LiU-FP2010 Part II: Lecture 6 More about Monads and Other Notions of Effectful Computation

Henrik Nilsson

University of Nottingham, UK

This Lecture

- Monads in Haskell
- Some standard monads
- Combining effects: monad transformers
- Arrows
- FRP and Yampa

Monads in Haskell

In Haskell, the notion of a monad is captured by a *Type Class*:

```
class Monad m where
    return :: a -> m a
    (>>=) :: m a -> (a -> m b) -> m b
```

Allows names of the common functions to be overloaded and sharing of derived definitions.

The Maybe Monad in Haskell

Exercise 1: A State Monad in Haskell

Haskell 98 does not permit type synonyms to be instances of classes. Hence we have to define a new type:

```
newtype S a = S (Int -> (a, Int))
unS :: S a -> (Int -> (a, Int))
unS (S f) = f
```

Provide a Monad instance for S.

Exercise 1: Solution

```
instance Monad S where
  return a = S (\s -> (a, s))

m >>= f = S $ \s ->
  let (a, s') = unS m s
  in unS (f a) s'
```

Monad-specific Operations (1)

To be useful, monads need to be equipped with additional operations specific to the effects in question. For example:

```
fail :: String -> Maybe a
fail s = Nothing

catch :: Maybe a -> Maybe a -> Maybe a
m1 'catch' m2 =
    case m1 of
     Just _ -> m1
     Nothing -> m2
```

Monad-specific Operations (2)

Typical operations on a state monad:

```
set :: Int -> S ()
set a = S (\_ -> ((), a))

get :: S Int
get = S (\s -> (s, s))
```

Moreover, need to "run" a computation. E.g.:

```
runS :: S a -> a
runS m = fst (unS m 0)
```

The do-notation (1)

Haskell provides convenient syntax for programming with monads:

is syntactic sugar for

$$exp_1 >>= \a ->$$
 $exp_2 >>= \b ->$
return exp_3

The do-notation (2)

Computations can be done solely for effect, ignoring the computed value:

```
do exp_1 exp_2 return exp_3
```

is syntactic sugar for

$$exp_1 >>= \setminus_- ->$$
 $exp_2 >>= \setminus_- ->$
return exp_3

The do-notation (3)

A let-construct is also provided:

is equivalent to

Numbering Trees in do-notation

```
numberTree :: Tree a -> Tree Int
numberTree t = runS (ntAux t)
    where
        ntAux :: Tree a -> S (Tree Int)
        ntAux (Leaf _) = do
            n <- get
            set (n + 1)
            return (Leaf n)
        ntAux (Node t1 t2) = do
            t1' <- ntAux t1
            t2' <- ntAux t2
            return (Node t1' t2')
```

The Compiler Fragment Revisited (1)

Given a suitable "Diagnostics" monad D that collects error messages, enterVar can be turned from this:

```
enterVar :: Id -> Int -> Type -> Env
-> Either Env ErrorMgs
```

into this:

```
enterVarD :: Id -> Int -> Type -> Env
-> D Env
```

and then identDefs from this ...

The Compiler Fragment Revisited (2)

```
identDefs | env [] = ([], env, [])
identDefs l env ((i,t,e) : ds) =
  ((i,t,e'): ds', env'', ms1++ms2++ms3)
 where
    (e', ms1) = identAux l env e
    (env', ms2) =
       case enterVar i l t env of
          Left env' -> (env', [])
          Right m -> (env, [m])
    (ds', env'', ms3) =
      identDefs l env' ds
```

The Compiler Fragment Revisited (3)

into this:

(Suffix D just to remind us the types have changed.)

The Compiler Fragment Revisited (4)

Compare with the "core" identified earlier!

The monadic version is very close to ideal, without sacrificing functionality, clarity, or pureness!

The List Monad

Computation with many possible results, "nondeterminism":

```
instance Monad [] where
    return a = [a]
    m >>= f = concat (map f m)
    fail s = []
```

Example:

Result:

The Reader Monad

Computation in an environment:

```
instance Monad ((->) e) where
    return a = const a
    m >>= f = \e -> f (m e) e

getEnv :: ((->) e) e
getEnv = id
```

The Haskell IO Monad

In Haskell, IO is handled through the IO monad. IO is abstract! Conceptually:

```
newtype IO a = IO (World -> (a, World))
```

Some operations:

```
putChar :: Char -> IO ()
putStr :: String -> IO ()
putStrLn :: String -> IO ()
getChar :: IO Char
getLine :: IO String
getContents :: String
```

What if we need to support more than one type of effect?

What if we need to support more than one type of effect?

For example: State and Error/Partiality?

What if we need to support more than one type of effect?

For example: State and Error/Partiality?

We could implement a suitable monad from scratch:

```
newtype SE s a = SE (s \rightarrow Maybe (a, s))
```

However:

However:

 Not always obvious how: e.g., should the combination of state and error have been

```
newtype SE s a = SE (s \rightarrow (Maybe a, s))
```

However:

 Not always obvious how: e.g., should the combination of state and error have been

```
newtype SE s a = SE (s \rightarrow (Maybe a, s))
```

Duplication of effort: similar patterns related to specific effects are going to be repeated over and over in the various combinations.

Monad Transformers can help:

Monad Transformers can help:

A monad transformer transforms a monad by adding support for an additional effect.

Monad Transformers can help:

- A monad transformer transforms a monad by adding support for an additional effect.
- A library of monad transformers can be developed, each adding a specific effect (state, error, ...), allowing the programmer to mix and match.

Monad Transformers can help:

- A monad transformer transforms a monad by adding support for an additional effect.
- A library of monad transformers can be developed, each adding a specific effect (state, error, ...), allowing the programmer to mix and match.
- A form of aspect-oriented programming.

Monad Transformers in Haskell (1)

A monad transformer maps monads to monads. Represented by a type constructor T of the following kind:

```
T :: (* -> *) -> (* -> *)
```

Monad Transformers in Haskell (1)

A monad transformer maps monads to monads. Represented by a type constructor T of the following kind:

```
T :: (* -> *) -> (* -> *)
```

Additionally, a monad transformer adds computational effects. A mapping lift from computations in the underlying monad to computations in the transformed monad is needed:

```
lift :: M a -> T M a
```

Monad Transformers in Haskell (2)

These requirements are captured by the following (multi-parameter) type class:

Classes for Specific Effects

A monad transformer adds specific effects to any monad. Thus the effect-specific operations needs to be overloaded. For example:

```
class Monad m => E m where
    eFail :: m a
    eHandle :: m a -> m a -> m a

class Monad m => S m s | m -> s where
    sSet :: s -> m ()
    sGet :: m s
```

The Identity Monad

We are going to construct monads by successive transformations of the identity monad:

```
newtype I a = I a
unI(Ia) = a
instance Monad I where
    return a = I a
    m >>= f = f (unI m)
runI :: I a -> a
runI = unI
```

The Error Monad Transformer (1)

```
newtype ET m a = ET (m (Maybe a))
unET (ET m) = m
```

Any monad transformed by ET is a monad:

```
instance Monad m => Monad (ET m) where
  return a = ET (return (Just a))

m >>= f = ET $ do
  ma <- unET m
  case ma of
  Nothing -> return Nothing
  Just a -> unET (f a)
```

The Error Monad Transformer (2)

We need the ability to run transformed monads:

```
runET :: Monad m => ET m a -> m a
runET etm = do
    ma <- unET etm
    case ma of
        Just a -> return a
        Nothing -> error "Should not happen"
```

ET is a monad transformer:

The Error Monad Transformer (3)

Any monad transformed by ET is an instance of E:

```
instance Monad m => E (ET m) where
  eFail = ET (return Nothing)
  m1 'eHandle' m2 = ET $ do
      ma <- unET m1
      case ma of
      Nothing -> unET m2
      Just _ -> return ma
```

The Error Monad Transformer (4)

A state monad transformed by ET is a state monad:

```
instance S m s => S (ET m) s where
    sSet s = lift (sSet s)
    sGet = lift sGet
```

Exercise 2: Running Transf. Monads

Let

```
ex2 = eFail 'eHandle' return 1
```

- Suggest a possible type for ex2.
 (Assume 1 :: Int.)
- 2. Given your type, use the appropriate combination of "run functions" to run ex2.

Exercise 2: Solution

```
ex2 :: ET I Int
ex2 = eFail 'eHandle' return 1
ex2result :: Int
ex2result = runI (runET ex2)
```

The State Monad Transformer (1)

```
newtype ST s m a = ST (s -> m (a, s))
unST (ST m) = m
```

Any monad transformed by ST is a monad:

```
instance Monad m => Monad (ST s m) where
  return a = ST (\s -> return (a, s))
```

The State Monad Transformer (2)

We need the ability to run transformed monads:

```
runST :: Monad m => ST s m a -> s -> m a
runST stf s0 = do
   (a, _) <- unST stf s0
   return a</pre>
```

ST is a monad transformer:

The State Monad Transformer (3)

Any monad transformed by ST is an instance of S:

```
instance Monad m => S (ST s m) s where
    sSet s = ST (\_ -> return ((), s))
    sGet = ST (\s -> return (s, s))
```

An error monad transformed by ST is an error monad:

```
instance E m => E (ST s m) where
    eFail = lift eFail
    m1 'eHandle' m2 = ST $ \s ->
        unST m1 s 'eHandle' unST m2 s
```

Exercise 3: Effect Ordering

Consider the code fragment

```
ex3a :: (ST Int (ET I)) Int
ex3a = (sSet 42 >> eFail) 'eHandle' sGet
```

Note that the exact same code fragment also can be typed as follows:

```
ex3b :: (ET (ST Int \overline{I}) Int ex3b = (sSet 42 >> eFail) 'eHandle' sGet
```

What is

```
runI (runET (runST ex3a 0))
runI (runST (runET ex3b) 0)
```

Exercise 3: Solution

```
runI (runET (runST ex3a 0)) = 0
runI (runST (runET ex3b) 0) = 42
```

Why? Because:

```
ST s (ET I) a \cong s -> (ET I) (a, s)

\cong s -> I (Maybe (a, s))

\cong s -> Maybe (a, s)

ET (ST s I) a \cong (ST s I) (Maybe a)

\cong s -> I (Maybe a, s)

\cong s -> (Maybe a, s)
```

Exercise 4: Alternative ST?

To think about.

Could ST have been defined in some other way, e.g.

```
newtype ST s m a = ST (m (s -> (a, s)))
```

or perhaps

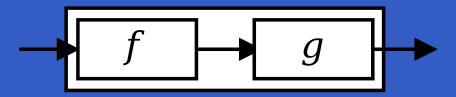
```
newtype ST s m a = ST (s \rightarrow (m a, s))
```

Problems with Monad Transformers

- With one transformer for each possible effect, we get a lot of combinations: the number grows quadratically; each has to be instantiated explicitly.
- Jaskelioff (2008,2009) has proposed a possible, more extensible alternative.

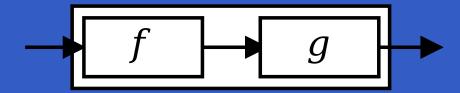
Arrows (1)

System descriptions in the form of block diagrams are very common. Blocks have inputs and outputs and can be combined into larger blocks. For example, serial composition:



Arrows (1)

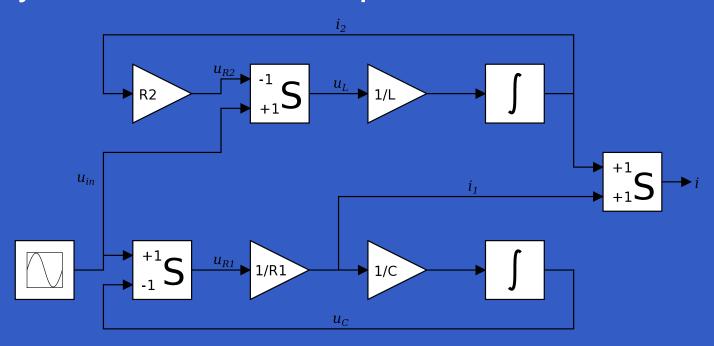
System descriptions in the form of block diagrams are very common. Blocks have inputs and outputs and can be combined into larger blocks. For example, serial composition:



A *combinator* can be defined that captures this idea:

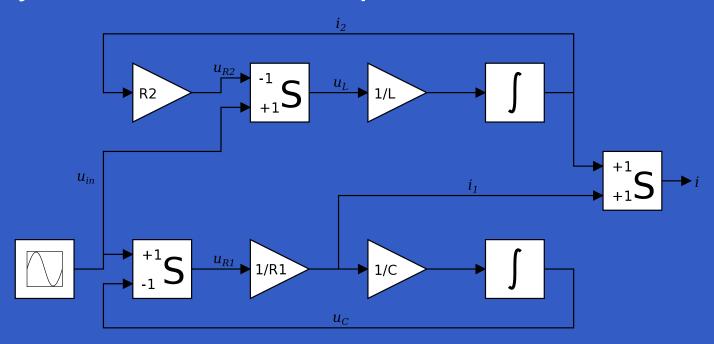
Arrows (2)

But systems can be complex:



Arrows (2)

But systems can be complex:



How many and what combinators do we need to be able to describe arbitrary systems?

John Hughes' arrow framework:

Abstract data type interface for function-like types (or "blocks", if you prefer).

John Hughes' arrow framework:

- Abstract data type interface for function-like types (or "blocks", if you prefer).
- Particularly suitable for types representing process-like computations.

John Hughes' arrow framework:

- Abstract data type interface for function-like types (or "blocks", if you prefer).
- Particularly suitable for types representing process-like computations.
- Related to *monads*, since arrows are computations, but more general.

John Hughes' arrow framework:

- Abstract data type interface for function-like types (or "blocks", if you prefer).
- Particularly suitable for types representing process-like computations.
- Related to *monads*, since arrows are computations, but more general.
- Provides a minimal set of "wiring" combinators.

A type constructor a of arity two.

- A type constructor a of arity two.
- Three operators:

- A type constructor a of arity two.
- Three operators:
 - lifting:

```
arr :: (b->c) -> a b c
```

- A type constructor a of arity two.
- Three operators:
 - lifting:

```
arr :: (b->c) -> a b c
```

composition:

```
(>>>) :: a b c -> a c d -> a b d
```

- A type constructor a of arity two.
- Three operators:
 - lifting:

```
arr :: (b->c) -> a b c
```

composition:

```
(>>>) :: a b c -> a c d -> a b d
```

widening:

```
first :: a b c -> a (b,d) (c,d)
```

- A type constructor a of arity two.
- Three operators:
 - lifting:

```
arr :: (b->c) -> a b c
```

composition:

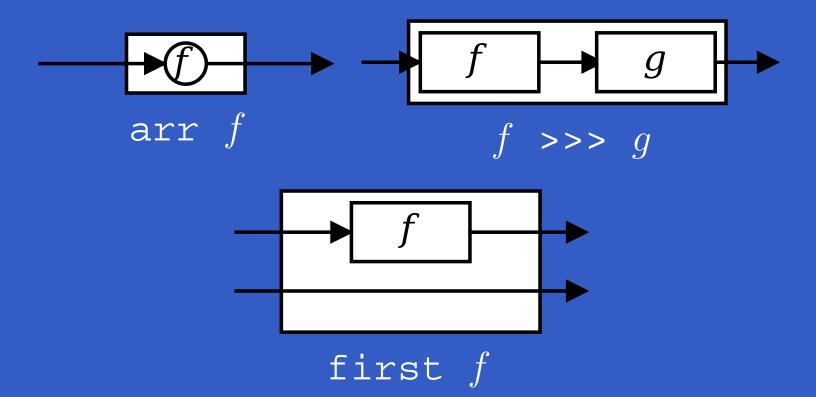
```
(>>>) :: a b c -> a c d -> a b d
```

widening:

```
first :: a b c \rightarrow a (b,d) (c,d)
```

A set of *algebraic laws* that must hold.

These diagrams convey the general idea:



The Arrow class

In Haskell, a *type class* is used to capture these ideas (except for the laws):

```
class Arrow a where
    arr :: (b -> c) -> a b c
    (>>>) :: a b c -> a c d -> a b d
    first :: a b c -> a (b,d) (c,d)
```

Functions are a simple example of arrows, with (->) as the arrow type constructor.

Exercise 5: Suggest suitable definitions of

- arr
- (>>>)
- first

for this case!

(We have not looked at what the laws are yet, but they are "natural".)

Solution:

arr = id

Solution:

```
arr = id
To see this, recall
id :: t -> t
arr :: (b->c) -> a b c
```

Solution:

arr = id
To see this, recall

```
id :: t -> t
arr :: (b->c) -> a b c
```

Instantiate with

$$a = (->)$$

 $t = b->c = (->) b c$

$$f >>> g = \a -> g (f a)$$

• f >>> g =
$$a -> g (f a)$$

•
$$f >>> g = g . f$$

Arrow instance declaration for functions:

```
instance Arrow (->) where
    arr = id
    (>>>) = flip (.)
    first f = \((b,d) -> (f b,d)\)
```

$$(f >>> g) >>> h = f >>> (g >>> h)$$

$$(f >>> g) >>> h = f >>> (g >>> h)$$

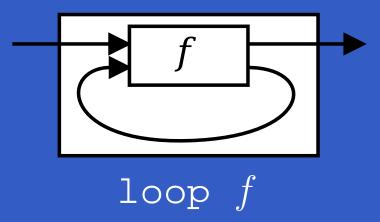
 $arr (f >>> g) = arr f >>> arr g$

```
(f >>> g) >>> h = f >>> (g >>> h)
arr (f >>> g) = arr f >>> arr g
arr id >>> f = f
```

```
(f >>> g) >>> h = f >>> (g >>> h)
arr (f >>> g) = arr f >>> arr g
arr id >>> f = f
f = f >>> arr id
```

The loop combinator (1)

Another important operator is loop: a fixed-point operator used to express recursive arrows or *feedback*:



The loop combinator (2)

Not all arrow instances support loop. It is thus a method of a separate class:

```
class Arrow a => ArrowLoop a where
  loop :: a (b, d) (c, d) -> a b c
```

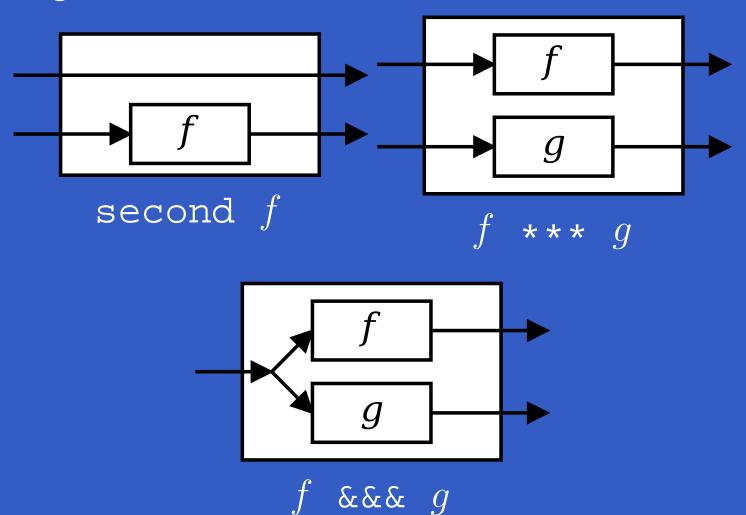
Remarkably, the four combinators arr, >>>, first, and loop are sufficient to express any conceivable wiring!

```
second :: Arrow a =>
    a b c -> a (d,b) (d,c)

(***) :: Arrow a =>
    a b c -> a d e -> a (b,d) (c,e)

(&&&) :: Arrow a =>
    a b c -> a b d -> a b (c,d)
```

As diagrams:



```
second :: Arrow a => a b c -> a (d,b) (d,c) second f = arr swap >>> first f >>> arr swap swap (x,y) = (y,x)
```

```
second :: Arrow a => a b c -> a (d,b) (d,c)
second f = arr swap >>> first f >>> arr swap
swap (x,y) = (y,x)

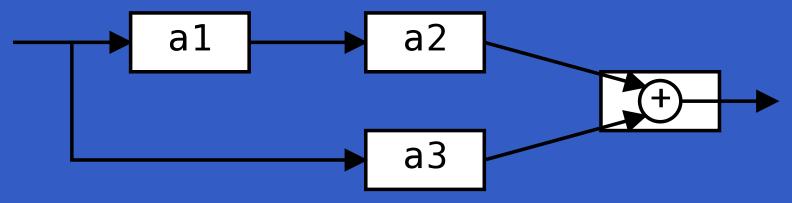
(***) :: Arrow a =>
    a b c -> a d e -> a (b,d) (c,e)

f *** g = first f >>> second g
```

```
second :: Arrow a => a b c -> a (d,b) (d,c)
second f = arr swap >>> first f >>> arr swap
swap (x,y) = (y,x)
(***) :: Arrow a =>
    a b c -> a d e -> a (b,d) (c,e)
f *** q = first f >>> second q
(\&\&\&) :: Arrow a => a b c -> a b d -> a b (c,d)
f \&\&\& g = arr ((x->(x,x)) >>> (f **** g)
```

Exercise 6

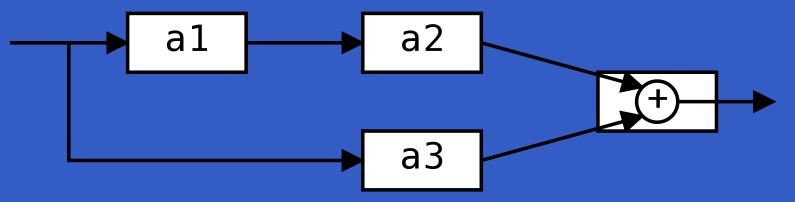
Describe the following circuit using arrow combinators:



a1, a2, a3 :: A Double Double

Exercise 6: One solution

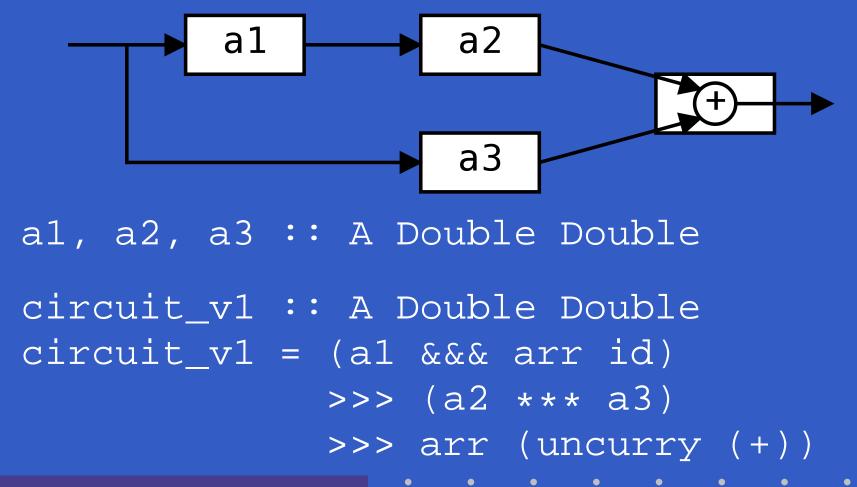
Exercise 3: Describe the following circuit using arrow combinators:



a1, a2, a3 :: A Double Double

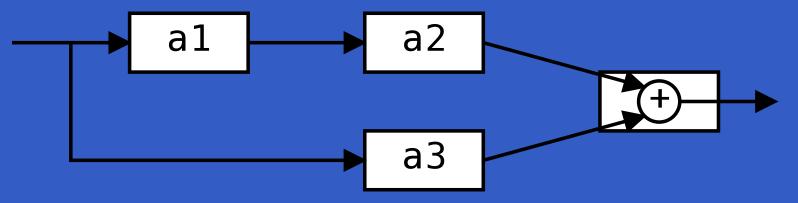
Exercise 6: One solution

Exercise 3: Describe the following circuit using arrow combinators:



Exercise 6: Another solution

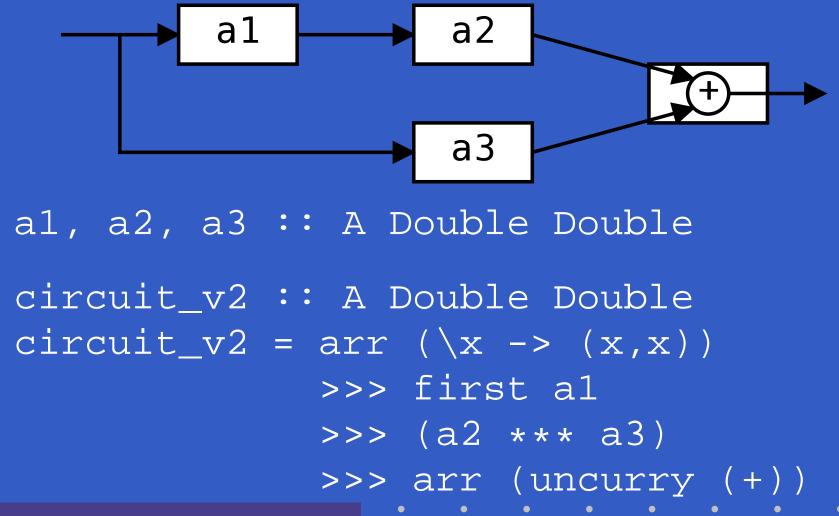
Exercise 3: Describe the following circuit:



a1, a2, a3 :: A Double Double

Exercise 6: Another solution

Exercise 3: Describe the following circuit:



The arrow do notation (1)

Ross Paterson's do-notation for arrows supports *pointed* arrow programming. Only *syntactic sugar*.

proc
$$pat$$
 -> do [rec]

 $pat_1 <- sfexp_1 -< exp_1$
 $pat_2 <- sfexp_2 -< exp_2$

...

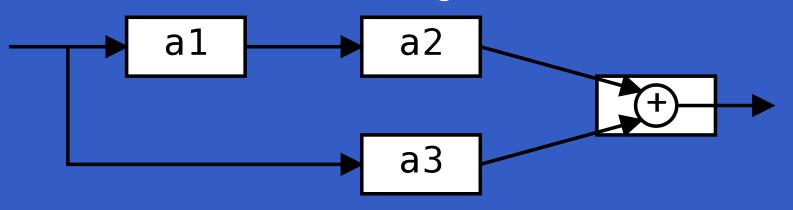
 $pat_n <- sfexp_n -< exp_n$

returnA -< exp

Also: let $pat = exp \equiv pat < - arr id - < exp$

The arrow do notation (2)

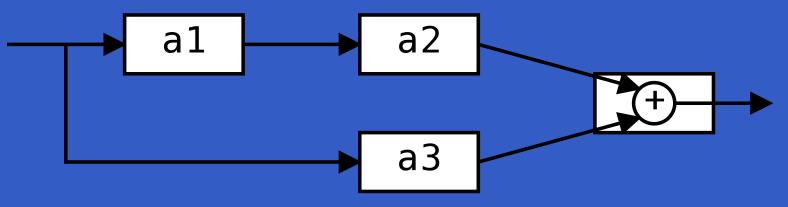
Let us redo exercise 3 using this notation:



```
circuit_v4 :: A Double Double
circuit_v4 = proc x -> do
    y1 <- a1 -< x
    y2 <- a2 -< y1
    y3 <- a3 -< x
    returnA -< y2 + y3</pre>
```

The arrow do notation (3)

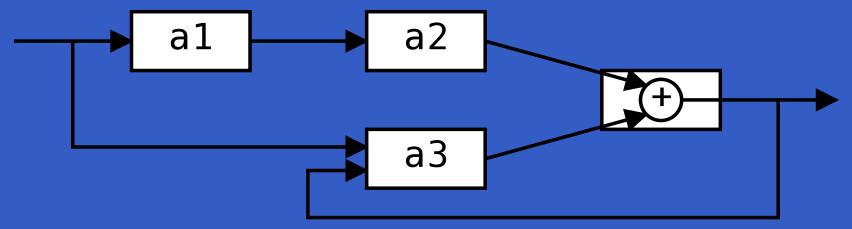
We can also mix and match:



```
circuit_v5 :: A Double Double
circuit_v5 = proc x -> do
    y2 <- a2 <<< a1 -< x
    y3 <- a3 -< x
    returnA -< y2 + y3</pre>
```

The arrow do notation (4)

Recursive networks: do-notation:

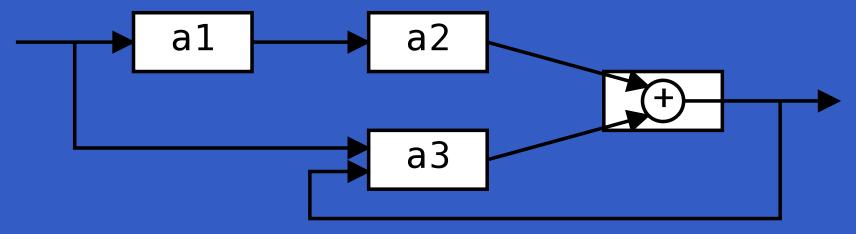


a1, a2 :: A Double Double

a3 :: A (Double, Double) Double

The arrow do notation (4)

Recursive networks: do-notation:

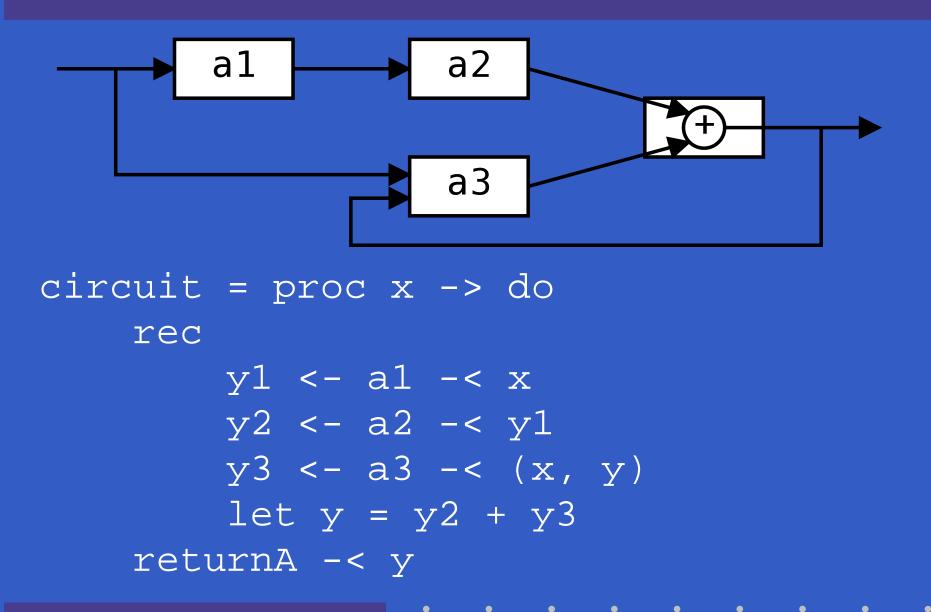


a1, a2 :: A Double Double

a3 :: A (Double, Double) Double

Exercise 5: Describe this using only the arrow combinators.

The arrow do notation (5)



Arrows and Monads (1)

Arrows generalize monads: for every monad type there is an arrow, the *Kleisli category* for the monad:

```
newtype Kleisli m a b = K (a -> m b)
instance Monad m => Arrow (Kleisli m) where
arr f = K (\b -> return (f b))
K f >>> K g = K (\b -> f b >>= g)
```

Arrows and Monads (2)

But not every arrow is a monad. However, arrows that support an additional apply operation *are* effectively monads:

```
apply :: Arrow a => a (a b c, b) c
```

Exercise 7: Verify that

```
newtype M b = M (A () b)
```

is a monad if A is an arrow supporting apply; i.e., define return and bind in terms of the arrow operations (and verify that the monad laws hold).

An application: FRP

Functional Reactive Programming (FRP):

- Paradigm for reactive programming in a functional setting:
 - Input arrives *incrementally* while system is running.
 - Output is generated in response to input in an interleaved and *timely* fashion.

An application: FRP

Functional Reactive Programming (FRP):

- Paradigm for reactive programming in a functional setting:
 - Input arrives incrementally while system is running.
 - Output is generated in response to input in an interleaved and *timely* fashion.
- Originated from Functional Reactive Animation (Fran) (Elliott & Hudak).

An application: FRP

Functional Reactive Programming (FRP):

- Paradigm for *reactive programming* in a functional setting:
 - Input arrives incrementally while system is running.
 - Output is generated in response to input in an interleaved and *timely* fashion.
- Originated from Functional Reactive Animation (Fran) (Elliott & Hudak).
- Has evolved in a number of directions and into different concrete implementations.

Yampa:

The most recent Yale FRP implementation.

- The most recent Yale FRP implementation.
- Embedding in Haskell (a Haskell library).

- The most recent Yale FRP implementation.
- Embedding in Haskell (a Haskell library).
- Arrows used as the basic structuring framework.

- The most recent Yale FRP implementation.
- Embedding in Haskell (a Haskell library).
- Arrows used as the basic structuring framework.
- Continuous time.

- The most recent Yale FRP implementation.
- Embedding in Haskell (a Haskell library).
- Arrows used as the basic structuring framework.
- Continuous time.
- Discrete-time signals modelled by continuous-time signals and an option type.

- The most recent Yale FRP implementation.
- Embedding in Haskell (a Haskell library).
- Arrows used as the basic structuring framework.
- Continuous time.
- Discrete-time signals modelled by continuous-time signals and an option type.
- Advanced switching constructs allows for highly dynamic system structure.

Related languages

FRP related to:

- Synchronous languages, like Esterel, Lucid Synchrone.
- Modeling languages, like Simulink.

Related languages

FRP related to:

- Synchronous languages, like Esterel, Lucid Synchrone.
- Modeling languages, like Simulink.

Distinguishing features of FRP:

- First class reactive components.
- Allows highly dynamic system structure.
- Supports hybrid (mixed continuous and discrete) systems.

FRP applications

Some domains where FRP has been used:

- Graphical Animation (Fran: Elliott, Hudak)
- Robotics (Frob: Peterson, Hager, Hudak, Elliott, Pembeci, Nilsson)
- Vision (FVision: Peterson, Hudak, Reid, Hager)
- GUIs (Fruit: Courtney)
- Hybrid modeling (Nilsson, Hudak, Peterson)

Yet
Another
Mostly
Pointless
Acronym

Yet
Another
Mostly
Pointless
Acronym

???

Yet
Another
Mostly
Pointless
Acronym
???

No ...

Yampa is a river ...

... with long calmly flowing sections ...

... and abrupt whitewater transitions in between.

A good metaphor for hybrid systems!

Signal functions

Key concept: functions on signals.

Signal functions

Key concept: functions on signals.

Intuition:

```
Signal \alpha \approx \text{Time} \rightarrow \alpha x :: \text{Signal T1} y :: \text{Signal T2} \text{SF } \alpha \ \beta \approx \text{Signal } \alpha \rightarrow \text{Signal } \beta f :: \text{SF T1 T2}
```

Signal functions

Key concept: functions on signals.

Intuition:

```
Signal \alpha \approx \text{Time} \rightarrow \alpha x :: \text{Signal T1} y :: \text{Signal T2} \text{SF } \alpha \ \beta \approx \text{Signal } \alpha \rightarrow \text{Signal } \beta f :: \text{SF T1 T2}
```

Additionally: *causality* requirement.

Signal functions and state

Alternative view:

Signal functions and state

Alternative view:

Signal functions can encapsulate state.

$$\begin{array}{c|c} x(t) & f & y(t) \\ \hline [state(t)] & \end{array}$$

state(t) summarizes input history x(t'), $t' \in [0, t]$.

Signal functions and state

Alternative view:

Signal functions can encapsulate state.

$$\begin{array}{c|c} x(t) & f & y(t) \\ \hline [state(t)] & \end{array}$$

state(t) summarizes input history x(t'), $t' \in [0, t]$.

Functions on signals are either:

- Stateful: y(t) depends on x(t) and state(t)
- **Stateless**: y(t) depends only on x(t)

Yampa and Arrows

SF is an arrow. Signal function instances of core combinators:

```
arr :: (a -> b) -> SF a b

>>> :: SF a b -> SF b c -> SF a c

first :: SF a b -> SF (a,c) (b,c)
```

But apply has no useful meaning. Hence SF is not a monad.

loop :: SF (a,c) (b,c) -> SF a b

```
identity :: SF a a
identity = arr id
```

```
identity :: SF a a
identity = arr id
```

```
constant :: b -> SF a b
constant b = arr (const b)
```

```
identity :: SF a a
identity = arr id

constant :: b -> SF a b
constant b = arr (const b)

integral :: VectorSpace a s=>SF a a
```

```
identity :: SF a a
  identity = arr id

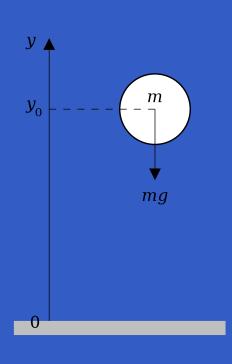
constant :: b -> SF a b
  constant b = arr (const b)

integral :: VectorSpace a s=>SF a a

time :: SF a Time
  time = constant 1.0 >>> integral
```

- identity :: SF a a
 identity = arr id
 constant :: b -> S
- constant :: b -> SF a b
 constant b = arr (const b)
- integral :: VectorSpace a s=>SF a a
- time :: SF a Time time = constant 1.0 >>> integral
- f (^<<) :: (b->c) -> SF a b -> SF a c
 f (^<<) sf = sf >>> arr f

Example: A bouncing ball



$$y = y_0 + \int v \, dt$$

$$v = v_0 + \int -9.81$$

On impact:

$$v = -v(t-)$$

(fully elastic collision)

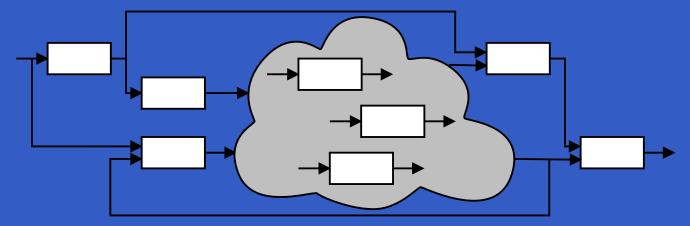
Part of a model of the bouncing ball

Free-falling ball:

```
type Pos = Double
type Vel = Double
fallingBall ::
    Pos -> Vel -> SF () (Pos, Vel)
fallingBall y0 v0 = proc() -> do
    v < - (v0 +) ^{<} integral - < -9.81
    y \leftarrow (y0 +) ^<< integral -< v
    returnA -< (y, v)
```

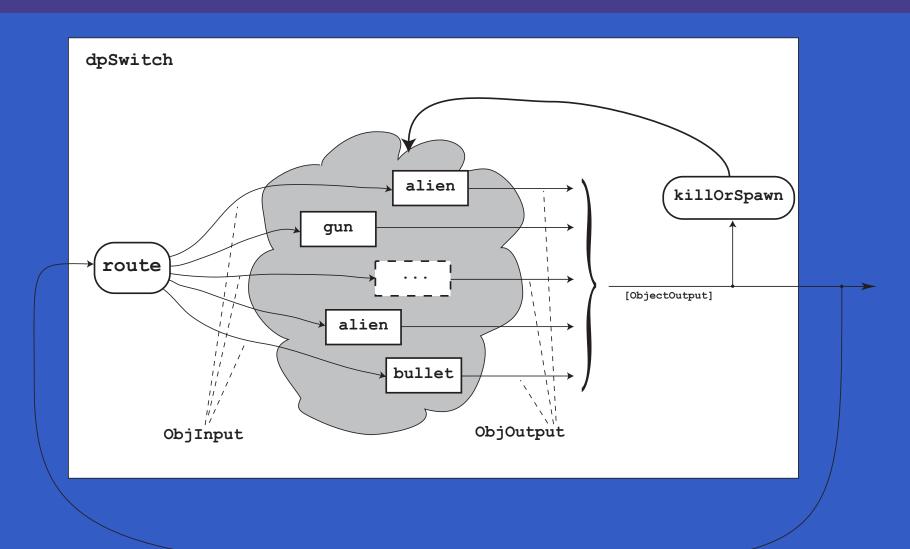
Dynamic system structure

Switching allows the structure of the system to evolve over time:



Example: Space Invaders

Overall game structure



Reading (1)

- Nick Benton, John Hughes, Eugenio Moggi. Monads and Effects. In *International Summer School on Applied Semantics 2000*, Caminha, Portugal, 2000.
- Sheng Liang, Paul Hudak, Mark Jones. Monad Transformers and Modular Interpreters. In *Proceedings* of the 22nd ACM Symposium on Principles of Programming Languages (POPL'95), January 1995, San Francisco, California

Reading (2)

- Mauro Jaskelioff. Monatron: An Extensible Monad Transformer Library. In *Implementation of Functional Languages (IFL'08)*, 2008.
- Mauro Jaskelioff. Modular Monad Transformers. In European Symposium on Programming (ESOP,09), 2009.

Reading (3)

- John Hughes. Generalising monads to arrows. *Science of Computer Programming*, 37:67–111, May 2000
- John Hughes. Programming with arrows. In *Advanced Functional Programming*, 2004. To be published by Springer Verlag.
- Henrik Nilsson, Antony Courtney, and John Peterson. Functional reactive programming, continued. In *Proceedings of the 2002 Haskell Workshop*, pp. 51–64, October 2002.

Reading (4)

- Paul Hudak, Antony Courtney, Henrik Nilsson, and John Peterson. Arrows, robots, and functional reactive programming. In *Advanced Functional Programming*, 2002. LNCS 2638, pp. 159–187.
- Antony Courtney, Henrik Nilsson, and John Peterson. The Yampa Arcade. In *Proceedings of the 2003 ACM SIGPLAN Haskell Workshop (Haskell'03)*, Uppsala, Sweden, 2003, pp 7–18.