap (x,y) = (y,x)

(***) :: Arrow a =>

a b c -> a d e -> a (b,d) (c,e)

f *** g = first f >>> second g

(&&&) :: Arrow a => a b c -> a b d -> a b (c,d)

f &&& g = arr (\x->(x,x)) >>> (f *** g)

LiU-FP2010 Part II: Lecture 6 – p.55/83

Exercise 6

Describe the following circuit using arrow
combinators:

a1, a2, a3 :: A Double Double

LiU-FP2010 Part II: Lecture 6 – p.56/83

Exercise 6: One solution

Exercise 3: Describe the following circuit using
arrow combinators:

a1, a2, a3 :: A Double Double

circuit_v1 :: A Double Double
circuit_v1 = (a1 &&& arr id)

>>> (a2 *** a3)
>>> arr (uncurry (+))

LiU-FP2010 Part II: Lecture 6 – p.57/83

Exercise 6: Another solution

Exercise 3: Describe the following circuit:

a1, a2, a3 :: A Double Double

circuit_v2 :: A Double Double
circuit_v2 = arr (\x -> (x,x))

>>> first a1
>>> (a2 *** a3)
>>> arr (uncurry (+))

LiU-FP2010 Part II: Lecture 6 – p.58/83

The arrow do notation (1)

Ross Paterson’s do-notation for arrows supports
pointed arrow programming. Only syntactic
sugar.

proc pat -> do [rec]
pat1 <- sfexp1 -< exp1

pat2 <- sfexp2 -< exp2

. . .
pat

n
<- sfexp

n
-< exp

n

returnA -< exp

Also: let pat = exp ≡ pat <- arr id -< exp
LiU-FP2010 Part II: Lecture 6 – p.59/83

The arrow do notation (2)

Let us redo exercise 3 using this notation:

circuit_v4 :: A Double Double
circuit_v4 = proc x -> do

y1 <- a1 -< x
y2 <- a2 -< y1
y3 <- a3 -< x
returnA -< y2 + y3

LiU-FP2010 Part II: Lecture 6 – p.60/83

The arrow do notation (3)

We can also mix and match:

circuit_v5 :: A Double Double
circuit_v5 = proc x -> do

y2 <- a2 <<< a1 -< x
y3 <- a3 -< x
returnA -< y2 + y3

LiU-FP2010 Part II: Lecture 6 – p.61/83

The arrow do notation (4)

Recursive networks: do-notation:

a1, a2 :: A Double Double
a3 :: A (Double,Double) Double

Exercise 5: Describe this using only the arrow
combinators.

LiU-FP2010 Part II: Lecture 6 – p.62/83

The arrow do notation (5)

circuit = proc x -> do
rec

y1 <- a1 -< x
y2 <- a2 -< y1
y3 <- a3 -< (x, y)
let y = y2 + y3

returnA -< y

LiU-FP2010 Part II: Lecture 6 – p.63/83

Arrows and Monads (1)

Arrows generalize monads: for every monad type
there is an arrow, the Kleisli category for the
monad:

newtype Kleisli m a b = K (a -> m b)

instance Monad m => Arrow (Kleisli m) where

arr f = K (\b -> return (f b))

K f >>> K g = K (\b -> f b >>= g)

LiU-FP2010 Part II: Lecture 6 – p.64/83

Arrows and Monads (2)

But not every arrow is a monad. However, arrows
that support an additional apply operation are
effectively monads:

apply :: Arrow a => a (a b c, b) c

Exercise 7: Verify that

newtype M b = M (A () b)

is a monad if A is an arrow supporting apply ; i.e.,

define return and bind in terms of the arrow

operations (and verify that the monad laws hold).
LiU-FP2010 Part II: Lecture 6 – p.65/83

An application: FRP

Functional Reactive Programming (FRP):
• Paradigm for reactive programming in a

functional setting:
- Input arrives incrementally while system

is running.
- Output is generated in response to input in

an interleaved and timely fashion.
• Originated from Functional Reactive

Animation (Fran) (Elliott & Hudak).
• Has evolved in a number of directions and

into different concrete implementations.
LiU-FP2010 Part II: Lecture 6 – p.66/83

Yampa

Yampa:
• The most recent Yale FRP implementation.
• Embedding in Haskell (a Haskell library).
• Arrows used as the basic structuring

framework.
• Continuous time.
• Discrete-time signals modelled by

continuous-time signals and an option type.
• Advanced switching constructs allows for

highly dynamic system structure.
LiU-FP2010 Part II: Lecture 6 – p.67/83

Related languages

FRP related to:
• Synchronous languages, like Esterel, Lucid

Synchrone.
• Modeling languages, like Simulink.

Distinguishing features of FRP:
• First class reactive components.
• Allows highly dynamic system structure.
• Supports hybrid (mixed continuous and

discrete) systems.

LiU-FP2010 Part II: Lecture 6 – p.68/83

FRP applications

Some domains where FRP has been used:
• Graphical Animation (Fran: Elliott, Hudak)
• Robotics (Frob: Peterson, Hager, Hudak,

Elliott, Pembeci, Nilsson)
• Vision (FVision: Peterson, Hudak, Reid,

Hager)
• GUIs (Fruit: Courtney)
• Hybrid modeling (Nilsson, Hudak, Peterson)

LiU-FP2010 Part II: Lecture 6 – p.69/83

Yampa?
Yampa is a river with long calmly flowing sections
and abrupt whitewater transitions in between.

A good metaphor for hybrid systems!
LiU-FP2010 Part II: Lecture 6 – p.70/83

Signal functions

Key concept: functions on signals.

Intuition:

Signal α ≈ Time→α

x :: Signal T1
y :: Signal T2
SF α β ≈ Signal α →Signal β

f :: SF T1 T2

Additionally: causality requirement.

LiU-FP2010 Part II: Lecture 6 – p.71/83

Signal functions and state

Alternative view:

Signal functions can encapsulate state.

state(t) summarizes input history x(t′), t′ ∈ [0, t].

Functions on signals are either:
• Stateful : y(t) depends on x(t) and state(t)

• Stateless: y(t) depends only on x(t)

LiU-FP2010 Part II: Lecture 6 – p.72/83

Yampa and Arrows

SF is an arrow. Signal function instances of core
combinators:

• arr :: (a -> b) -> SF a b

• >>> :: SF a b -> SF b c -> SF a c

• first :: SF a b -> SF (a,c) (b,c)

• loop :: SF (a,c) (b,c) -> SF a b

But apply has no useful meaning. Hence SF is
not a monad.

LiU-FP2010 Part II: Lecture 6 – p.73/83

Some further basic signal functions

• identity :: SF a a
identity = arr id

• constant :: b -> SF a b
constant b = arr (const b)

• integral :: VectorSpace a s=>SF a a

• time :: SF a Time
time = constant 1.0 >>> integral

• (^<<) :: (b->c) -> SF a b -> SF a c
f (^<<) sf = sf >>> arr f

LiU-FP2010 Part II: Lecture 6 – p.74/83

Example: A bouncing ball

y = y0 +

∫
v dt

v = v0 +

∫
−9.81

On impact:

v = −v(t−)

(fully elastic collision)

LiU-FP2010 Part II: Lecture 6 – p.75/83

Part of a model of the bouncing ball

Free-falling ball:

type Pos = Double

type Vel = Double

fallingBall ::

Pos -> Vel -> SF () (Pos, Vel)

fallingBall y0 v0 = proc () -> do

v <- (v0 +) ˆ<< integral -< -9.81

y <- (y0 +) ˆ<< integral -< v

returnA -< (y, v)

LiU-FP2010 Part II: Lecture 6 – p.76/83

Dynamic system structure

Switching allows the structure of the system to
evolve over time:

LiU-FP2010 Part II: Lecture 6 – p.77/83

Example: Space Invaders

LiU-FP2010 Part II: Lecture 6 – p.78/83

Overall game structure

gun

alien

bullet

alien

...

killOrSpawn

ObjInput ObjOutput

} [ObjectOutput]

dpSwitch

route

LiU-FP2010 Part II: Lecture 6 – p.79/83

Reading (1)

• Nick Benton, John Hughes, Eugenio Moggi. Monads
and Effects. In International Summer School on
Applied Semantics 2000, Caminha, Portugal, 2000.

• Sheng Liang, Paul Hudak, Mark Jones. Monad
Transformers and Modular Interpreters. In Proceedings
of the 22nd ACM Symposium on Principles of
Programming Languages (POPL’95), January 1995,
San Francisco, California

LiU-FP2010 Part II: Lecture 6 – p.80/83

Reading (2)

• Mauro Jaskelioff. Monatron: An Extensible Monad
Transformer Library. In Implementation of Functional
Languages (IFL’08), 2008.

• Mauro Jaskelioff. Modular Monad Transformers. In
European Symposium on Programming (ESOP,09),
2009.

LiU-FP2010 Part II: Lecture 6 – p.81/83

Reading (3)

• John Hughes. Generalising monads to arrows. Science
of Computer Programming, 37:67–111, May 2000

• John Hughes. Programming with arrows. In Advanced
Functional Programming, 2004. To be published by
Springer Verlag.

• Henrik Nilsson, Antony Courtney, and John Peterson.
Functional reactive programming, continued. In
Proceedings of the 2002 Haskell Workshop, pp. 51–64,
October 2002.

LiU-FP2010 Part II: Lecture 6 – p.82/83

Reading (4)

• Paul Hudak, Antony Courtney, Henrik Nilsson, and
John Peterson. Arrows, robots, and functional reactive
programming. In Advanced Functional Programming,
2002. LNCS 2638, pp. 159–187.

• Antony Courtney, Henrik Nilsson, and John Peterson.
The Yampa Arcade. In Proceedings of the 2003 ACM
SIGPLAN Haskell Workshop (Haskell’03), Uppsala,
Sweden, 2003, pp 7–18.

LiU-FP2010 Part II: Lecture 6 – p.83/83

	This Lecture
	Monads in Haskell
	The 	exttt {Maybe} Monad in Haskell
	Exercise 1: A State Monad in Haskell
	Exercise 1: Solution
	Monad-specific Operations (1)
	Monad-specific Operations (2)
	The 	exttt {do}-notation (1)
	The 	exttt {do}-notation (2)
	The 	exttt {do}-notation (3)
	Numbering Trees in 	exttt {do}-notation
	The Compiler Fragment Revisited (1)
	The Compiler Fragment Revisited (2)
	The Compiler Fragment Revisited (3)
	The Compiler Fragment Revisited (4)
	The List Monad
	The Reader Monad
	The Haskell IO Monad
	Monad Transformers (1)
	Monad Transformers (2)
	Monad Transformers (3)
	Monad Transformers in Haskell (1)
	Monad Transformers in Haskell (2)
	Classes for Specific Effects
	The Identity Monad
	The Error Monad Transformer (1)
	The Error Monad Transformer (2)
	The Error Monad Transformer (3)
	The Error Monad Transformer (4)
	Exercise 2: Running Transf. Monads
	Exercise 2: Solution
	The State Monad Transformer (1)
	The State Monad Transformer (2)
	The State Monad Transformer (3)
	Exercise 3: Effect Ordering
	Exercise 3: Solution
	Exercise 4: Alternative 	exttt {ST}?
	Problems with Monad Transformers
	Arrows (1)
	Arrows (2)
	Arrows (3)
	What is an arrow? (1)
	What is an arrow? (2)
	The 	exttt {Arrow} class
	Functions are arrows (1)
	Functions are arrows (2)
	Functions are arrows (3)
	Functions are arrows (4)
	Some arrow laws
	The 	exttt {loop} combinator (1)
	The 	exttt {loop} combinator (2)
	Some more arrow combinators (1)
	Some more arrow combinators (2)
	Some more arrow combinators (3)
	Exercise 6
	Exercise 6: One solution
	Exercise 6: Another solution
	The arrow 	exttt {do} notation (1)
	The arrow 	exttt {do} notation (2)
	The arrow 	exttt {do} notation (3)
	The arrow 	exttt {do} notation (4)
	The arrow 	exttt {do} notation (5)
	Arrows and Monads (1)
	Arrows and Monads (2)
	An application: FRP
	Yampa
	Related languages
	FRP applications
	Yampa?
	Signal functions
	Signal functions and state
	Yampa and Arrows
	Some further basic signal functions
	Example: A bouncing ball
	Part of a model of the bouncing ball
	Dynamic system structure
	Example: Space Invaders
	Overall game structure
	Reading (1)
	Reading (2)
	Reading (3)
	Reading (4)

