: MGS_ 2005 :
Functional Reactive Programming

Lecture 2: Yampa Basics

Henrik Nilsson

School of Computer Science and Information Technology

University of Nottingham, UK

Outline

Recap
Notes on yesterday’s exerceises

Point-free vs. pointed programming:
the arrow do-notation

Basic Yampa programming

MGS 2005: FRP, Lecture 2 — p.2/36

Recap: The arrow framework (1)

The following two Haskell type classes capture
the notion of an arrow and of an arrow
supporting feedback:

cl ass Arrow a where
arr . (b->c¢c) ->abc
(>>>) :: abc->acd->abd
first ;.. abc->a (b,d) (c,d)

class Arrow a => ArrowLoop a where
loop :: a (b, d) (c, d ->abc

Recap: The arrow framework (2)

O [e |
arr f f >>> g

= S

_
first f | oop f

arr,>>> first,and| oop are sufficient to
express any conceivable “wiring”!

Recap: Further arrow combinators (1)

second :: Arrow a =>
abc->a(dDb) (d,c)

(***) . Arrow a =>
abc->ade->a(b,d (c,e)

(&&&) :: Arrow a =>
abc->abd->ab(c,d

Recap: Further arrow combinators (2)

As diagrams:

Exercise 3: One solution

Exercise 3: Describe the following circuit using
arrow combinators:

l

(D—

\

al, a2, a3 :: A Doubl e Doubl e

Exercise 3: One solution

Exercise 3: Describe the following circuit using
arrow combinators:

l

(D—

\

al, a2, a3 :: A Doubl e Doubl e

circuit vl :: A Double Double
circuit vl = (al &&& arr 1d)

>>> (a2 *** a3)

>>> arr (uncurry (+))

Exercise 3: Another solution

Exercise 3: Describe the following circuit:

l

(D—

\

al, a2, a3 :: A Doubl e Doubl e

Exercise 3: Another solution

Exercise 3: Describe the following circuit:

l

(D—

\

al, a2, a3 :: A Doubl e Doubl e

circuit _v2 :: A Doubl e Double
circuirt v2 = arr (\x -> (x, X))

>>> flrst al

>>> (a2 *** a3)

>>> arr (uncurry (+))

Exercise 4: Solution

Exercise 4. Suggest definitions of second,
(x**), and (&&&) .

Exercise 4: Solution

Exercise 4. Suggest definitions of second,
(x**), and (&&&) .

second :-: Arrow a => a b c -> a (d,b) (d,c)
second f = arr swap >>> first T >>> arr swap

swap (X,y) = (Y¥,X)

Exercise 4: Solution

Exercise 4. Suggest definitions of second,
(x**), and (&&&) .

second :-: Arrow a => a b c -> a (d,b) (d,c)
second f = arr swap >>> first T >>> arr swap

swap (X,y) = (Y¥,X)

(***) I Arrow a =>
abc->ade->a (b,d) (c,e)
F ox*xx = first f >>> second g

MGS 2005: FRP, Lecture 2 — p.9/36

Exercise 4: Solution

Exercise 4. Suggest definitions of second,
(x**), and (&&&) .

second :-: Arrow a => a b c -> a (d,b) (d,c)
second f = arr swap >>> first T >>> arr swap

swap (X,y) = (¥,X)
(***) -: Arrow a =>

abc->ade->a (b,d) (c,e)
F ox*xx = first f >>> second g

(&&&) :-: Arrow a => a b c ->abd->ab (c,d)
T &&& g = arr (\x->(x,x)) >>> (f *** Q)

MGS 2005: FRP, Lecture 2 — p.9/36

Note on the definition of (***) (1)

Are the following two definitions of (* *)
equivalent?

f »xx g =first f >>> second g

f »xx ¢ second g >>> first f

Note on the definition of (***) (1)

Are the following two definitions of (* *)
equivalent?

f »xx g =first f >>> second g

f »xx ¢ second g >>> first f

No, In general
first f>>>secondg # secondg>>>first f

since the order of the two possibly effectful
computations f and ¢ are different.

Note on the definition of (***) (2)

Similarly
(fxxx g)>>> (hxxx k) # (f>>>h)*xx (g>>>g)

since the order of f and g differs.

Note on the definition of (***) (2)

Similarly
(f xxx g) >>> (hxxx k) # (f >>>h) xxx (g >>> g)

since the order of f and g differs.

However, the following is true
(an additional arrow law):

first f>>>second (arr g)
= second (arr g) >>>first f

Yet an attempt at exercise 3

N O

circuit _v3 :: A Double Double
circuit v3 = (al &&& a3)

>>> flrst a2

>>> arr (uncurry (+))

Yet an attempt at exercise 3

N O

circuit _v3 :: A Double Double
circuit v3 = (al &&& a3)

>>> flrst a2

>>> arr (uncurry (+))

Arecircuit _vl,circuit_v2,and
circuit_v3 all equivalent?

Point-free vs. pointed programming

What we have seen thus far is an example of
point-free programming: the values being
manipulated are not given any names.

Point-free vs. pointed programming

What we have seen thus far is an example of
point-free programming: the values being
manipulated are not given any names.

This Is often appropriate, especially for small
definitions, and It facilitates equational reasoning
as shown by Bird & Meertens (Bird 1990).

Point-free vs. pointed programming

What we have seen thus far is an example of
point-free programming: the values being
manipulated are not given any names.

This Is often appropriate, especially for small
definitions, and It facilitates equational reasoning
as shown by Bird & Meertens (Bird 1990).

However, large programs are much better
expressed in a pointed style, where names can
be given to values being manipulated.

The arrow do notation (1)

Ross Paterson’s do-notation for arrows supports
pointed arrow programming. Only syntactic
sugar.

proc pat ->do[rec]
paty <- sfexp; - < exp,
paty <- sfexp, - < exp,

pa't'n <- Sfeajpn - < CTP,
returnA-<exp

Also: |l et pat =exp = pat<- arr 1 d-<exp

MGS 2005: FRP, Lecture 2 — p.14/36

The arrow do notation (2)

Let us redo exercise 3 using this notation:

l

(D—

\

circuit _v4 :: A Doubl e Double
circuit v4 = proc x -> do

yl <- al -< X

y2 <- a2 -<yl

y3 <- a3 -< X

returnA -< y2 + y3

The arrow do notation (3)

We can also mix and match:

circuit _v5 :: A Doubl e Double
circuit vb5 = proc x -> do
y2 <- a2 <<< al -< x
y3 <- a3 -< X
returnA -< y2 + y3

(D—

The arrow do notation (4)

Exercise 5: Describe the following circuit using
the arrow do-notation:

l

(D—

\

al, a2 :: A Doubl e Double
a3 ::. A (Doubl e, Doubl e) Doubl e

The arrow do notation (4)

Exercise 5: Describe the following circuit using
the arrow do-notation:

al, a2 :: A Doubl e Double
a3 ::. A (Doubl e, Doubl e) Doubl e

Exercise 6: As 5, but directly using only the
arrow combinators.

l

(D—

\

Solution exercise 5

circuit = proc x -> do
rec
yl <- al -< X
y2 <- a2 -<yl
y3 <- a3 -< (x, Yy)
let vy = y2 + y3
returnA -< vy

(D

Some More Reading

Richard S. Bird. A calculus of functions for
program derivation. In Research Topics Iin
—unctional Programming, Addison-Wesley,
1990.

ROsSs Paterson. A New Notation for Arrows. In
Proceedings of the 2001 ACM SIGPLAN
nternational Conference on Functional
Programming, pp. 229-240, Firenze, Italy,
2001.

Recap: Signal functions (1)

Key concept: functions on signals.

Intuition:

Signal a = Ti ne—a

SF o« 6 =~ Signal « — Signal §
r .. Signal T1

y .. Signal T2

f o SF T1 T2

SF Is an instance of Ar r owand Ar r owLoop.

Recap: Signal functions (2)

Additionally, causality required: output at time ¢
must be determined by input on interval |0, ¢].

Signal functions are said to be

pure or stateless If output at time ¢ only
depends on input at time ¢

Impure or stateful If output at time ¢t depends
on input over the interval |0, £].

Some basic signal functions (1)

ldentity :: SF a a
ldentity = arr i1d

Some basic signal functions (1)

ldentity :: SF a a
ldentity = arr 1d

constant :: b ->SF ab
constant b = arr (const Db)

Some basic signal functions (1)

ldentity :: SF a a
ldentity = arr 1d

constant :: b ->SF ab
constant b = arr (const Db)

l ntegral :: VectorSpace a s=>SF a a
It is defined through:

y(t) = / o(7) dr

Some basic signal functions (2)

1Pre :: a ->SF a a

Some basic signal functions (2)

|Pre :: a -> SF a a

("<<) :: (b->c) ->SFab->S5F ac
f ("<<) sf = sf >>> arr f

Some basic signal functions (2)

|Pre :: a -> SF a a

("<<) :: (b->c) ->SFab->SFac
i (/\<<) sf = sf >>> arr f

tinme :: SF a TiIne

Some basic signal functions (2)

|Pre :: a -> SF a a

("<<) :: (b->c) ->SFab->SFac
i (/\<<) sf = sf >>> arr f

tine :: SF a TiIne

Quick Exercise: Define time!

Some basic signal functions (2)

|Pre :: a -> SF a a

("<<) :: (b->c) ->SFab->S5F ac
f ("<<) sf = sf >>> arr f

time :: SF a Tine
Quick Exercise: Define time!

tine = constant 1.0 >>> | ntegral

A bouncing ball

a v = Uo+/—9.81

On impact:

v = —v(t—)

(fully elastic collision)

MGS 2005: FRP, Lecture 2 — p.24/36

Modelling the bouncing ball: part 1

Free-falling ball:

type Pos = Double
type Vel = Double

fallingBall
Pos -> Vel -> SF () (Pos, Vel)
fallingBall yO vO = proc () -> do
v <- (VO +) "<< 1Integral -< -9.81
y <- (yO +) "<< iIntegral -< v
returnA -< (y, V)

MGS 2005: FRP, Lecture 2 — p.25/36

Events

Conceptually, discrete-time signals are only
defined at discrete points in time, often
associated with the occurrence of some event.

MGS 2005: FRP, Lecture 2 — p.26/36

Events

Conceptually, discrete-time signals are only
defined at discrete points in time, often
associated with the occurrence of some event.

Yampa models discrete-time signals by lifting the
range of continuous-time signals:

NoEvent | Event a

dat a Event a

MGS 2005: FRP, Lecture 2 — p.26/36

Events

Conceptually, discrete-time signals are only
defined at discrete points in time, often
associated with the occurrence of some event.

Yampa models discrete-time signals by lifting the
range of continuous-time signals:

NoEvent | Event a
Discrete-time signal = Si gnal (Event «).

dat a Event a

MGS 2005: FRP, Lecture 2 — p.26/36

Events

Conceptually, discrete-time signals are only
defined at discrete points in time, often
associated with the occurrence of some event.

Yampa models discrete-time signals by lifting the
range of continuous-time signals:

NoEvent | Event a
Discrete-time signal = Si gnal (Event «).

dat a Event a

Associating information with an event
occurrence:

tag :: Event a -> b -> EBEvent Db

MGS 2005: FRP, Lecture 2 — p.26/36

Some basic event sources

never .. SF a (Event b)
now :: b -> SF a (Event Db)
after :: Time -> b -> SF a (Event D)

repeatedly ::
Time -> b -> SF a (Event b)

edge :: SF Bool (Event ())

Stateful event suppression

not Yet :: SF (Event a) (Event a)
once :: SF (Event a) (Event a)

Modelling the bouncing ball: part 2

Detecting when the ball goes through the floor:

fallingBall® ::
Pos -> Vel
-> SF (O ((Pos,Vel), Event (Pos,Vel))
fallingBall” yO vO = proc () -> do
yv@(y,) <- fallingBall yO vO -< ()
hit <- edge <y <=0
returnA -< (yv, hit “tag® yv)

Switching

Q: How and when do signal functions “start”?

MGS 2005: FRP, Lecture 2 — p.30/36

Switching

Q: How and when do signal functions “start”?

A: « Switchers “apply” a signal functions to Its
Input signal at some point in time.

MGS 2005: FRP, Lecture 2 — p.30/36

Switching

Q: How and when do signal functions “start”?

A: « Switchers “apply” a signal functions to Its
Input signal at some point in time.

This creates a “running” signal function
Instance.

MGS 2005: FRP, Lecture 2 — p.30/36

Switching

Q: How and when do signal functions “start”?
A: « Switchers “apply” a signal functions to Its
Input signal at some point in time.

This creates a “running” signal function
Instance.

The new signal function instance often
replaces the previously running instance.

MGS 2005: FRP, Lecture 2 — p.30/36

Switching

Q: How and when do signal functions “start”?
A: « Switchers “apply” a signal functions to Its
Input signal at some point in time.

This creates a “running” signal function
Instance.

The new signal function instance often
replaces the previously running instance.

Switchers thus allow systems with varying
structure to be described.

MGS 2005: FRP, Lecture 2 — p.30/36

The basic switch (1)

|dea:

Allows one signal function to be replaced by
another.

Switching takes place on the first occurrence
of the switching event source.

switch ::
SF a (b, Event c¢)
-> (c -> SF a b)
-> SF ab

The basic switch (1)

|dea:

Allows one signal function to be replaced by
another.

Switching takes place on the first occurrence
of the switching event source.

switch :: Initial SF with event source
SF a (b, Event c) L

-> (c -> SF a b)

-> SF ab

MGS 2005: FRP, Lecture 2 — p.31/36

The basic switch (1)

|dea:

Allows one signal function to be replaced by
another.

Switching takes place on the first occurrence
of the switching event source.

switch :: Function yielding SF to switch into
SF a (b, Event c) J
-> |(c -=> SF a b)

-> SF a b

MGS 2005: FRP, Lecture 2 — p.31/36

The basic switch (2)

Exercise 7: Define an event counter count Fr om

count From : :
Int -> SF (Event a) Int

using

switch :: SF a (b, Event c)
-> (¢ -> SF a b)
-> SF a b

constant :: b -> SF a b

tag :: Event a -> b -> Event b

Solution exercise 7

countFrom:: Int -> SF (Event a) Int
count Fromn =
swtch
(constant n
&&& arr (\e -> e ‘tag’ (n+l)))
count Fr om

Modelling the bouncing ball: part 3

Making the ball bounce:

bouncingBall :: Pos -> SF () (Pos, Vel)
bouncingBall yO = bbAux yO 0.0
where
bbAux y0 vO =
switch (fallingBall” yO vO) $ \(y,v) ->
bbAux y (-Vv)

Simulation of bouncing ball

dy/dt ——

Modelling using impulses

From a modelling perspective, using a device like
swi t ch to model the interaction between the ball
and the floor may seem rather unnatural.

Modelling using impulses

From a modelling perspective, using a device like
swi t ch to model the interaction between the ball
and the floor may seem rather unnatural.

A more appropriate account of what is going on
IS that an impulsive force is acting on the ball for
a short time.

Modelling using impulses

From a modelling perspective, using a device like
swi t ch to model the interaction between the ball
and the floor may seem rather unnatural.

A more appropriate account of what is going on
IS that an impulsive force is acting on the ball for
a short time.

This can be abstracted into Dirac Impulses:
Impulses that act instantaneously. See

Henrik Nilsson. Functional Automatic
Differentiation with Dirac Impulses. In
Proceedings of ICFP 2003.

	Outline
	Recap: The arrow framework (1)
	Recap: The arrow framework (2)
	Recap: Further arrow combinators (1)
	Recap: Further arrow combinators (2)
	Exercise 3: One solution
	Exercise 3: Another solution
	Exercise 4: Solution
	Note on the definition of 	exttt {(***)}
(1)
	Note on the definition of 	exttt {(***)}
(2)
	Yet an attempt at exercise 3
	Point-free vs. pointed programming
	The arrow 	exttt {do} notation (1)
	The arrow 	exttt {do} notation (2)
	The arrow 	exttt {do} notation (3)
	The arrow 	exttt {do} notation (4)
	Solution exercise 5
	Some More Reading
	Recap: Signal functions (1)
	Recap: Signal functions (2)
	Some basic signal functions (1)
	Some basic signal functions (2)
	A bouncing ball
	Modelling the bouncing ball: part 1
	Events
	Some basic event sources
	Stateful event suppression
	Modelling the bouncing ball: part 2
	Switching
	The basic switch (1)
	The basic switch (2)
	Solution exercise 7
	Modelling the bouncing ball: part 3
	Simulation of bouncing ball
	Modelling using impulses

