
MGS 2005
Functional Reactive Programming

Lecture 1:
Introduction to FRP, Yampa, and Arrows

Henrik Nilsson

School of Computer Science and Information Technology

University of Nottingham, UK

MGS 2005: FRP, Lecture 1 – p.1/36

Outline

• Brief introduction to FRP and Yampa
• Signal functions
• Arrows

MGS 2005: FRP, Lecture 1 – p.2/36

Reactive programming

Reactive systems:
• Input arrives incrementally while system is

running.
• Output is generated in response to input in an

interleaved and timely fashion.

Contrast transformational systems.

The notions of
• time
• time-varying values, or signals

are inherent and central for reactive systems.
MGS 2005: FRP, Lecture 1 – p.3/36

Functional Reactive Programming

What is Functional Reactive Programming (FRP)?
• Paradigm for reactive programming in a

functional setting.
• Originated from Functional Reactive

Animation (Fran) (Elliott & Hudak).
• Has evolved in a number of directions and

into different concrete implementations.

MGS 2005: FRP, Lecture 1 – p.4/36

FRP applications

Some domains where FRP has been used:
• Graphical Animation (Fran: Elliott, Hudak)
• Robotics (Frob: Peterson, Hager, Hudak,

Elliott, Pembeci, Nilsson)
• Vision (FVision: Peterson, Hudak, Reid,

Hager)
• GUIs (Fruit: Courtney)
• Hybrid modeling (Nilsson, Hudak, Peterson)

MGS 2005: FRP, Lecture 1 – p.5/36

Key FRP features

• First class reactive components.
• Synchronous: all system parts operate in

synchrony.
• Support for hybrid (mixed continuous and

discrete time) systems.
• Allows dynamic system structure.

MGS 2005: FRP, Lecture 1 – p.6/36

Related languages and paradigms

FRP related to:
• Synchronous languages, like Esterel, Lucid

Synchrone.
• Modeling languages, like Simulink, Modelica.

MGS 2005: FRP, Lecture 1 – p.7/36

Yampa

What is Yampa?
• The most recent Yale FRP implementation.

People:
- Antony Courtney
- Paul Hudak
- Henrik Nilsson
- John Peterson

• A Haskell combinator library, a.k.a.
Domain-Specific Embedded Language
(DSEL).

MGS 2005: FRP, Lecture 1 – p.8/36

Yampa

What is Yampa?
• Structured using arrows.
• Continuous-time signals (conceptually)
• Option type Event to handle discrete-time

signals.
• Advanced switching constructs to describe

systems with dynamic structure.

MGS 2005: FRP, Lecture 1 – p.9/36

Yampa?
Yampa is a river with long calmly flowing sections
and abrupt whitewater transitions in between.

A good metaphor for hybrid systems!
MGS 2005: FRP, Lecture 1 – p.10/36

Signal functions (1)

Key concept: functions on signals.

Intuition:

Signal α ≈ Time→α

x :: Signal T1
y :: Signal T2
f :: Signal T1 →Signal T2

MGS 2005: FRP, Lecture 1 – p.11/36

Signal functions (2)

Additionally, causality required: output at time t

must be determined by input on interval [0, t].

Signal functions are said to be
• pure or stateless if output at time t only

depends on input at time t

• impure or stateful if output at time t depends
on input over the interval [0, t].

MGS 2005: FRP, Lecture 1 – p.12/36

Signal functions in Yampa

• Signal functions are first class entities.
Intuition: SF α β ≈ Signal α →Signal β

• Signals are not first class entities: they only
exist indirectly through signal functions.

MGS 2005: FRP, Lecture 1 – p.13/36

Signal functions and state

Alternative view:

Signal functions can encapsulate state.

state(t) summarizes input history x(t′), t′ ∈ [0, t].
Thus, really a kind of process.

From this perspective, signal functions are:
• stateful if y(t) depends on x(t) and state(t)

• stateless if y(t) depends only on x(t)

MGS 2005: FRP, Lecture 1 – p.14/36

Example: Video tracker

Video trackers are typically stateful signal
functions:

Tracker
prev. pos.][

(234,192)

Video stream Tracked object position

MGS 2005: FRP, Lecture 1 – p.15/36

Example: Robotics (1)

[PPDP’02, with Izzet Pembeci and Greg Hager,
Johns Hopkins University]

Hardware setup:

MGS 2005: FRP, Lecture 1 – p.16/36

Example: Robotics (2)

Software architecture:

Haskell

C/C++

Application

Frob FVision

Pioneer
drivers XVision2

FRP (Yampa)

MGS 2005: FRP, Lecture 1 – p.17/36

Example: Robotics (3)

MGS 2005: FRP, Lecture 1 – p.18/36

Yampa and Arrows (1)

In Yampa, systems are described by combining
signal functions (forming new signal functions).

For example, serial composition:

A combinator can be defined that captures this
idea:

(>>>) :: SF a b -> SF b c -> SF a c

MGS 2005: FRP, Lecture 1 – p.19/36

Yampa and Arrows (2)

But systems can be complex:

How many and what combinators do we need
to be able to describe arbitrary systems?

MGS 2005: FRP, Lecture 1 – p.20/36

Yampa and Arrows (3)

John Hughes’ arrow framework:
• Abstract data type interface for function-like

types.
• Particularly suitable for types representing

process-like computations.
• Related to monads, since arrows are

computations, but more general.
• Provides a minimal set of “wiring”

combinators.

MGS 2005: FRP, Lecture 1 – p.21/36

What is an arrow? (1)

• A type constructor a of arity two.
• Three operators:

- lifting:
arr :: (b->c) -> a b c

- composition:
(>>>) :: a b c -> a c d -> a b d

- widening:
first :: a b c -> a (b,d) (c,d)

• A set of algebraic laws that must hold.

MGS 2005: FRP, Lecture 1 – p.22/36

What is an arrow? (2)

These diagrams convey the general idea:

arr f f >>> g

first f

MGS 2005: FRP, Lecture 1 – p.23/36

The Arrow class

In Haskell, a type class is used to capture these
ideas (except for the laws):

class Arrow a where
arr :: (b -> c) -> a b c
(>>>) :: a b c -> a c d -> a b d
first :: a b c -> a (b,d) (c,d)

MGS 2005: FRP, Lecture 1 – p.24/36

Functions are arrows (1)

Functions are a simple example of arrows. The
arrow type constructor is just (->) in that case.

Exercise 1: Suggest suitable definitions of
• arr

• (>>>)

• first

for this case!

(We have not looked at what the laws are yet, but
they are “natural”.)

MGS 2005: FRP, Lecture 1 – p.25/36

Functions are arrows (2)

Solution:
• arr = id

To see this, recall
id :: t -> t
arr :: (b->c) -> a b c

Instantiate with

a = (->)

t = b->c = (->) b c

MGS 2005: FRP, Lecture 1 – p.26/36

Functions are arrows (3)

• f >>> g = \a -> g (f a) or
• f >>> g = g . f or even
• (>>>) = flip (.)

• first f = \(b,d) -> (f b,d)

MGS 2005: FRP, Lecture 1 – p.27/36

Functions are arrows (4)

Arrow instance declaration for functions:

instance Arrow (->) where
arr = id
(>>>) = flip (.)
first f = \(b,d) -> (f b,d)

MGS 2005: FRP, Lecture 1 – p.28/36

Arrow laws

(f >>> g) >>> h = f >>> (g >>> h)

arr (f >>> g) = arr f >>> arr g

arr id >>> f = f

f = f >>> arr id

first (arr f) = arr (first f)

first (f >>> g) = first f >>> first g

Exercise 2: Draw diagrams illustrating the first
and last law!

MGS 2005: FRP, Lecture 1 – p.29/36

The loop combinator (1)

Another important operator is loop: a fixed-point
operator used to express recursive arrows or
feedback :

loop f

MGS 2005: FRP, Lecture 1 – p.30/36

The loop combinator (2)

Not all arrow instances support loop. It is thus a
method of a separate class:

class Arrow a => ArrowLoop a where
loop :: a (b, d) (c, d) -> a b c

Remarkably, the four combinators arr, >>>,
first, and loop are sufficient to express any
conceivable wiring!

MGS 2005: FRP, Lecture 1 – p.31/36

Some more arrow combinators (1)

second :: Arrow a =>
a b c -> a (d,b) (d,c)

(***) :: Arrow a =>
a b c -> a d e -> a (b,d) (c,e)

(&&&) :: Arrow a =>
a b c -> a b d -> a b (c,d)

MGS 2005: FRP, Lecture 1 – p.32/36

Some more arrow combinators (2)

As diagrams:

second f
f *** g

f &&& g
MGS 2005: FRP, Lecture 1 – p.33/36

Some more arrow combinators (3)

Exercise 3: Describe the following circuit using
arrow combinators:

a1, a2, a3 :: A Double Double

Exercise 4: The combinators second, (***),
and (&&&) are not primitive, but defined in terms
of arr, (>>>), and first. Suggest suitable
definitions!

MGS 2005: FRP, Lecture 1 – p.34/36

Reading (1)

• John Hughes. Generalising monads to
arrows. Science of Computer Programming,
37:67–111, May 2000

• John Hughes. Programming with arrows. In
Advanced Functional Programming, 2004. To
be published by Springer Verlag.

• Henrik Nilsson, Antony Courtney, and John
Peterson. Functional reactive programming,
continued. In Proceedings of the 2002
Haskell Workshop, pp. 51–64, October 2002.

MGS 2005: FRP, Lecture 1 – p.35/36

Reading (2)

• Paul Hudak, Antony Courtney, Henrik
Nilsson, and John Peterson. Arrows, robots,
and functional reactive programming. In
Advanced Functional Programming, 2002.
LNCS 2638, pp. 159–187.

MGS 2005: FRP, Lecture 1 – p.36/36

	Outline
	Reactive programming
	Functional Reactive Programming
	FRP applications
	Key FRP features
	Related languages and paradigms
	Yampa
	Yampa
	Yampa?
	Signal functions (1)
	Signal functions (2)
	Signal functions in Yampa
	Signal functions and state
	Example: Video tracker
	Example: Robotics (1)
	Example: Robotics (2)
	Example: Robotics (3)
	Yampa and Arrows (1)
	Yampa and Arrows (2)
	Yampa and Arrows (3)
	What is an arrow? (1)
	What is an arrow? (2)
	The 	exttt {Arrow} class
	Functions are arrows (1)
	Functions are arrows (2)
	Functions are arrows (3)
	Functions are arrows (4)
	Arrow laws
	The 	exttt {loop} combinator (1)
	The 	exttt {loop} combinator (2)
	Some more arrow combinators (1)
	Some more arrow combinators (2)
	Some more arrow combinators (3)
	Reading (1)
	Reading (2)

