LiU-FP2010 Part II: Lecture 6 More about Monads and Other Notions of Effectful Computation

Henrik Nilsson

University of Nottingham, UK

This Lecture

- Monads in Haskell
- Some standard monads
- Combining effects: monad transformers
- Arrows
- FRP and Yampa

Monads in Haskell

In Haskell, the notion of a monad is captured by a Type Class:
class Monad m where

$$
\begin{aligned}
& \text { return }:: a \rightarrow m a \\
& (\gg=) \\
& :: m a->(a->m b)->m b
\end{aligned}
$$

Allows names of the common functions to be overloaded and sharing of derived definitions.

The Maybe Monad in Haskell

instance Monad Maybe where
-- return :: a -> Maybe a
return = Just
-- (>>=) : : Maybe a -> (a -> Maybe b)
-> Maybe b
Nothing >>= $=$ Nothing
(Just x) >>= f = $\mathrm{f} x$

Exercise 1: A State Monad in Haskell

Haskell 98 does not permit type synonyms to be instances of classes. Hence we have to define a new type:

$$
\begin{aligned}
& \text { newtype } S a=S(\text { Int } \rightarrow(a, \text { Int })) \\
& \text { unS }: S \text { } a->(\text { Int } \rightarrow(a, \text { Int })) \\
& \text { unS }(S f)=f
\end{aligned}
$$

Provide a Monad instance for S .

Exercise 1: Solution

$$
\begin{aligned}
& \text { instance Monad } S \text { where } \\
& \text { return } a=S(\backslash s->(a, s)) \\
& m \gg=f=S \$ \backslash s-> \\
& \text { let }\left(a, s^{\prime}\right)=\text { unS } m s \\
& \text { in unS }(f a) s^{\prime}
\end{aligned}
$$

Monad-specific Operations (1)

To be useful, monads need to be equipped with additional operations specific to the effects in question. For example:

```
fail :: String -> Maybe a
fail s = Nothing
```

catch : : Maybe a -> Maybe a -> Maybe a
m1 'catch' m2 =
case m1 of
Just _ -> m1
Nothing -> m2

Monad-specific Operations (2)

Typical operations on a state monad:

$$
\begin{aligned}
& \text { set }:: \text { Int }->S() \\
& \text { set } a=S\left(\backslash_{-}->((), a)\right) \\
& \text { get }:=S \text { Int } \\
& \text { get }=S(\backslash s->(s, s))
\end{aligned}
$$

Moreover, need to "run" a computation. E.g.:

```
runS :: S a -> a
runS m = fst (unS m 0)
```


The do-notation (1)

Haskell provides convenient syntax for programming with monads:
do

$$
\begin{aligned}
& \mathrm{a}<-\exp _{1} \\
& \mathrm{~b}<-\exp _{2} \\
& \text { return } \exp _{3}
\end{aligned}
$$

is syntactic sugar for

$$
\begin{aligned}
& \exp _{1} \gg=\backslash \mathrm{a}-> \\
& \exp _{2} \gg=\backslash \mathrm{b}-> \\
& \text { return } \exp _{3}
\end{aligned}
$$

The do-notation (2)

Computations can be done solely for effect, ignoring the computed value:
do

$$
\begin{aligned}
& \exp _{1} \\
& \exp _{2} \\
& \text { return } \exp _{3}
\end{aligned}
$$

is syntactic sugar for

$$
\begin{aligned}
& \exp _{1} \gg=\backslash_{-}-> \\
& \exp _{2} \gg=_{-}-> \\
& \text {return } \exp _{3}
\end{aligned}
$$

The do-notation (3)

A let-construct is also provided:

$$
\text { do } \begin{aligned}
\text { let } \mathrm{a} & =\exp _{1} \\
\mathrm{~b} & =\exp _{2}
\end{aligned}
$$

$$
\text { return } \exp _{3}
$$

is equivalent to
do

$$
\begin{aligned}
& a<- \text { return } \exp _{1} \\
& b<- \text { return } \exp _{2} \\
& \text { return } \exp _{3}
\end{aligned}
$$

Numbering Trees in do-notation

```
numberTree :: Tree a -> Tree Int
numberTree t = runS (ntAux t)
    where
    ntAux :: Tree a -> S (Tree Int)
    ntAux (Ieaf _) = do
    n <- get
    set (n + 1)
    return (Leaf n)
ntAux (Node t1 t2) = do
    t1' <- ntAux t1
    t2' <- ntAux t2
    return (Node t1' t2')
```


The Compiler Fragment Revisited (1)

Given a suitable "Diagnostics" monad D that collects error messages, enterVar can be turned from this:

$$
\begin{aligned}
& \text { enterVar : : Id }->\text { Int }->\text { Type }->\text { Env } \\
&->\text { Either Env ErrorMgs }
\end{aligned}
$$

into this:

$$
\begin{aligned}
& \text { enterVarD : : Id }->\text { Int }->\text { Type }->\text { Env } \\
&->\text { D Env }
\end{aligned}
$$

and then identDefs from this ...

The Compiler Fragment Revisited (2)

identDefs l env [] = ([], env, [])
identDefs l env ((i,t,e) : ds) =

$$
\left(\left(i, t, e^{\prime}\right): d s^{\prime}, e n v^{\prime \prime}, \mathrm{ms} 1++\mathrm{ms} 2++\mathrm{ms} 3\right)
$$

where

$$
\begin{aligned}
& \left(e^{\prime}, m s 1\right)=\text { identAux } l \text { env } e \\
& \left(e n v^{\prime}, m s 2\right)=
\end{aligned}
$$

case enterVar i l t env of Left env' -> (env', [])

Right m -> (env, [m])
$\left(d s^{\prime}, ~ e n v^{\prime \prime}\right.$, ms3) =
identDefs l env' ds

The Compiler Fragment Revisited (3)

into this:

$$
\begin{aligned}
& \text { identDefsD l env [] = return ([], env) } \\
& \text { identDefsD l env ((i,t,e) : ds) = do } \\
& e^{\prime} \quad<- \text { identAuxD l env e } \\
& \text { env' <- enterVarD i l t env } \\
& \text { (ds', env'r) <- identDefsD l env' ds } \\
& \text { return ((i,t, } \left.e^{\prime}\right) \text { : ds', env'r) }
\end{aligned}
$$

(Suffix D just to remind us the types have changed.)

The Compiler Fragment Revisited (4)

Compare with the "core" identified earlier!

```
identDefs l env [] = ([], env)
identDefs lenv ((i,t,e) : ds) =
( (i,t, \(\left.\left.e^{\prime}\right): d s^{\prime}, ~ e n v^{\prime \prime}\right)\)
where
\begin{tabular}{ll}
\(e^{\prime}\) & \(=\) identAux 1 env e \\
\(e n v^{\prime}\) & \(=\) enterVar \(i \quad 1\) t env \\
\(\left(d s^{\prime}, ~ e n v^{\prime \prime}\right)\) & \(=\) identDefs 1 env \({ }^{\prime}\) ds
\end{tabular}
```

The monadic version is very close to ideal, without sacrificing functionality, clarity, or pureness!

The List Monad

Computation with many possible results, "nondeterminism":

$$
\begin{aligned}
& \text { instance Monad }[] \text { where } \\
& \text { return } a=[a] \\
& m \gg=f=\text { concat (map f } m) \\
& \text { fail } s=[]
\end{aligned}
$$

Example:

$$
\begin{aligned}
& x<-[1,2] \\
& y<-\left[{ }^{\prime} a^{\prime}, b^{\prime} b^{\prime}\right] \\
& \text { return }(x, y)
\end{aligned}
$$

Result:

$$
\begin{aligned}
& {\left[\left(1,^{\prime} a^{\prime}\right),\left(1, r^{\prime} b^{\prime}\right),\right.} \\
& \left.\left(2, a^{\prime}\right),\left(2,^{\prime} b^{\prime}\right)\right]
\end{aligned}
$$

The Reader Monad

Computation in an environment:

$$
\begin{aligned}
& \text { instance Monad }((->) \text { e) where } \\
& \text { return } a=\text { const } a \\
& m \gg=f=\text { le }->(m e) e \\
& \text { getEnv }:((->) \text { e) e } \\
& \text { getEnv }=i d
\end{aligned}
$$

The Haskell IO Monad

In Haskell, IO is handled through the IO monad. IO is abstract! Conceptually:

$$
\text { newtype IO } a=I O \text { (World }->\text { (a, World)) }
$$

Some operations:

putChar	$::$ Char $->$ IO ()
putStr	$:$ String $->$ IO ()
putStrin	$:$ String $->$ IO ()
getChar	$::$ IO Char
getLine	$::$ IO String
getContents	$::$ String

Monad Transformers (1)

What if we need to support more than one type of effect?

Monad Transformers (1)

What if we need to support more than one type of effect?

For example: State and Error/Partiality?

Monad Transformers (1)

What if we need to support more than one type of effect?

For example: State and Error/Partiality?

We could implement a suitable monad from scratch:

$$
\text { newtype SE } s \text { a }=\operatorname{SE}(s \rightarrow \text { Maybe }(a, s))
$$

Monad Transformers (2)

However:

Monad Transformers (2)

However:

- Not always obvious how: e.g., should the combination of state and error have been
newtype SE s a = SE (s -> (Maybe a, s))

Monad Transformers (2)

However:

- Not always obvious how: e.g., should the combination of state and error have been
newtype SE s a = SE (s -> (Maybe a, s))
- Duplication of effort: similar patterns related to specific effects are going to be repeated over and over in the various combinations.

Monad Transformers (3)

Monad Transformers can help:

Monad Transformers (3)

Monad Transformers can help:

- A monad transformer transforms a monad by adding support for an additional effect.

Monad Transformers (3)

Monad Transformers can help:

- A monad transformer transforms a monad by adding support for an additional effect.
- A library of monad transformers can be developed, each adding a specific effect (state, error, . . .), allowing the programmer to mix and match.

Monad Transformers (3)

Monad Transformers can help:

- A monad transformer transforms a monad by adding support for an additional effect.
- A library of monad transformers can be developed, each adding a specific effect (state, error, ...), allowing the programmer to mix and match.
- A form of aspect-oriented programming.

Monad Transformers in Haskell (1)

- A monad transformer maps monads to monads. Represented by a type constructor T of the following kind:

$$
\mathrm{T}::(*->*)->(*->*)
$$

Monad Transformers in Haskell (1)

- A monad transformer maps monads to monads. Represented by a type constructor T of the following kind:

$$
\mathrm{T}::(*->*)->(*->*)
$$

- Additionally, a monad transformer adds computational effects. A mapping lift from computations in the underlying monad to computations in the transformed monad is needed:
lift : : M a -> T M a

Monad Transformers in Haskell (2)

- These requirements are captured by the following (multi-parameter) type class:

class (Monad m, Monad (m m)
$=>$ MonadTransformer $t \mathrm{~m}$ where
$$
\text { lift }:: m a \rightarrow t m a
$$

Classes for Specific Effects

A monad transformer adds specific effects to any monad. Thus the effect-specific operations needs to be overloaded. For example:

```
class Monad m => E m where
    eFail :: m a
eHandle :: m a -> m a -> m a
class Monad m => S m s | m -> s where
    sSet :: s -> m ()
    sGet : : m s
```


The Identity Monad

We are going to construct monads by successive transformations of the identity monad:

```
newtype I a = I a
unI (I a) = a
instance Monad I where
    return a = I a
    m >>= f = f (unI m)
runI :: I a -> a
runI = unI
```


The Error Monad Transformer (1)

newtype ET m a = ET (m (Maybe a))
UnET (ET m) = m
Any monad transformed by ET is a monad:
instance Monad $m \Rightarrow$ Monad (ET m) where return $a=E T$ (return (Just a))

$$
\mathrm{m} \gg=\mathrm{f}=\mathrm{ET} \$ \mathrm{do}
$$

ma <- unET m
case ma of
Nothing -> return Nothing
Just a -> unET (f a)

The Error Monad Transformer (2)

We need the ability to run transformed monads:

$$
\begin{aligned}
& \text { runET : : Monad } \mathrm{m}=>\text { ET } \mathrm{m} a \rightarrow \mathrm{~m} \text { a } \\
& \text { runET etm }=\text { do } \\
& \text { ma <- unET etm } \\
& \text { case ma of } \\
& \quad \text { Just a } \rightarrow \text { return a } \\
& \quad \text { Nothing } \rightarrow \text { error "Should not happen" }
\end{aligned}
$$

ET is a monad transformer:
instance Monad m =>
MonadTransformer ET m where
lift $m=E T$ ($m \gg=$ \a $->$ return (Just a))

The Error Monad Transformer (3)

Any monad transformed by ET is an instance of E :
instance Monad m => E (ET m) where
eFail = ET (return Nothing)
m1 'eHandle' m2 = ET \$ do
ma <- unET m1
case ma of

$$
\begin{aligned}
& \text { Nothing }->\text { unET m2 } \\
& \text { Just _ -> return ma }
\end{aligned}
$$

The Error Monad Transformer (4)

A state monad transformed by ET is a state monad:

$$
\begin{aligned}
& \text { instance } S \mathrm{~m} s=>\mathrm{S}(\text { ET } \mathrm{m}) \mathrm{s} \text { where } \\
& \text { sSet } \mathrm{s}=\text { lift }(\mathrm{sSet} \mathrm{~s}) \\
& \text { sGet }=\text { lift } s \text { Get }
\end{aligned}
$$

Exercise 2: Running Transf. Monads

Let

$$
\text { ex2 }=\text { eFail 'eHandle' return } 1
$$

1. Suggest a possible type for ex2. (Assume 1 :: Int.)
2. Given your type, use the appropriate combination of "run functions" to run ex2.

Exercise 2: Solution

```
ex2 :: ET I Int
ex2 = eFail 'eHandle' return 1
ex2result : : Int
ex2result = runI (runET ex2)
```


The State Monad Transformer (1)

newtype $\operatorname{ST} s \mathrm{~m} a=\operatorname{ST}(\mathrm{s} \rightarrow \mathrm{m}(\mathrm{a}, \mathrm{s}))$
unST $\left(\right.$ ST m $\left.^{\prime}\right)=m$
Any monad transformed by ST is a monad:
instance Monad $m=>$ Monad (ST s m) where

$$
\begin{aligned}
& \text { return } a=S T(\backslash s->\text { return }(a, s)) \\
& m \gg=f=S T \$ \backslash s \rightarrow>\text { do } \\
& \quad\left(a, s^{\prime}\right)<-\operatorname{unST} m s \\
& \quad \operatorname{unST}(f a) s^{\prime}
\end{aligned}
$$

The State Monad Transformer (2)

We need the ability to run transformed monads:

runst : : Monad $m=>\operatorname{sT} \mathrm{s}$ a $->\mathrm{s} \rightarrow \mathrm{m}$ a runST stf $s 0=$ do

$$
(a, \quad-)<-\operatorname{unST} \text { stf s0 }
$$

return a
ST is a monad transformer:
instance Monad m =>
MonadTransformer (ST s) m where
lift $m=S T$ (s $->\mathrm{m} \gg=$ \a $->$

$$
\text { return }(a, s))
$$

The State Monad Transformer (3)

Any monad transformed by ST is an instance of S :
instance Monad m m S (ST s m) s where

$$
\begin{aligned}
& \text { sSet } s=S T\left(_{-}->\text {return }((), s)\right) \\
& \text { sGet }=S T(\backslash s \rightarrow \text { return }(s, s))
\end{aligned}
$$

An error monad transformed by ST is an error monad:
instance E m => E (ST s m) where
eFail = lift eFail
m1 'eHandle' m2 = ST \$ \s -> unST m1 s 'eHandle' unST m2 s

Exercise 3: Effect Ordering

Consider the code fragment

$$
\begin{aligned}
& \text { ex3a : }:(S T \text { Int (ET I)) Int } \\
& \text { ex3a }=(\text { sSet } 42 \gg \text { eFail) 'eHandle' sGet }
\end{aligned}
$$

Note that the exact same code fragment also can be typed as follows:

```
ex3b :: (ET (ST Int I)) Int
ex3b = (sSet 42 >> eFail) 'eHandle' sGet
```

What is

```
runI (runET (runST ex3a 0))
runI (runST (runET ex3b) 0)
```


Exercise 3: Solution

run (runE (runS ex aa 0)) $=0$
run (runS (runE ex3b) 0) $=42$
Why? Because:
ST s (ET I) $a \cong s->(E T I) \quad(a, s)$ $\cong s->$ I (Maybe (a, s))
$\cong s->$ Maybe (a, s)
ET (ST s I) $a \cong$ (ST s I) (Maybe a)

$$
\begin{aligned}
& \cong s \rightarrow I \text { (Maybe } a, s) \\
& \cong s \rightarrow \text { (Maybe } a, s)
\end{aligned}
$$

Exercise 4: Alternative ST?

To think about.
Could ST have been defined in some other way, e.g.
newtype ST s m a $=\operatorname{ST}(\mathrm{m}(\mathrm{s}->(\mathrm{a}, \mathrm{s})))$
or perhaps
newtype $S T$ s m a $=$ ST (s -> (ma, s))

Problems with Monad Transformers

- With one transformer for each possible effect, we get a lot of combinations: the number grows quadratically; each has to be instantiated explicitly.
- Jaskelioff $(2008,2009)$ has proposed a possible, more extensible alternative.

Arrows (1)

System descriptions in the form of block diagrams are very common. Blocks have inputs and outputs and can be combined into larger blocks. For example, serial composition:

Arrows (1)

System descriptions in the form of block diagrams are very common. Blocks have inputs and outputs and can be combined into larger blocks. For example, serial composition:

A combinator can be defined that captures this idea:

$$
(\ggg):: B \text { a b } \rightarrow \text { B b c } \rightarrow \text { B a c }
$$

Arrows (2)

But systems can be complex:

Arrows (2)

But systems can be complex:

How many and what combinators do we need to be able to describe arbitrary systems?

Arrows (3)

John Hughes' arrow framework:

- Abstract data type interface for function-like types (or "blocks", if you prefer).

Arrows (3)

John Hughes' arrow framework:

- Abstract data type interface for function-like types (or "blocks", if you prefer).
- Particularly suitable for types representing process-like computations.

Arrows (3)

John Hughes' arrow framework:

- Abstract data type interface for function-like types (or "blocks", if you prefer).
- Particularly suitable for types representing process-like computations.
- Related to monads, since arrows are computations, but more general.

Arrows (3)

John Hughes' arrow framework:

- Abstract data type interface for function-like types (or "blocks", if you prefer).
- Particularly suitable for types representing process-like computations.
- Related to monads, since arrows are computations, but more general.
- Provides a minimal set of "wiring" combinators.

What is an arrow? (1)

- A type constructor a of arity two.

What is an arrow? (1)

- A type constructor a of arity two.
- Three operators:

What is an arrow? (1)

- A type constructor a of arity two.
- Three operators:
- Ifting:
arr : : (b->c) -> a b c

What is an arrow? (1)

- A type constructor a of arity two.
- Three operators:
- Iffting:
arr : : (b->c) -> a b c
- composition:
(>>>) : : a b c -> a c d -> a b d

What is an arrow? (1)

- A type constructor a of arity two.
- Three operators:
- Iffting:
arr :: (b->c) -> a b c
- composition:
(>>>) :: a b c -> a c d -> a b d
- widening:
first : : a b c -> a (b,d) (c,d)

What is an arrow? (1)

- A type constructor a of arity two.
- Three operators:
- Ifting:
arr : : (b->c) -> a b c
- composition:
(>>>) : : a b c -> a c d -> a b d
- widening:
first : : a b c -> a (b,d) (c,d)
- A set of algebraic laws that must hold.

What is an arrow? (2)

These diagrams convey the general idea:

The Arrow class

In Haskell, a type class is used to capture these ideas (except for the laws):
class Arrow a where

$$
\begin{aligned}
& \text { arr :: (b -> c) -> a b c } \\
& \text { (>>>) :: a b c -> a c d -> a b d } \\
& \text { first : : a b c -> a (b,d) (c,d) }
\end{aligned}
$$

Functions are arrows (1)

Functions are a simple example of arrows, with (->) as the arrow type constructor.
Exercise 5: Suggest suitable definitions of

- arr
- (\ggg)
- first
for this case!
(We have not looked at what the laws are yet, but they are "natural".)

Functions are arrows (2)

Solution:

- arr = id

Functions are arrows (2)

Solution:

- arr = id

To see this, recall

$$
\begin{aligned}
& \text { id }:: t \rightarrow t \\
& \arg :(\mathrm{b}->\mathrm{c}) \text {-> a b c }
\end{aligned}
$$

Functions are arrows (2)

Solution:

- arr = id

To see this, recall

$$
\text { id : }: ~ t->t
$$

$$
\text { arr }:(\mathrm{b}->\mathrm{c}) \rightarrow \text { a b c }
$$

Instantiate with

$$
\begin{aligned}
& \mathrm{a}=(->) \\
& \mathrm{t}=\mathrm{b}->\mathrm{c}=(->) \quad \mathrm{b} \quad \mathrm{c}
\end{aligned}
$$

Functions are arrows (3)

- $f \quad \ggg g=\ a->g(f a)$

Functions are arrows (3)

- $\mathrm{f} \rightarrow \gg \mathrm{g}=$ la -> g (f a) or
- $\mathrm{f} \ggg \mathrm{g}=\mathrm{g} \cdot \mathrm{f}$

Functions are arrows (3)

- $\mathrm{f} \rightarrow \gg \mathrm{g}=$ la $->\mathrm{g}$ (fa) or
- $\mathrm{f} \ggg \mathrm{g}=\mathrm{g} \cdot \mathrm{f}$
or even
- $(\ggg)=$ flip (.)

Functions are arrows (3)

- $\mathrm{f} \rightarrow \gg \mathrm{g}=$ la -> g (fa) or
- $\mathrm{f} \ggg \mathrm{g}=\mathrm{g} \cdot \mathrm{f}$

or even

- $(\ggg)=$ flip (.)
- first $f=\backslash(b, d)->(f \quad b, d)$

Functions are arrows (4)

Arrow instance declaration for functions:
instance Arrow (->) where

$$
\begin{array}{ll}
\operatorname{arr} & =\text { id } \\
(\ggg) & =\text { flip (.) } \\
\text { first } f & =\backslash(b, d) \text { (f } b, d)
\end{array}
$$

Some arrow laws

(f >>> g) >>> h $=\mathrm{f} \ggg(\mathrm{g} \ggg \mathrm{h})$

Some arrow laws

$$
\begin{aligned}
& \text { (f >>> g) >>> h = f >>> (} \mathrm{g} \text { >>> h) } \\
& \text { arr (f >>> g) = arr f >>> arr g }
\end{aligned}
$$

Some arrow laws

(f >>> g) >>> h $=f$ >>> ($\mathrm{g} \ggg \mathrm{h}$) arr (f >>> g) = arr f >>> arr g arr id >>> f $=\mathrm{f}$

Some arrow laws

(f >>> g) >>> h = f >>> (g >>> h)
arr (f >>> g) = arr f >>> arr g

$$
\text { arr id >>> f }=f
$$

$\mathrm{f}=\mathrm{f} \ggg$ arr id

Some arrow laws

(f >>> g) >>> h $=\mathrm{f} \ggg(\mathrm{g} \ggg \mathrm{h})$
arr (f >>> g) = arr f >>> arr g arr id >>> $f=f$
$\mathrm{f}=\mathrm{f} \ggg$ arr id
first (arr f) $=$ arr (first f)

Some arrow laws

(f >>> g) >>> h $=\mathrm{f} \ggg(\mathrm{g} \ggg \mathrm{h})$
arr (f >>> g) = arr f >>> arr g arr id >>> $f=f$
$\mathrm{f}=\mathrm{f} \ggg$ arr id
first (arr f) $=$ arr (first f)
first (f >>> g) = first f >>> first g

The loop combinator (1)

Another important operator is loop: a fixed-point operator used to express recursive arrows or feedback:

loop f

The loop combinator (2)

Not all arrow instances support loop. It is thus a method of a separate class:
class Arrow a => ArrowLoop a where loop :: a (b, d) (c, d) -> a b c

Remarkably, the four combinators arr, >>>, first, and loop are sufficient to express any conceivable wiring!

Some more arrow combinators (1)

second : : Arrow a =>

$$
\mathrm{a} \mathrm{~b} \quad \mathrm{c} \rightarrow \mathrm{a}(\mathrm{~d}, \mathrm{~b}) \quad(\mathrm{d}, \mathrm{c})
$$

(***) : : Arrow a =>

$$
a b c \rightarrow a d e->a(b, d) \quad(c, e)
$$

(\&\&\&) : : Arrow a =>

$$
\mathrm{a} b \mathrm{c} \rightarrow \mathrm{a} \mathrm{~b} \mathrm{~d} \rightarrow \mathrm{a} \mathrm{~b}(\mathrm{c}, \mathrm{~d})
$$

Some more arrow combinators (2)

As diagrams:

$f . \& \& \& \quad g$.

Some more arrow combinators (3)

Some more arrow combinators (3)

second : : Arrow $a=>a b c->a(d, b)(d, c)$ second $f=$ arr swap >>> first f >>> arr swap $\operatorname{swap}(x, y)=(y, x)$

Some more arrow combinators (3)

$$
\begin{aligned}
& \text { second }: \text { : Arrow } a=>a b c->a(d, b)(d, c) \\
& \text { second } f=\text { arr swap } \ggg \text { first } f \ggg \text { arr swap } \\
& \operatorname{swap}(x, y)=(y, x) \\
& (* * *): \text { Arrow } a=> \\
& a b c->a d \text { } d->\text { a }(b, d)(c, e) \\
& f * * * g=\text { first } f \ggg \text { second } g
\end{aligned}
$$

Some more arrow combinators (3)

$$
\begin{aligned}
& \text { second : : Arrow } a=>a b c->a(d, b)(d, c) \\
& \text { second } f=\text { arr swap } \ggg \text { first } f \ggg \text { arr swap } \\
& \operatorname{swap}(x, y)=(y, x) \\
& \text { (***) : : Arrow a => } \\
& \mathrm{a} b \mathrm{c} \rightarrow \mathrm{a} d \mathrm{e} \rightarrow \mathrm{a}(\mathrm{~b}, \mathrm{~d})(\mathrm{c}, \mathrm{e}) \\
& \text { f *** } g=\text { first } f \ggg \text { second } g \\
& (\& \& \&): \text { Arrow } a=>a \mathrm{~b} \quad \mathrm{c} \rightarrow \mathrm{a} \mathrm{~b} \mathrm{~d} \rightarrow \mathrm{a} \mathrm{~b}(\mathrm{c}, \mathrm{~d}) \\
& f \& \& \& g=\operatorname{arr}(\backslash x->(x, x)) \ggg(f * * * g)
\end{aligned}
$$

Exercise 6

Describe the following circuit using arrow combinators:

a1, a2, a3 : : A Double Double

Exercise 6: One solution

Exercise 3: Describe the following circuit using arrow combinators:

a1, a2, a3: A Double Double

Exercise 6: One solution

Exercise 3: Describe the following circuit using arrow combinators:

al, a2, a3 :: A Double Double
circuit_v1 :: A Double Double
circuit_v1 = (al \&\&\& arr id)
>>> (aZ *** ab)
>>> arr (uncurry (+))

Exercise 6: Another solution

Exercise 3: Describe the following circuit:

a1, a2, a3: : A Double Double

Exercise 6: Another solution

Exercise 3: Describe the following circuit:

al, ad, ab: A Double Double
circuit_v2 : : A Double Double
circuit_v2 = arr (x -> (xt))
>>> first all
>>> (aZ *** aS)
\ggg arr (uncurry $(+$))

The arrow do notation (1)

Ross Paterson's do-notation for arrows supports pointed arrow programming. Only syntactic sugar.

$$
\begin{aligned}
& \text { proc } \text { pat }->\text { do }[\text { rec }] \\
& \text { pat }_{1}<-\operatorname{sfexp}_{1}-<\exp _{1} \\
& \text { pat }_{2}<-\operatorname{sfexp}_{2}-<\exp _{2} \\
& \cdots^{\text {pat }_{n}<-\operatorname{sfexp}_{n}-<\exp _{n}} \\
& \text { returnA }-<\exp
\end{aligned}
$$

Also: let pat $=\exp \equiv$ pat $<-\operatorname{arr}$ id $-<\exp$

The arrow do notation (2)

Let us redo exercise 3 using this notation:

circuit_v4 : : A Double Double circuit_v4 $=$ proc x $->$ do
yo <- al -< x
$y^{2}<-a 2-<y 1$
yo $<-a 3-<x$
return A $-<y^{2}+y^{3}$

The arrow do notation (3)

We can also mix and match:

$$
\begin{array}{r}
\text { circuit_v5 : A Double Double } \\
\text { circuit_v5 }=\text { proc } x->\text { do } \\
\text { yo }<-a 2 \lll a 1-<x \\
\text { y3 }<-a 3 \\
\text { return }-<y^{2}+y^{3}
\end{array}
$$

The arrow do notation (4)

Recursive networks: do-notation:

a1, a2 : : A Double Double
a3 : : A (Double, Double) Double

The arrow do notation (4)

Recursive networks: do-notation:

a1, a2 : : A Double Double a3 : : A (Double, Double) Double

Exercise 5: Describe this using only the arrow combinators.

The arrow do notation (5)

circuit $=$ proc x $->$ do rec

$$
\begin{aligned}
& y 1<-a 1-<x \\
& y^{2}<-a 2-<y 1 \\
& y^{3}<-a 3-<(x, y) \\
& \text { let } y=y^{2}+y^{3}
\end{aligned}
$$

return A $-<y$

Arrows and Monads (1)

Arrows generalize monads: for every monad type there is an arrow, the Kleisli category for the monad:

```
newtype Kleisli m a b = K (a -> m b)
instance Monad m => Arrow (Kleisli m) where
    arr f llom (\b -> return (f b))
```


Arrows and Monads (2)

But not every arrow is a monad. However, arrows that support an additional apply operation are effectively monads:
apply :: Arrow a => a (a b c, b) c

Exercise 7: Verify that

$$
\text { newtype } \mathrm{M} \cdot \mathrm{~b}=\mathrm{M} \text { (} \mathrm{A} \text { () b) }
$$

is a monad if A is an arrow supporting apply; i.e., define return and bind in terms of the arrow operations (and verify that the monad laws hold).

An application: FRP

Functional Reactive Programming (FRP):

- Paradigm for reactive programming in a functional setting:
- Input arrives incrementally while system is running.
- Output is generated in response to input in an interleaved and timely fashion.

An application: FRP

Functional Reactive Programming (FRP):

- Paradigm for reactive programming in a functional setting:
- Input arrives incrementally while system is running.
- Output is generated in response to input in an interleaved and timely fashion.
- Originated from Functional Reactive Animation (Fran) (Elliott \& Hudak).

An application: FRP

Functional Reactive Programming (FRP):

- Paradigm for reactive programming in a functional setting:
- Input arrives incrementally while system is running.
- Output is generated in response to input in an interleaved and timely fashion.
- Originated from Functional Reactive Animation (Fran) (Elliott \& Hudak).
- Has evolved in a number of directions and into different concrete implementations.

Yampa

Yampa:

- The most recent Yale FRP implementation.

Yampa

Yampa:

- The most recent Yale FRP implementation.
- Embedding in Haskell (a Haskell library).

Yampa

Yampa:

- The most recent Yale FRP implementation.
- Embedding in Haskell (a Haskell library).
- Arrows used as the basic structuring framework.

Yampa

Yampa:

- The most recent Yale FRP implementation.
- Embedding in Haskell (a Haskell library).
- Arrows used as the basic structuring framework.
- Continuous time.

Yampa

Yampa:

- The most recent Yale FRP implementation.
- Embedding in Haskell (a Haskell library).
- Arrows used as the basic structuring framework.
- Continuous time.
- Discrete-time signals modelled by continuous-time signals and an option type.

Yampa

Yampa:

- The most recent Yale FRP implementation.
- Embedding in Haskell (a Haskell library).
- Arrows used as the basic structuring framework.
- Continuous time.
- Discrete-time signals modelled by continuous-time signals and an option type.
- Advanced switching constructs allows for highly dynamic system structure.

Related languages

FRP related to:

- Synchronous languages, like Esterel, Lucid Synchrone.
- Modeling languages, like Simulink.

Related languages

FRP related to:

- Synchronous languages, like Esterel, Lucid Synchrone.
- Modeling languages, like Simulink.

Distinguishing features of FRP:

- First class reactive components.
- Allows highly dynamic system structure.
- Supports hybrid (mixed continuous and discrete) systems.

FRP applications

Some domains where FRP has been used:

- Graphical Animation (Fran: Elliott, Hudak)
- Robotics (Frob: Peterson, Hager, Hudak, Elliott, Pembeci, Nilsson)
- Vision (FVision: Peterson, Hudak, Reid, Hager)
- GUIs (Fruit: Courtney)
- Hybrid modeling (Nilsson, Hudak, Peterson)

Yampa?

Yampa?

Yet Another Mostly
 Pointless
 Acronym

Yampa?

Yet Another Mostly
 Pointless
 Acronym

???

Yampa?

Yet Another Mostly
 Pointless
 Acronym

???

No ...

Yampa?

Yampa is a river . . .

Yampa?

... with long calmly flowing sections ...

Yampa?

... and abrupt whitewater transitions in between.

A good metaphor for hybrid systems!

Signal functions

Key concept: functions on signals.

Signal functions

Key concept: functions on signals.

Intuition:

> Signal $\alpha \approx$ Time $\rightarrow \alpha$
> $x::$ Signal T1
> $y::$ Signal T2
> SF $\alpha \beta$ Signal $\alpha \rightarrow$ Signal β
> $f::$ SF T1 T2

Signal functions

Key concept: functions on signals.

Intuition:

$$
\begin{aligned}
& \text { Signal } \alpha \approx \text { Time } \rightarrow \alpha \\
& x:: \text { Signal T1 } \\
& y: \text { Signal T2 } \\
& \text { SF } \alpha \beta \text { Signal } \alpha \rightarrow \text { Signal } \beta \\
& f:: \text { SF T1 T2 }
\end{aligned}
$$

Additionally: causality requirement.

Signal functions and state

Alternative view:

Signal functions and state

Alternative view:
Signal functions can encapsulate state.

state (t) summarizes input history $x\left(t^{\prime}\right), t^{\prime} \in[0, t]$.

Signal functions and state

Alternative view:
Signal functions can encapsulate state.

state (t) summarizes input history $x\left(t^{\prime}\right), t^{\prime} \in[0, t]$.
Functions on signals are either:

- Stateful: $y(t)$ depends on $x(t)$ and state (t)
- Stateless: $y(t)$ depends only on $x(t)$

Yampa and Arrows

SF is an arrow. Signal function instances of core combinators:

- arr :: (a -> b) -> SF a b
- >>> : : SF a b -> SF b c -> SF a c
- first : : SF a b -> SF $(a, c)(b, c)$
- loop : : SF $(a, c)(b, c)$-> SF a b

But apply has no useful meaning. Hence SF is not a monad.

Some further basic signal functions

- identity : : SF a a identity = arr id

Some further basic signal functions

- identity : : SF a a
identity $=$ arr id
- constant : : b $->$ SF a b
constant $\mathrm{b}=\operatorname{arr}($ const b$)$

Some further basic signal functions

- identity : : SF a a
identity $=$ arr id
- constant : : b $->$ SF a b constant $\mathrm{b}=\operatorname{arr}($ const b$)$
-integral : : VectorSpace a $s=>S F$ a a

Some further basic signal functions

- identity : : SF a a identity $=$ arr id
- constant : $: ~ b->S F$ a b constant $\mathrm{b}=\operatorname{arr}($ const b$)$
-integral : : VectorSpace a $s=>S F$ a a
- time : : SF a Time
time $=$ constant $1.0 \ggg$ integral

Some further basic signal functions

- identity : : SF a a
identity $=$ arr id
- constant : $: ~ b->S F$ a b
constant $\mathrm{b}=\operatorname{arr}$ (const b)
- integral : : VectorSpace a $s=>S F$ a a
- time : : SF a Time
time $=$ constant $1.0 \ggg$ integral
- $(\wedge \ll):(\mathrm{b}->\mathrm{c})->$ SF ab $->$ SF ac f $(\wedge \ll)$ sf $=$ sf \ggg arr f

Example: A bouncing ball

$$
\begin{aligned}
& y=y_{0}+\int v \mathrm{~d} t \\
& v=v_{0}+\int-9.81
\end{aligned}
$$

On impact:

$$
v=-v(t-)
$$

(fully elastic collision)

Part of a model of the bouncing ball

Free-falling ball:

type Pos = Double
type Vel = Double
fallingBall : :

$$
\text { Pos -> Vel }->\text { SF () (Pos, Vel) }
$$

fallingBall yO v0 = proc () -> do
$\mathrm{v}<-(\mathrm{v} 0+)^{\wedge} \ll$ integral $-<-9.81$
$\mathrm{y}<-(\mathrm{y} 0+$) ^ \ll integral $-<\mathrm{v}$
returnA -< (y, v)

Dynamic system structure

Switching allows the structure of the system to evolve over time:

Example: Space Invaders

Overall game structure

Reading (1)

- Nick Benton, John Hughes, Eugenio Moggi. Monads and Effects. In International Summer School on Applied Semantics 2000, Caminha, Portugal, 2000.
- Sheng Liang, Paul Hudak, Mark Jones. Monad Transformers and Modular Interpreters. In Proceedings of the 22nd ACM Symposium on Principles of Programming Languages (POPL'95), January 1995, San Francisco, California

Reading (2)

- Mauro Jaskelioff. Monatron: An Extensible Monad Transformer Library. In Implementation of Functional Languages (IFL'08), 2008.
- Mauro Jaskelioff. Modular Monad Transformers. In European Symposium on Programming (ESOP,09), 2009.

Reading (3)

- John Hughes. Generalising monads to arrows. Science of Computer Programming, 37:67-111, May 2000
- John Hughes. Programming with arrows. In Advanced Functional Programming, 2004. To be published by Springer Verlag.
- Henrik Nilsson, Antony Courtney, and John Peterson. Functional reactive programming, continued. In Proceedings of the 2002 Haskell Workshop, pp. 51-64, October 2002.

Reading (4)

- Paul Hudak, Antony Courtney, Henrik Nilsson, and John Peterson. Arrows, robots, and functional reactive programming. In Advanced Functional Programming, 2002. LNCS 2638, pp. 159-187.
- Antony Courtney, Henrik Nilsson, and John Peterson. The Yampa Arcade. In Proceedings of the 2003 ACM SIGPLAN Haskell Workshop (Haskell'03), Uppsala, Sweden, 2003, pp 7-18.

