MGS 2005
Functional Reactive Programming
Lecture 2: Yampa Basics

> Henrik Nilsson
School of Computer Science and Information Technology University of Nottingham, UK

$$
\ggg(\mathrm{a} 2 \text { *** a3) }
$$

>>> arr (uncurry (+))

Outline

Recap: The arrow framework (1)

- Recap
- Notes on yesterday's exerceises
- Point-free vs. pointed programming: the arrow do-notation
- Basic Yampa programming

The following two Haskell type classes capture the notion of an arrow and of an arrow supporting feedback:
class Arrow a where

> arr : : (b -> c) -> a b c
> (>>>) :: a b c -> a c d -> a b d
> first :: a b c -> a (b,d) (c,d)
class Arrow a => ArrowLoop a where
loop :: a $(b, d)(c, d)$-> a b c

Recap: Further arrow combinators (2)

As diagrams:

(\&\&\&) : : Arrow a =>

$$
\mathrm{a} b \mathrm{c} \rightarrow \mathrm{a} b \mathrm{~d} \rightarrow \mathrm{a} b(\mathrm{c}, \mathrm{~d})
$$

Exercise 4: Solution

Exercise 4: Suggest definitions of second, (***) , and ($\& \& \&)$.
second :: Arrow a => a b c -> a (d,b) (d, c) second $f=$ arr swap >>> first f >>> arr swap swap (x, y) $=(\mathrm{y}, \mathrm{x})$
(***) :: Arrow a =>
a b c -> a d e -> a (b,d) (c,e)
f *** g = first f >>> second g
(\&\&\&) :: Arrow a => a b c -> a b d -> a b (c,d) $\mathrm{f} \& \& \& \mathrm{~g}=\operatorname{arr}(\backslash \mathrm{x}->(\mathrm{x}, \mathrm{x}))$) >> (f *** g)

Exercise 3: Another solution

Exercise 3: Describe the following circuit:

a1, a2, a3 :: A Double Double
circuit_v2 :: A Double Double
circuit_v2 = arr ($\backslash x$-> (x, x))
>>> first a1
>>> (a2 *** a3)
>>> arr (uncurry (+))
(a1 \&\&\& arr id)

Note on the definition of (***) (1)

Note on the definition of (***) (2)

Are the following two definitions of (***) equivalent?

$$
\begin{aligned}
& \text { - } f * * * g=\text { first } f \ggg \text { second } g \\
& \text { - } f * * * g=\text { second } g \ggg \text { first } f
\end{aligned}
$$

No, in general
first f >>> second $g \neq$ second $g \ggg$ first f
since the order of the two possibly effectful computations f and g are different.

Point-free vs. pointed programming

What we have seen thus far is an example of point-free programming: the values being manipulated are not given any names.

This is often appropriate, especially for small definitions, and it facilitates equational reasoning as shown by Bird \& Meertens (Bird 1990).
However, large programs are much better expressed in a pointed style, where names can be given to values being manipulated.

The arrow do notation (3)

We can also mix and match:

circuit_v5 : : A Double Double circuit_v5 = proc x $->$ do

$$
\text { y2 }<- \text { a2 } \lll \text { a1 -< } x
$$

Similarly
$(f$ *** $g) \ggg(h * * * k) \neq(f \ggg h)$ *** $(g \ggg g)$
since the order of f and g differs.
However, the following is true
(an additional arrow law):

$$
\begin{aligned}
& \text { first } f \ggg \text { second }(\operatorname{arr} g) \\
& =\text { second }(\operatorname{arr} g) \ggg \text { first } f
\end{aligned}
$$

The arrow do notation (1)

Ross Paterson's do-notation for arrows supports pointed arrow programming. Only syntactic

sugar

$$
\begin{aligned}
& \text { proc } \text { pat }->\text { do }[\text { rec }] \\
& \text { pat }_{1}<-\operatorname{sfexp}_{1}-<\exp _{1} \\
& \text { pat }_{2}<-\operatorname{sfexp}_{2}-<\exp _{2} \\
& \ldots \\
& \text { pat }_{n}<-\operatorname{sfexp} p_{n}-<\exp _{n} \\
& \text { returnA }-<\exp
\end{aligned}
$$

$$
\text { y3 <- a3 } \quad-<x
$$

$$
\text { returnA }-<y^{2}+y^{3}
$$

Also: let pat $=\exp \equiv p a t<-\operatorname{arr}$ id $-<\exp$
Also. 1et pat $=\exp =$ pat $<-\operatorname{arr}$ id $-<\exp$

The arrow do notation (4)

Exercise 5: Describe the following circuit using the arrow do-notation:

> a1, a2 :: A Double Double
a3 :: A (Double,Double) Double
Exercise 6: As 5, but directly using only the arrow combinators.

Yet an attempt at exercise 3

$$
\begin{aligned}
\text { circuit_v3 : }: & \text { A Double Double } \\
\text { circuit_v3 }= & (\text { a1 \&\&\& a3) } \\
& \ggg \text { first a2 } \\
& \ggg \text { arr (uncurry (+)) }
\end{aligned}
$$

Are circuit_v1, circuit_v2, and circuit_v3 all equivalent?

The arrow do notation (2)

Let us redo exercise 3 using this notation:

circuit_v4 :: A Double Double circuit_v4 = proc x -> do
y1 <- a1 -< x

$$
y^{2}<-a 2-<y 1
$$

$$
y 3<-a 3-<x
$$

returnA -< y2 + y3

Solution exercise 5

Some More Reading

- Richard S. Bird. A calculus of functions for program derivation. In Research Topics in Functional Programming, Addison-Wesley, 1990.

Ross Paterson. A New Notation for Arrows. In Proceedings of the 2001 ACM SIGPLAN International Conference on Functional Programming, pp. 229-240, Firenze, Italy, 2001.

Some basic signal functions (1)

- identity : SF a a
identity = arr id
- constant :: b -> SF a b
constant b = arr (const b)
- integral :: VectorSpace a s=>SF a a It is defined through:

$$
y(t)=\int_{0}^{t} x(\tau) \mathrm{d} \tau
$$

Modelling the bouncing ball: part 1

Free-falling ball

type Pos = Double
type Vel = Double
fallingBall : :
Pos -> Vel -> SF () (Pos, Vel)
fallingBall y0 v0 = proc () -> do v <- (v0 +) ^ << integral -< -9.81
$\mathrm{y}<-(\mathrm{y} 0+)^{\wedge} \ll$ integral $-<\mathrm{v}$
returnA -< (y, v)

Recap: Signal functions (1)

Key concept: functions on signals.

Intuition:

Signal $\alpha \approx$ Time $\rightarrow \alpha$
SF $\alpha \beta \approx$ Signal $\alpha \rightarrow$ Signal β
x :: Signal T1
y :: Signal T2
$f:$: SF T1 T2
SF is an instance of Arrow and ArrowLoop.

Some basic signal functions (2)

-iPre : : a -> SF a a

- $(\wedge \ll)::(b->c)->S F$ a b $->$ SF $a c$
f (^<<) sf = sf >>> arr f
- time :: SF a Time

Quick Exercise: Define time!
time $=$ constant 1.0 >>> integral

Events

Conceptually, discrete-time signals are only defined at discrete points in time, often associated with the occurrence of some event.
Yampa models discrete-time signals by lifting the range of continuous-time signals:
data Event $a=$ NoEvent | Event a
Discrete-time signal $=$ Signal $($ Event $\alpha)$.
Associating information with an event occurrence:
tag :: Event a -> b -> Event b

Recap: Signal functions (2)

Additionally, causality required: output at time t must be determined by input on interval $[0, t]$.

Signal functions are said to be

- pure or stateless if output at time t only depends on input at time t
- impure or stateful if output at time t depends on input over the interval $[0, t]$.

A bouncing ball

$$
\begin{aligned}
& y=y_{0}+\int v \mathrm{~d} t \\
& v=v_{0}+\int-9.81
\end{aligned}
$$

On impact:

$$
v=-v(t-)
$$

(fully elastic collision)

Some basic event sources

```
- never :: SF a (Event b)
- now :: b -> SF a (Event b)
- after :: Time -> b -> SF a (Event b)
- repeatedly ::
    Time -> b -> SF a (Event b)
- edge :: SF Bool (Event ())
```


Stateful event suppression

Modelling the bouncing ball: part 2

- notYet : : SF (Event a) (Event a)
- once : : SF (Event a) (Event a)

The basic switch (1)

Idea:

- Allows one signal function to be replaced by another.
- Switching takes place on the first occurrence of the switching event source.
switch : :

> SF a (b, Event c)
> $\rightarrow(c->$ SF a b)
-> SF a b

Modelling the bouncing ball: part 3

Making the ball bounce:

```
bouncingBall :: Pos -> SF () (Pos, Vel)
bouncingBall y0 = bbAux y0 0.0
    where
        bbAux y0 v0 =
            switch (fallingBall' y0 v0) $ \(y,v) ->
            bbAux y (-v)
```

Detecting when the ball goes through the floor:
fallingBall' ::
Pos -> Vel
-> SF () ((Pos,Vel), Event (Pos,Vel))
fallingBall' y0 v0 = proc () -> do
yv@(y, _) <- fallingBall y0 v0 -< ()
hit <- edge $\quad-<\mathrm{y}<=0$
returnA -< (yv, hit `tag` yv)

The basic switch (2)

Exercise 7: Define an event counter countFrom
countFrom : :
Int -> SF (Event a) Int
using
switch : : SF a (b, Event c)
-> (c -> SF a b)
$->$ SF a b
constant : : b -> SF a b
tag :: Event a -> b -> Event b

Simulation of bouncing ball

Switching

Q: How and when do signal functions "start"?
A: - Switchers "apply" a signal functions to its input signal at some point in time.

- This creates a "running" signal function instance.
- The new signal function instance often replaces the previously running instance.

Switchers thus allow systems with varying structure to be described.

Solution exercise 7

```
countFrom :: Int -> SF (Event a) Int
countFrom n =
    switch
(constant n
\&\&\& arr ( \(\mathrm{le}->\) e `tag' \((\mathrm{n}+1))\) )
countFrom
countFrom
```


Modelling using impulses

From a modelling perspective, using a device like switch to model the interaction between the ball and the floor may seem rather unnatural.

A more appropriate account of what is going on is that an impulsive force is acting on the ball for a short time.

This can be abstracted into Dirac Impulses: impulses that act instantaneously. See

Henrik Nilsson. Functional Automatic
Differentiation with Dirac Impulses. In
Proceedings of ICFP 2003.

