Henrik Nilsson

School of Computer Science and Information Technology
University of Nottingham, UK

_ VoS 200m FRR pecurezmpe

Recap: The arrow framework (1)

The following two Haskell type classes capture
the notion of an arrow and of an arrow

supporting feedback:

class Arrow a where
arr . (b ->c¢c) ->abc
(>>>) :: abc->acd->abd

first :: abc->a(b,d (c,d)

class Arrow a => ArrowLoop a where
loop :: a (b, d) (c, d ->abc

MGS 2005: FRP, Lecture 2 — p.3/36

* Recap
» Notes on yesterday’s exerceises

+ Point-free vs. pointed programming:
the arrow do-notation

+ Basic Yampa programming

\4
~

v Vv
A4

~

v

first f | oop f

arr,>>> first,and| oop are sufficient to
express any conceivable “wiring”!

MGS 2005: FRP, Lecture 2 — p.4/36

Recap: Further arrow combinators (1) Recap: Further arrow combinators (2)

second :: Arrow a => As diagrams:
abc->a(db) (drc) R I >
(***) :: Arrow a => » f > o & >
b ->ad -> b, d :
abc ade a () (c,e) second f o

(&&&) :: Arrow a =>
abc->abd->ab(cd

Exercise 3: One solution Exercise 3: Another solution

Exercise 3: Describe the following circuit using Exercise 3: Describe the following circuit:
arrow combinators: J a1 a0
» al » a2 ’ ’ T
» > \ + _»
U e o a3
o a3

al, a2, a3 :: A Doubl e Doubl e
circuit_v2 :: A Doubl e Double

al, a2, a3 :: A Doubl e Double

circuit_vl :: A Doubl e Double circuit_v2 =arr (\x -> (x,x))
circuit vl = (al &&& arr id) >>> first al

>>> (a2 x** al) >>> (a2 *** a3)

>>> arr (uncurry (+)) >>> arr (uncurry (+)

_ VoS 200 PR Fecurezmp TR _ VoS 200 R ez Tp e

Exercise 4: Solution Note on the definition of (**=*) (1)

Exercise 4: Suggest definitions of second,
(**+),and (&&&) .

Are the following two definitions of (**x)

equivalent?

second :: Arrow a => a b ¢ -> a (d,b) (d,c))
second f = arr swap >>> first f >>> arr swap «f xx+x g =first f >>> second g
swap (X,y) = (¥,X) «f *xx g = second g >>> first f
(>**) :: Arrow a => No, in general

abc->ade ->a (b,d (c,e)
f »xx g = first f >>> second g first f>>>secondg # secondg>>>first f
(&&&) :: Arrow a =>abc->abd->ab (c,d) since the order of the two possibly effectful
T &8& g = arr (\x->(x,Xx)) >>> (f »** Q) computations f and g are different.

Yet an attempt at exercise 3

z
o]
7]
N
S
1
a
D
bl
il
p
o
-3
£
@
N
|
B
i
S
@
-3

Note on the definition of (***) (2)

Similarly » al > a2~
N
* % % >>> (hxx* k S>> h) xx >>>
(f*** g) () # (f) (g>>>g) 31—
since the order of f and g differs.
However, the following is true circuit_v3 :: A Double Double
(an additional arrow law): circuit_v3 = (al && a3)
>>> first a2
first f>>>second (arr g) >>> arr (uncurry (+))

= second (arr g) >>>first f Arecircuit _vl,circuit_v2,and

ci rcui t _v3 all equivalent?

_ VoS 200 R ez o _

Point-free vs. pointed programming

What we have seen thus far is an example of
point-free programming: the values being

manipulated are not given any names.

This is often appropriate, especially for small
definitions, and it facilitates equational reasoning
as shown by Bird & Meertens (Bird 1990).

However, large programs are much better

expressed in a pointed style, where names can

be given to values being manipulated.

The arrow do notation (2)

Let us redo exercise 3 using this notation:

> al > a2 \

» a3 —

circuit_v4 :: A Doubl e Double
circuit_v4 = proc x -> do

yl <- al -< X

y2 <- a2 -<yl

y3 <- a3 -< X

returnA -< y2 + y3

MGS 2005: FRP, Le

ecture 2 - p.15/36

The arrow do notation (1)

Ross Paterson’s do-notation for arrows supports
pointed arrow programming. Only syntactic

sugar.

proc pat ->do[rec]
paty <- sfexp, - < exp,
paty <- sfexp, - < exp,

pat, <- sfexp, - < exp,
returnA-<ezp

Also: l et pat=exp = pat<- arr id-<exp

The arrow do notation (3)

We can also mix and match:

> al > a2 \

» a3 |—

circuit_v5 :: A Doubl e Doubl e
circuit_v5 = proc x -> do
y2 <- a2 <<< al -< x
y3 <- a3 -< X
returnA -< y2 + y3

MGS 2005: FRP, Lecture 2 — p.16/36

The arrow do notation (4) Solution exercise 5

Exercise 5: Describe the following circuit using » al SEY

. \
the arrow do-notation: n >
» al > a2 |~ » 13 |—
: . |—’
> a3 b circuit = proc x -> do
|_> rec
al, a2 :: A Doubl e Doubl e yl <- al -<x
a3 :: A (Doubl e, Doubl €) Doubl e y2 <- a2 -<yl
_ _ _ y3 <- a3 -< (x, y)
Exercise 6: As 5, but directly using only the let y = y2 + y3
arrow combinators. returnA -< vy
Some More Reading Recap: Signal functions (1)

» Richard S. Bird. A calculus of functions for Key concept: functions on signals.
program derivation. In Research Topics in x y
Functional Programming, Addison-Wesley, g ’
1990. Intuition:

* Ross Paterson. A New Notation for Arrows. In Signal a ~ Tinme—a
Proceedings of the 2001 ACM SIGPLAN SF a 3 ~ Signal o« — Signal §
International Conference on Functional z :: Signal T1
Programming, pp. 229-240, Firenze, Italy, y . Signal T2
2001. f i SFT1 T2

SF is an instance of Ar r owand Ar r owLoop.

_ VoS 200 R ez mpaee _ VoS 200 TR ez mpae

Recap: Signal functions (2) Some basic signal functions (1)

Additionally, causality required: output at time ¢ cidentity :: SF a a
must be determined by input on interval [0, ¢]. identity = arr id
Signal functions are said to be cconstant :: b ->SF ab

. . constant b = arr (const b)
* pure or stateless if output at time ¢ only

depends on input at time ¢ sintegral :: VectorSpace a s=>SF a a

. . . It is defined through:
« impure or stateful if output at time ¢ depends

on input over the interval |0, ¢].

_ oS 200 R ez mpe _

Some basic signal functions (2)

iPre :: a->SF aa
= yo+ [vdt
e ("<<) :: (b->c) ->SFab->SFac ’p Y . /U
f ("<<) sf = sf >>> arr f Wl S U0+/_9.81
«time :: SF a Tine
. . . . mg On impact:
Quick Exercise: Define time!
time = constant 1.0 >>> integral vo= —ult-)

(fully elastic collision)

_ VoS 200 R ez mp e _

Modelling the bouncing ball: part 1

Free-falling ball:

type Pos = Double
type Vel = Double

fallingBall ::
Pos -> Vel -> SF () (Pos, Vel)
fallingBall yO vO = proc () -> do
v <- (VO +) “<< integral -< -9.81
y <- (y0 +) “<< integral -< v
returnA -< (y, V)

Some basic event sources

*never :: SF a (Event b)
enow :: b -> SF a (Event b)

-after :: Time -> b -> SF a (Event b)

s repeatedly ::
Time -> b -> SF a (Event b)

- edge :: SF Bool (Event ())

_ VoS 200 R ez mp TR

Conceptually, discrete-time signals are only
defined at discrete points in time, often
associated with the occurrence of some event.

Yampa models discrete-time signals by lifting the
range of continuous-time signals:

data Event a = NoEvent | Event a

Associating information with an event
occurrence:

tag :: Event a -> b -> Event Db

_ VoS 200 R ez mpae

Stateful event suppression

snotYet :: SF (Event a) (Event a)
conce :: SF (Event a) (Event a)

_ VoS 200 TR ez mpae

Modelling the bouncing ball: part 2

Detecting when the ball goes through the floor:

fallingBall” ::

Pos -> Vel

-> SF () ((Pos,Vvel), Event (Pos,Vel))
fallingBall” yO vO = proc () -> do

yv@(y, _) <- fallingBall yo vO -<)

hit <- edge -<y<=0
returnA -< (yv, hit “tag® yv)
The basic switch (1)

Idea:

« Allows one signal function to be replaced by
another.

« Switching takes place on the first occurrence
of the switching event source.

switch ::
SF a (b, Event c¢)
-> (c -> SF a b)
->SFab

MGS 2005: FRP, Lecture 2 — p.31/36

Switching

Q: How and when do signal functions “start”?
A: - Switchers “apply” a signal functions to its
input signal at some point in time.

« This creates a “running” signal function
instance.

» The new signal function instance often
replaces the previously running instance.

Switchers thus allow systems with varying
structure to be described.

©

The basic switch (2)

Exercise 7: Define an event counter count Fr om

count From : :
Int -> SF (Event a) Int

using

swtch :: SF a (b, Event c¢)
-> (c -> SF a b)

->SFab
const ant b->SFab
tag :: Event a -> b -> Event b

MGS 2005: FRP, Lecture 2 — p.32/36

Solution exercise 7

Modelling the bouncing ball: part 3

Making the ball bounce:

countFrom:: Int -> SF (Event a) Int
count F!’ omn = bouncingBall :: Pos -> SF () (Pos, Vel)
swi tch bouncingBall yO = bbAux y0 0.0
(constant n where
&&& arr (\e -> e ‘tag’ (n+l))) bbAUX YO VO =
count From switch (fallingBall” yo v0) $ \(y,v) ->
bbAux y (-v)

Modelling using impulses

From a modelling perspective, using a device like
s T T swi t ch to model the interaction between the ball
1 and the floor may seem rather unnatural.

A more appropriate account of what is going on
Is that an impulsive force is acting on the ball for

IRVARVARVARVARVARN a short time.

Al | | | | . This can be abstracted into Dirac Impulses:
] impulses that act instantaneously. See

T Henrik Nilsson. Functional Automatic
o 1 1 1 1 1 Differentiation with Dirac Impulses. In

B S T S v T R T e Proceedings of ICFP 2003.

_ VoS 200 R ez mp e _ VoS 200 TR ez mpae

	Outline
	Recap: The arrow framework (1)
	Recap: The arrow framework (2)
	Recap: Further arrow combinators (1)
	Recap: Further arrow combinators (2)
	Exercise 3: One solution
	Exercise 3: Another solution
	Exercise 4: Solution
	Note on the definition of 	exttt {(***)}
(1)
	Note on the definition of 	exttt {(***)}
(2)
	Yet an attempt at exercise 3
	Point-free vs. pointed programming
	The arrow 	exttt {do} notation (1)
	The arrow 	exttt {do} notation (2)
	The arrow 	exttt {do} notation (3)
	The arrow 	exttt {do} notation (4)
	Solution exercise 5
	Some More Reading
	Recap: Signal functions (1)
	Recap: Signal functions (2)
	Some basic signal functions (1)
	Some basic signal functions (2)
	A bouncing ball
	Modelling the bouncing ball: part 1
	Events
	Some basic event sources
	Stateful event suppression
	Modelling the bouncing ball: part 2
	Switching
	The basic switch (1)
	The basic switch (2)
	Solution exercise 7
	Modelling the bouncing ball: part 3
	Simulation of bouncing ball
	Modelling using impulses

