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Outline

• Brief introduction to FRP and Yampa
• Signal functions
• Arrows
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Reactive programming

Reactive systems:
• Input arrives incrementally while system is

running.
• Output is generated in response to input in an

interleaved and timely fashion.

Contrast transformational systems.

The notions of
• time
• time-varying values, or signals

are inherent and central for reactive systems.
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Functional Reactive Programming

What is Functional Reactive Programming (FRP)?
• Paradigm for reactive programming in a

functional setting.
• Originated from Functional Reactive

Animation (Fran) (Elliott & Hudak).
• Has evolved in a number of directions and

into different concrete implementations.

MGS 2005: FRP, Lecture 1 – p.4/36



FRP applications

Some domains where FRP has been used:
• Graphical Animation (Fran: Elliott, Hudak)
• Robotics (Frob: Peterson, Hager, Hudak,

Elliott, Pembeci, Nilsson)
• Vision (FVision: Peterson, Hudak, Reid,

Hager)
• GUIs (Fruit: Courtney)
• Hybrid modeling (Nilsson, Hudak, Peterson)
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Key FRP features

• First class reactive components.
• Synchronous: all system parts operate in

synchrony.
• Support for hybrid (mixed continuous and

discrete time) systems.
• Allows dynamic system structure.

MGS 2005: FRP, Lecture 1 – p.6/36

Related languages and paradigms

FRP related to:
• Synchronous languages, like Esterel, Lucid

Synchrone.
• Modeling languages, like Simulink, Modelica.
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Yampa

What is Yampa?
• The most recent Yale FRP implementation.

People:
- Antony Courtney
- Paul Hudak
- Henrik Nilsson
- John Peterson

• A Haskell combinator library, a.k.a.
Domain-Specific Embedded Language
(DSEL).
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Yampa

What is Yampa?
• Structured using arrows.
• Continuous-time signals (conceptually)
• Option type Event to handle discrete-time

signals.
• Advanced switching constructs to describe

systems with dynamic structure.
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Yampa?
Yampa is a river with long calmly flowing sections
and abrupt whitewater transitions in between.

A good metaphor for hybrid systems!
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Signal functions (1)

Key concept: functions on signals.

Intuition:

Signal α ≈ Time→α

x :: Signal T1
y :: Signal T2
f :: Signal T1 →Signal T2
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Signal functions (2)

Additionally, causality required: output at time t

must be determined by input on interval [0, t].

Signal functions are said to be
• pure or stateless if output at time t only

depends on input at time t

• impure or stateful if output at time t depends
on input over the interval [0, t].
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Signal functions in Yampa

• Signal functions are first class entities.
Intuition: SF α β ≈ Signal α →Signal β

• Signals are not first class entities: they only
exist indirectly through signal functions.
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Signal functions and state

Alternative view:

Signal functions can encapsulate state.

state(t) summarizes input history x(t′), t′ ∈ [0, t].
Thus, really a kind of process.

From this perspective, signal functions are:
• stateful if y(t) depends on x(t) and state(t)

• stateless if y(t) depends only on x(t)
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Example: Video tracker

Video trackers are typically stateful signal
functions:

Tracker
prev. pos.][

(234,192)

Video stream Tracked object position
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Example: Robotics (1)

[PPDP’02, with Izzet Pembeci and Greg Hager,
Johns Hopkins University]

Hardware setup:
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Example: Robotics (2)

Software architecture:

Haskell

C/C++

Application

Frob FVision

Pioneer
drivers XVision2

FRP (Yampa)
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Example: Robotics (3)
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Yampa and Arrows (1)

In Yampa, systems are described by combining
signal functions (forming new signal functions).

For example, serial composition:

A combinator can be defined that captures this
idea:

(>>>) :: SF a b -> SF b c -> SF a c
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Yampa and Arrows (2)

But systems can be complex:

How many and what combinators do we need
to be able to describe arbitrary systems?
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Yampa and Arrows (3)

John Hughes’ arrow framework:
• Abstract data type interface for function-like

types.
• Particularly suitable for types representing

process-like computations.
• Related to monads, since arrows are

computations, but more general.
• Provides a minimal set of “wiring”

combinators.
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What is an arrow? (1)

• A type constructor a of arity two.
• Three operators:

- lifting:
arr :: (b->c) -> a b c

- composition:
(>>>) :: a b c -> a c d -> a b d

- widening:
first :: a b c -> a (b,d) (c,d)

• A set of algebraic laws that must hold.
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What is an arrow? (2)

These diagrams convey the general idea:

arr f f >>> g

first f
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The Arrow class

In Haskell, a type class is used to capture these
ideas (except for the laws):

class Arrow a where
arr :: (b -> c) -> a b c
(>>>) :: a b c -> a c d -> a b d
first :: a b c -> a (b,d) (c,d)
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Functions are arrows (1)

Functions are a simple example of arrows. The
arrow type constructor is just (->) in that case.

Exercise 1: Suggest suitable definitions of
• arr

• (>>>)

• first

for this case!

(We have not looked at what the laws are yet, but
they are “natural”.)
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Functions are arrows (2)

Solution:
• arr = id

To see this, recall
id :: t -> t
arr :: (b->c) -> a b c

Instantiate with

a = (->)

t = b->c = (->) b c
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Functions are arrows (3)

• f >>> g = \a -> g (f a) or
• f >>> g = g . f or even
• (>>>) = flip (.)

• first f = \(b,d) -> (f b,d)

MGS 2005: FRP, Lecture 1 – p.27/36

Functions are arrows (4)

Arrow instance declaration for functions:

instance Arrow (->) where
arr = id
(>>>) = flip (.)
first f = \(b,d) -> (f b,d)
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Arrow laws

(f >>> g) >>> h = f >>> (g >>> h)

arr (f >>> g) = arr f >>> arr g

arr id >>> f = f

f = f >>> arr id

first (arr f) = arr (first f)

first (f >>> g) = first f >>> first g

Exercise 2: Draw diagrams illustrating the first
and last law!
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The loop combinator (1)

Another important operator is loop: a fixed-point
operator used to express recursive arrows or
feedback :

loop f
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The loop combinator (2)

Not all arrow instances support loop. It is thus a
method of a separate class:

class Arrow a => ArrowLoop a where
loop :: a (b, d) (c, d) -> a b c

Remarkably, the four combinators arr, >>>,
first, and loop are sufficient to express any
conceivable wiring!
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Some more arrow combinators (1)

second :: Arrow a =>
a b c -> a (d,b) (d,c)

(***) :: Arrow a =>
a b c -> a d e -> a (b,d) (c,e)

(&&&) :: Arrow a =>
a b c -> a b d -> a b (c,d)
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Some more arrow combinators (2)

As diagrams:

second f
f *** g

f &&& g
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Some more arrow combinators (3)

Exercise 3: Describe the following circuit using
arrow combinators:

a1, a2, a3 :: A Double Double

Exercise 4: The combinators second, (***),
and (&&&) are not primitive, but defined in terms
of arr, (>>>), and first. Suggest suitable
definitions!
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Reading (1)

• John Hughes. Generalising monads to
arrows. Science of Computer Programming,
37:67–111, May 2000

• John Hughes. Programming with arrows. In
Advanced Functional Programming, 2004. To
be published by Springer Verlag.

• Henrik Nilsson, Antony Courtney, and John
Peterson. Functional reactive programming,
continued. In Proceedings of the 2002
Haskell Workshop, pp. 51–64, October 2002.
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Reading (2)

• Paul Hudak, Antony Courtney, Henrik
Nilsson, and John Peterson. Arrows, robots,
and functional reactive programming. In
Advanced Functional Programming, 2002.
LNCS 2638, pp. 159–187.
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