
MGS 2005
Functional Reactive Programming

Lecture 2: Yampa Basics

Henrik Nilsson

School of Computer Science and Information Technology

University of Nottingham, UK

MGS 2005: FRP, Lecture 2 – p.1/36

Outline

• Recap
• Notes on yesterday’s exerceises
• Point-free vs. pointed programming:

the arrow do-notation
• Basic Yampa programming

MGS 2005: FRP, Lecture 2 – p.2/36

Recap: The arrow framework (1)

The following two Haskell type classes capture
the notion of an arrow and of an arrow
supporting feedback:

class Arrow a where
arr :: (b -> c) -> a b c
(>>>) :: a b c -> a c d -> a b d
first :: a b c -> a (b,d) (c,d)

class Arrow a => ArrowLoop a where
loop :: a (b, d) (c, d) -> a b c

MGS 2005: FRP, Lecture 2 – p.3/36

Recap: The arrow framework (2)

arr f f >>> g

first f loop f

arr, >>>, first, and loop are sufficient to
express any conceivable “wiring”!

MGS 2005: FRP, Lecture 2 – p.4/36

Recap: Further arrow combinators (1)

second :: Arrow a =>
a b c -> a (d,b) (d,c)

(***) :: Arrow a =>
a b c -> a d e -> a (b,d) (c,e)

(&&&) :: Arrow a =>
a b c -> a b d -> a b (c,d)

MGS 2005: FRP, Lecture 2 – p.5/36

Recap: Further arrow combinators (2)

As diagrams:

second f
f *** g

f &&& g
MGS 2005: FRP, Lecture 2 – p.6/36

Exercise 3: One solution

Exercise 3: Describe the following circuit using
arrow combinators:

a1, a2, a3 :: A Double Double

circuit_v1 :: A Double Double
circuit_v1 = (a1 &&& arr id)

>>> (a2 *** a3)
>>> arr (uncurry (+))

MGS 2005: FRP, Lecture 2 – p.7/36

Exercise 3: One solution

Exercise 3: Describe the following circuit using
arrow combinators:

a1, a2, a3 :: A Double Double

circuit_v1 :: A Double Double
circuit_v1 = (a1 &&& arr id)

>>> (a2 *** a3)
>>> arr (uncurry (+))

MGS 2005: FRP, Lecture 2 – p.7/36

Exercise 3: Another solution

Exercise 3: Describe the following circuit:

a1, a2, a3 :: A Double Double

circuit_v2 :: A Double Double
circuit_v2 = arr (\x -> (x,x))

>>> first a1
>>> (a2 *** a3)
>>> arr (uncurry (+))

MGS 2005: FRP, Lecture 2 – p.8/36

Exercise 3: Another solution

Exercise 3: Describe the following circuit:

a1, a2, a3 :: A Double Double

circuit_v2 :: A Double Double
circuit_v2 = arr (\x -> (x,x))

>>> first a1
>>> (a2 *** a3)
>>> arr (uncurry (+))

MGS 2005: FRP, Lecture 2 – p.8/36

Exercise 4: Solution

Exercise 4: Suggest definitions of second,
(***), and (&&&).

second :: Arrow a => a b c -> a (d,b) (d,c)

second f = arr swap >>> first f >>> arr swap

swap (x,y) = (y,x)

(***) :: Arrow a =>

a b c -> a d e -> a (b,d) (c,e)

f *** g = first f >>> second g

(&&&) :: Arrow a => a b c -> a b d -> a b (c,d)

f &&& g = arr (\x->(x,x)) >>> (f *** g)

MGS 2005: FRP, Lecture 2 – p.9/36

Exercise 4: Solution

Exercise 4: Suggest definitions of second,
(***), and (&&&).

second :: Arrow a => a b c -> a (d,b) (d,c)

second f = arr swap >>> first f >>> arr swap

swap (x,y) = (y,x)

(***) :: Arrow a =>

a b c -> a d e -> a (b,d) (c,e)

f *** g = first f >>> second g

(&&&) :: Arrow a => a b c -> a b d -> a b (c,d)

f &&& g = arr (\x->(x,x)) >>> (f *** g)

MGS 2005: FRP, Lecture 2 – p.9/36

Exercise 4: Solution

Exercise 4: Suggest definitions of second,
(***), and (&&&).

second :: Arrow a => a b c -> a (d,b) (d,c)

second f = arr swap >>> first f >>> arr swap

swap (x,y) = (y,x)

(***) :: Arrow a =>

a b c -> a d e -> a (b,d) (c,e)

f *** g = first f >>> second g

(&&&) :: Arrow a => a b c -> a b d -> a b (c,d)

f &&& g = arr (\x->(x,x)) >>> (f *** g)

MGS 2005: FRP, Lecture 2 – p.9/36

Exercise 4: Solution

Exercise 4: Suggest definitions of second,
(***), and (&&&).

second :: Arrow a => a b c -> a (d,b) (d,c)

second f = arr swap >>> first f >>> arr swap

swap (x,y) = (y,x)

(***) :: Arrow a =>

a b c -> a d e -> a (b,d) (c,e)

f *** g = first f >>> second g

(&&&) :: Arrow a => a b c -> a b d -> a b (c,d)

f &&& g = arr (\x->(x,x)) >>> (f *** g)

MGS 2005: FRP, Lecture 2 – p.9/36

Note on the definition of (***) (1)

Are the following two definitions of (***)
equivalent?

• f *** g = first f >>> second g

• f *** g = second g >>> first f

No, in general

first f >>> second g 6= second g >>> first f

since the order of the two possibly effectful
computations f and g are different.

MGS 2005: FRP, Lecture 2 – p.10/36

Note on the definition of (***) (1)

Are the following two definitions of (***)
equivalent?

• f *** g = first f >>> second g

• f *** g = second g >>> first f

No, in general

first f >>> second g 6= second g >>> first f

since the order of the two possibly effectful
computations f and g are different.

MGS 2005: FRP, Lecture 2 – p.10/36

Note on the definition of (***) (2)

Similarly

(f *** g) >>> (h *** k) 6= (f >>> h) *** (g >>> g)

since the order of f and g differs.

However, the following is true
(an additional arrow law):

first f >>> second (arr g)

= second (arr g) >>> first f

MGS 2005: FRP, Lecture 2 – p.11/36

Note on the definition of (***) (2)

Similarly

(f *** g) >>> (h *** k) 6= (f >>> h) *** (g >>> g)

since the order of f and g differs.

However, the following is true
(an additional arrow law):

first f >>> second (arr g)

= second (arr g) >>> first f

MGS 2005: FRP, Lecture 2 – p.11/36

Yet an attempt at exercise 3

circuit_v3 :: A Double Double
circuit_v3 = (a1 &&& a3)

>>> first a2
>>> arr (uncurry (+))

Are circuit_v1, circuit_v2, and
circuit_v3 all equivalent?

MGS 2005: FRP, Lecture 2 – p.12/36

Yet an attempt at exercise 3

circuit_v3 :: A Double Double
circuit_v3 = (a1 &&& a3)

>>> first a2
>>> arr (uncurry (+))

Are circuit_v1, circuit_v2, and
circuit_v3 all equivalent?

MGS 2005: FRP, Lecture 2 – p.12/36

Point-free vs. pointed programming

What we have seen thus far is an example of
point-free programming: the values being
manipulated are not given any names.

This is often appropriate, especially for small
definitions, and it facilitates equational reasoning
as shown by Bird & Meertens (Bird 1990).

However, large programs are much better
expressed in a pointed style, where names can
be given to values being manipulated.

MGS 2005: FRP, Lecture 2 – p.13/36

Point-free vs. pointed programming

What we have seen thus far is an example of
point-free programming: the values being
manipulated are not given any names.

This is often appropriate, especially for small
definitions, and it facilitates equational reasoning
as shown by Bird & Meertens (Bird 1990).

However, large programs are much better
expressed in a pointed style, where names can
be given to values being manipulated.

MGS 2005: FRP, Lecture 2 – p.13/36

Point-free vs. pointed programming

What we have seen thus far is an example of
point-free programming: the values being
manipulated are not given any names.

This is often appropriate, especially for small
definitions, and it facilitates equational reasoning
as shown by Bird & Meertens (Bird 1990).

However, large programs are much better
expressed in a pointed style, where names can
be given to values being manipulated.

MGS 2005: FRP, Lecture 2 – p.13/36

The arrow do notation (1)

Ross Paterson’s do-notation for arrows supports
pointed arrow programming. Only syntactic
sugar.

proc pat -> do [rec]
pat1 <- sfexp1 -< exp1

pat2 <- sfexp2 -< exp2

. . .
pat

n
<- sfexp

n
-< exp

n

returnA -< exp

Also: let pat = exp ≡ pat <- arr id -< exp
MGS 2005: FRP, Lecture 2 – p.14/36

The arrow do notation (2)

Let us redo exercise 3 using this notation:

circuit_v4 :: A Double Double
circuit_v4 = proc x -> do

y1 <- a1 -< x
y2 <- a2 -< y1
y3 <- a3 -< x
returnA -< y2 + y3

MGS 2005: FRP, Lecture 2 – p.15/36

The arrow do notation (3)

We can also mix and match:

circuit_v5 :: A Double Double
circuit_v5 = proc x -> do

y2 <- a2 <<< a1 -< x
y3 <- a3 -< x
returnA -< y2 + y3

MGS 2005: FRP, Lecture 2 – p.16/36

The arrow do notation (4)

Exercise 5: Describe the following circuit using
the arrow do-notation:

a1, a2 :: A Double Double
a3 :: A (Double,Double) Double

Exercise 6: As 5, but directly using only the
arrow combinators.

MGS 2005: FRP, Lecture 2 – p.17/36

The arrow do notation (4)

Exercise 5: Describe the following circuit using
the arrow do-notation:

a1, a2 :: A Double Double
a3 :: A (Double,Double) Double

Exercise 6: As 5, but directly using only the
arrow combinators.

MGS 2005: FRP, Lecture 2 – p.17/36

Solution exercise 5

circuit = proc x -> do
rec

y1 <- a1 -< x
y2 <- a2 -< y1
y3 <- a3 -< (x, y)
let y = y2 + y3

returnA -< y

MGS 2005: FRP, Lecture 2 – p.18/36

Some More Reading

• Richard S. Bird. A calculus of functions for
program derivation. In Research Topics in
Functional Programming, Addison-Wesley,
1990.

• Ross Paterson. A New Notation for Arrows. In
Proceedings of the 2001 ACM SIGPLAN
International Conference on Functional
Programming, pp. 229–240, Firenze, Italy,
2001.

MGS 2005: FRP, Lecture 2 – p.19/36

Recap: Signal functions (1)

Key concept: functions on signals.

Intuition:

Signal α ≈ Time→α

SF α β ≈ Signal α → Signal β

x :: Signal T1
y :: Signal T2
f :: SF T1 T2

SF is an instance of Arrow and ArrowLoop.

MGS 2005: FRP, Lecture 2 – p.20/36

Recap: Signal functions (2)

Additionally, causality required: output at time t

must be determined by input on interval [0, t].

Signal functions are said to be
• pure or stateless if output at time t only

depends on input at time t

• impure or stateful if output at time t depends
on input over the interval [0, t].

MGS 2005: FRP, Lecture 2 – p.21/36

Some basic signal functions (1)

• identity :: SF a a
identity = arr id

• constant :: b -> SF a b
constant b = arr (const b)

• integral :: VectorSpace a s=>SF a a
It is defined through:

y(t) =

t∫

0

x(τ) dτ

MGS 2005: FRP, Lecture 2 – p.22/36

Some basic signal functions (1)

• identity :: SF a a
identity = arr id

• constant :: b -> SF a b
constant b = arr (const b)

• integral :: VectorSpace a s=>SF a a
It is defined through:

y(t) =

t∫

0

x(τ) dτ

MGS 2005: FRP, Lecture 2 – p.22/36

Some basic signal functions (1)

• identity :: SF a a
identity = arr id

• constant :: b -> SF a b
constant b = arr (const b)

• integral :: VectorSpace a s=>SF a a
It is defined through:

y(t) =

t∫

0

x(τ) dτ

MGS 2005: FRP, Lecture 2 – p.22/36

Some basic signal functions (2)

• iPre :: a -> SF a a

• (^<<) :: (b->c) -> SF a b -> SF a c
f (^<<) sf = sf >>> arr f

• time :: SF a Time

Quick Exercise: Define time!

time = constant 1.0 >>> integral

MGS 2005: FRP, Lecture 2 – p.23/36

Some basic signal functions (2)

• iPre :: a -> SF a a

• (^<<) :: (b->c) -> SF a b -> SF a c
f (^<<) sf = sf >>> arr f

• time :: SF a Time

Quick Exercise: Define time!

time = constant 1.0 >>> integral

MGS 2005: FRP, Lecture 2 – p.23/36

Some basic signal functions (2)

• iPre :: a -> SF a a

• (^<<) :: (b->c) -> SF a b -> SF a c
f (^<<) sf = sf >>> arr f

• time :: SF a Time

Quick Exercise: Define time!

time = constant 1.0 >>> integral

MGS 2005: FRP, Lecture 2 – p.23/36

Some basic signal functions (2)

• iPre :: a -> SF a a

• (^<<) :: (b->c) -> SF a b -> SF a c
f (^<<) sf = sf >>> arr f

• time :: SF a Time

Quick Exercise: Define time!

time = constant 1.0 >>> integral

MGS 2005: FRP, Lecture 2 – p.23/36

Some basic signal functions (2)

• iPre :: a -> SF a a

• (^<<) :: (b->c) -> SF a b -> SF a c
f (^<<) sf = sf >>> arr f

• time :: SF a Time

Quick Exercise: Define time!

time = constant 1.0 >>> integral

MGS 2005: FRP, Lecture 2 – p.23/36

A bouncing ball

y = y0 +

∫
v dt

v = v0 +

∫
−9.81

On impact:

v = −v(t−)

(fully elastic collision)

MGS 2005: FRP, Lecture 2 – p.24/36

Modelling the bouncing ball: part 1

Free-falling ball:

type Pos = Double

type Vel = Double

fallingBall ::

Pos -> Vel -> SF () (Pos, Vel)

fallingBall y0 v0 = proc () -> do

v <- (v0 +) ˆ<< integral -< -9.81

y <- (y0 +) ˆ<< integral -< v

returnA -< (y, v)

MGS 2005: FRP, Lecture 2 – p.25/36

Events

Conceptually, discrete-time signals are only
defined at discrete points in time, often
associated with the occurrence of some event.

Yampa models discrete-time signals by lifting the
range of continuous-time signals:

data Event a = NoEvent | Event a

Discrete-time signal = Signal (Eventα).

Associating information with an event
occurrence:

tag :: Event a -> b -> Event b

MGS 2005: FRP, Lecture 2 – p.26/36

Events

Conceptually, discrete-time signals are only
defined at discrete points in time, often
associated with the occurrence of some event.

Yampa models discrete-time signals by lifting the
range of continuous-time signals:

data Event a = NoEvent | Event a

Discrete-time signal = Signal (Eventα).

Associating information with an event
occurrence:

tag :: Event a -> b -> Event b

MGS 2005: FRP, Lecture 2 – p.26/36

Events

Conceptually, discrete-time signals are only
defined at discrete points in time, often
associated with the occurrence of some event.

Yampa models discrete-time signals by lifting the
range of continuous-time signals:

data Event a = NoEvent | Event a

Discrete-time signal = Signal (Eventα).

Associating information with an event
occurrence:

tag :: Event a -> b -> Event b

MGS 2005: FRP, Lecture 2 – p.26/36

Events

Conceptually, discrete-time signals are only
defined at discrete points in time, often
associated with the occurrence of some event.

Yampa models discrete-time signals by lifting the
range of continuous-time signals:

data Event a = NoEvent | Event a

Discrete-time signal = Signal (Eventα).

Associating information with an event
occurrence:

tag :: Event a -> b -> Event b
MGS 2005: FRP, Lecture 2 – p.26/36

Some basic event sources

• never :: SF a (Event b)

• now :: b -> SF a (Event b)

• after :: Time -> b -> SF a (Event b)

• repeatedly ::
Time -> b -> SF a (Event b)

• edge :: SF Bool (Event ())

MGS 2005: FRP, Lecture 2 – p.27/36

Stateful event suppression

• notYet :: SF (Event a) (Event a)

• once :: SF (Event a) (Event a)

MGS 2005: FRP, Lecture 2 – p.28/36

Modelling the bouncing ball: part 2

Detecting when the ball goes through the floor:

fallingBall’ ::

Pos -> Vel

-> SF () ((Pos,Vel), Event (Pos,Vel))

fallingBall’ y0 v0 = proc () -> do

yv@(y, _) <- fallingBall y0 v0 -< ()

hit <- edge -< y <= 0

returnA -< (yv, hit ‘tag‘ yv)

MGS 2005: FRP, Lecture 2 – p.29/36

Switching

Q: How and when do signal functions “start”?

A: • Switchers “apply” a signal functions to its
input signal at some point in time.

• This creates a “running” signal function
instance.

• The new signal function instance often
replaces the previously running instance.

Switchers thus allow systems with varying
structure to be described.

MGS 2005: FRP, Lecture 2 – p.30/36

Switching

Q: How and when do signal functions “start”?

A: • Switchers “apply” a signal functions to its
input signal at some point in time.

• This creates a “running” signal function
instance.

• The new signal function instance often
replaces the previously running instance.

Switchers thus allow systems with varying
structure to be described.

MGS 2005: FRP, Lecture 2 – p.30/36

Switching

Q: How and when do signal functions “start”?

A: • Switchers “apply” a signal functions to its
input signal at some point in time.

• This creates a “running” signal function
instance.

• The new signal function instance often
replaces the previously running instance.

Switchers thus allow systems with varying
structure to be described.

MGS 2005: FRP, Lecture 2 – p.30/36

Switching

Q: How and when do signal functions “start”?

A: • Switchers “apply” a signal functions to its
input signal at some point in time.

• This creates a “running” signal function
instance.

• The new signal function instance often
replaces the previously running instance.

Switchers thus allow systems with varying
structure to be described.

MGS 2005: FRP, Lecture 2 – p.30/36

Switching

Q: How and when do signal functions “start”?

A: • Switchers “apply” a signal functions to its
input signal at some point in time.

• This creates a “running” signal function
instance.

• The new signal function instance often
replaces the previously running instance.

Switchers thus allow systems with varying
structure to be described.

MGS 2005: FRP, Lecture 2 – p.30/36

The basic switch (1)

Idea:
• Allows one signal function to be replaced by

another.
• Switching takes place on the first occurrence

of the switching event source.

switch ::

SF a (b, Event c)

-> (c -> SF a b)

-> SF a b

MGS 2005: FRP, Lecture 2 – p.31/36

The basic switch (1)

Idea:
• Allows one signal function to be replaced by

another.
• Switching takes place on the first occurrence

of the switching event source.

switch :: Initial SF with event source

SF a (b, Event c)

-> (c -> SF a b)

-> SF a b

MGS 2005: FRP, Lecture 2 – p.31/36

The basic switch (1)

Idea:
• Allows one signal function to be replaced by

another.
• Switching takes place on the first occurrence

of the switching event source.

switch :: Function yielding SF to switch into

SF a (b, Event c)

-> (c -> SF a b)

-> SF a b

MGS 2005: FRP, Lecture 2 – p.31/36

The basic switch (2)

Exercise 7: Define an event counter countFrom

countFrom ::
Int -> SF (Event a) Int

using

switch :: SF a (b, Event c)
-> (c -> SF a b)
-> SF a b

constant :: b -> SF a b
tag :: Event a -> b -> Event b

MGS 2005: FRP, Lecture 2 – p.32/36

Solution exercise 7

countFrom :: Int -> SF (Event a) Int
countFrom n =

switch
(constant n
&&& arr (\e -> e ‘tag‘ (n+1)))

countFrom

MGS 2005: FRP, Lecture 2 – p.33/36

Modelling the bouncing ball: part 3

Making the ball bounce:

bouncingBall :: Pos -> SF () (Pos, Vel)

bouncingBall y0 = bbAux y0 0.0

where

bbAux y0 v0 =

switch (fallingBall’ y0 v0) $ \(y,v) ->

bbAux y (-v)

MGS 2005: FRP, Lecture 2 – p.34/36

Simulation of bouncing ball

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

y
dy/dt

MGS 2005: FRP, Lecture 2 – p.35/36

Modelling using impulses
From a modelling perspective, using a device like
switch to model the interaction between the ball
and the floor may seem rather unnatural.

A more appropriate account of what is going on
is that an impulsive force is acting on the ball for
a short time.

This can be abstracted into Dirac Impulses:
impulses that act instantaneously. See

Henrik Nilsson. Functional Automatic
Differentiation with Dirac Impulses. In
Proceedings of ICFP 2003.

MGS 2005: FRP, Lecture 2 – p.36/36

Modelling using impulses
From a modelling perspective, using a device like
switch to model the interaction between the ball
and the floor may seem rather unnatural.

A more appropriate account of what is going on
is that an impulsive force is acting on the ball for
a short time.

This can be abstracted into Dirac Impulses:
impulses that act instantaneously. See

Henrik Nilsson. Functional Automatic
Differentiation with Dirac Impulses. In
Proceedings of ICFP 2003.

MGS 2005: FRP, Lecture 2 – p.36/36

Modelling using impulses
From a modelling perspective, using a device like
switch to model the interaction between the ball
and the floor may seem rather unnatural.

A more appropriate account of what is going on
is that an impulsive force is acting on the ball for
a short time.

This can be abstracted into Dirac Impulses:
impulses that act instantaneously. See

Henrik Nilsson. Functional Automatic
Differentiation with Dirac Impulses. In
Proceedings of ICFP 2003.

MGS 2005: FRP, Lecture 2 – p.36/36

	Outline
	Recap: The arrow framework (1)
	Recap: The arrow framework (2)
	Recap: Further arrow combinators (1)
	Recap: Further arrow combinators (2)
	Exercise 3: One solution
	Exercise 3: Another solution
	Exercise 4: Solution
	Note on the definition of 	exttt {(***)}
(1)
	Note on the definition of 	exttt {(***)}
(2)
	Yet an attempt at exercise 3
	Point-free vs. pointed programming
	The arrow 	exttt {do} notation (1)
	The arrow 	exttt {do} notation (2)
	The arrow 	exttt {do} notation (3)
	The arrow 	exttt {do} notation (4)
	Solution exercise 5
	Some More Reading
	Recap: Signal functions (1)
	Recap: Signal functions (2)
	Some basic signal functions (1)
	Some basic signal functions (2)
	A bouncing ball
	Modelling the bouncing ball: part 1
	Events
	Some basic event sources
	Stateful event suppression
	Modelling the bouncing ball: part 2
	Switching
	The basic switch (1)
	The basic switch (2)
	Solution exercise 7
	Modelling the bouncing ball: part 3
	Simulation of bouncing ball
	Modelling using impulses

