
MGS 2006: AFP Lectures 1 & 2
Introduction to Monads

Henrik Nilsson

University of Nottingham, UK

MGS 2006: AFP Lectures 1 & 2 – p.1/73

Monads (1)

“Shall I be pure or impure?” (Wadler, 1992)

• Absence of effects
- makes programs easier to understand and

reason about
- make lazy evaluation viable
- enhances modularity and reuse.

• Effects (state, exceptions, . . .) can
- yield concise programs
- facilitate modifications
- improve the efficiency.

MGS 2006: AFP Lectures 1 & 2 – p.2/73

Monads (2)

• Monads bridges the gap: allow effectful
programming in a pure setting.

• Thus we shall be both pure and impure,
whatever takes our fancy!

• Monads originated in Category Theory.
• Adapted by Moggi for structuring denotational

semantics.
• Adapted by Wadler for structuring functional

programs.

MGS 2006: AFP Lectures 1 & 2 – p.3/73

Monads (3)

• Key idea of monads: computations as
first-class entities.

• Monads promotes disciplined, modular use of
effects since the type of a program reflects
which effects that occurs.

• Monads allows us great flexibility in tailoring
the effect structure to our precise needs.

MGS 2006: AFP Lectures 1 & 2 – p.4/73

First Two Lectures

• Effectful computations: motivating examples
• Monads
• The Haskell do-notation
• Some standard monads
• A concurrency monad

MGS 2006: AFP Lectures 1 & 2 – p.5/73

Example: A Simple Evaluator

data Exp = Lit Integer

| Add Exp Exp

| Sub Exp Exp

| Mul Exp Exp

| Div Exp Exp

eval :: Exp -> Integer

eval (Lit n) = n

eval (Add e1 e2) = eval e1 + eval e2

eval (Sub e1 e2) = eval e1 - eval e2

eval (Mul e1 e2) = eval e1 * eval e2

eval (Div e1 e2) = eval e1 ‘div‘ eval e2
MGS 2006: AFP Lectures 1 & 2 – p.6/73

Making the evaluator safe (1)

safeEval :: Exp -> Maybe Integer

safeEval (Lit n) = Just n

safeEval (Add e1 e2) =

case safeEval e1 of

Nothing -> Nothing

Just n1 ->

case safeEval e2 of

Nothing -> Nothing

Just n2 -> Just (n1 + n2)

MGS 2006: AFP Lectures 1 & 2 – p.7/73

Making the evaluator safe (2)

safeEval (Sub e1 e2) =

case safeEval e1 of

Nothing -> Nothing

Just n1 ->

case safeEval e2 of

Nothing -> Nothing

Just n2 -> Just (n1 - n2)

MGS 2006: AFP Lectures 1 & 2 – p.8/73

Making the evaluator safe (3)

safeEval (Mul e1 e2) =

case safeEval e1 of

Nothing -> Nothing

Just n1 ->

case safeEval e2 of

Nothing -> Nothing

Just n2 -> Just (n1 * n2)

MGS 2006: AFP Lectures 1 & 2 – p.9/73

Making the evaluator safe (4)

safeEval (Div e1 e2) =

case safeEval e1 of

Nothing -> Nothing

Just n1 ->

case safeEval e2 of

Nothing -> Nothing

Just n2 ->

if n2 == 0

then Nothing

else Just (n1 ‘div‘ n2)

MGS 2006: AFP Lectures 1 & 2 – p.10/73

Any common pattern?

Clearly a lot of code duplication!
Can we factor out a common pattern?

We note:
• Sequencing of evaluations.
• If one evaluation fail, fail overall.
• Otherwise, make result available to following

evaluations.

MGS 2006: AFP Lectures 1 & 2 – p.11/73

Sequencing evaluations (1)

evalSeq :: Maybe Integer

-> (Integer -> Maybe Integer)

-> Maybe Integer

evalSeq ma f =

case ma of

Nothing -> Nothing

Just a -> f a

MGS 2006: AFP Lectures 1 & 2 – p.12/73

Sequencing evaluations (2)

safeEval :: Exp -> Maybe Integer

safeEval (Lit n) = Just n

safeEval (Add e1 e2) =

safeEval e1 ‘evalSeq‘ (\n1 ->

safeEval e2 ‘evalSeq‘ (\n2 ->

Just (n1 + n2)))

safeEval (Sub e1 e2) =

safeEval e1 ‘evalSeq‘ (\n1 ->

safeEval e2 ‘evalSeq‘ (\n2 ->

Just (n1 - n2)))

MGS 2006: AFP Lectures 1 & 2 – p.13/73

Sequencing evaluations (3)

safeEval (Mul e1 e2) =

safeEval e1 ‘evalSeq‘ (\n1 ->

safeEval e2 ‘evalSeq‘ (\n2 ->

Just (n1 - n2)))

safeEval (Div e1 e2) =

safeEval e1 ‘evalSeq‘ (\n1 ->

safeEval e2 ‘evalSeq‘ (\n2 ->

if n2 == 0

then Nothing

else Just (n1 ‘div‘ n2)))

MGS 2006: AFP Lectures 1 & 2 – p.14/73

Aside: Scope rules of λ-abstractions

The scope rules of λ-abstractions are such that
parentheses can be omitted:
safeEval :: Exp -> Maybe Integer

...

safeEval (Add e1 e2) =

safeEval e1 ‘evalSeq‘ \n1 ->

safeEval e2 ‘evalSeq‘ \n2 ->

Just (n1 + n2)

...

MGS 2006: AFP Lectures 1 & 2 – p.15/73

Exercise 1: Inline evalSeq (1)

safeEval (Add e1 e2) =

safeEval e1 ‘evalSeq‘ \n1 ->

safeEval e2 ‘evalSeq‘ \n2 ->

Just (n1 + n2)

=

safeEval (Add e1 e2) =

case (safeEval e1) of

Nothing -> Nothing

Just a -> (\n1 -> safeEval e2 ...) a

MGS 2006: AFP Lectures 1 & 2 – p.16/73

Exercise 1: Inline evalSeq (2)
=

safeEval (Add e1 e2) =

case (safeEval e1) of

Nothing -> Nothing

Just n1 -> safeEval e2 ‘evalSeq‘ (\n2 -> ...)

=

safeEval (Add e1 e2) =

case (safeEval e1) of

Nothing -> Nothing

Just n1 -> case safeEval e2 of

Nothing -> Nothing

Just a -> (\n2 -> ...) a

MGS 2006: AFP Lectures 1 & 2 – p.17/73

Exercise 1: Inline evalSeq (3)

=

safeEval (Add e1 e2) =

case (safeEval e1) of

Nothing -> Nothing

Just n1 -> case safeEval e2 of

Nothing -> Nothing

Just n2 -> (Just n1 + n2)

MGS 2006: AFP Lectures 1 & 2 – p.18/73

Maybe viewed as a computation (1)

• Consider a value of type Maybe a as
denoting a computation of a value of type a
that may fail.

• When sequencing possibly failing
computations, a natural choice is to fail
overall once a subcomputation fails.

• I.e. failure is an effect, implicitly affecting
subsequent computations.

• Let’s generalize and adopt names reflecting
our intentions.

MGS 2006: AFP Lectures 1 & 2 – p.19/73

Maybe viewed as a computation (2)

Successful computation of a value:

mbReturn :: a -> Maybe a

mbReturn = Just

Sequencing of possibly failing computations:

mbSeq :: Maybe a -> (a -> Maybe b) -> Maybe b

mbSeq ma f =

case ma of

Nothing -> Nothing

Just a -> f a

MGS 2006: AFP Lectures 1 & 2 – p.20/73

Maybe viewed as a computation (3)

Failing computation:

mbFail :: Maybe a

mbFail = Nothing

MGS 2006: AFP Lectures 1 & 2 – p.21/73

The safe evaluator revisited

safeEval :: Exp -> Maybe Integer

safeEval (Lit n) = mbReturn n

safeEval (Add e1 e2) =

safeEval e1 ‘mbSeq‘ \n1 ->

safeEval e2 ‘mbSeq‘ \n2 ->

mbReturn (n1 + n2)

...

safeEval (Div e1 e2) =

safeEval e1 ‘mbSeq‘ \n1 ->

safeEval e2 ‘mbSeq‘ \n2 ->

if n2 == 0 then mbFail

else mbReturn (n1 ‘div‘ n2)))
MGS 2006: AFP Lectures 1 & 2 – p.22/73

Example: Numbering trees

data Tree a = Leaf a | Tree a :ˆ: Tree a

numberTree :: Tree a -> Tree Int

numberTree t = fst (ntAux t 0)

where

ntAux (Leaf _) n = (Leaf n, n+1)

ntAux (t1 :ˆ: t2) n =

let (t1’, n’) = ntAux t1 n

in let (t2’, n’’) = ntAux t2 n’

in (t1’ :ˆ: t2’, n’’)

MGS 2006: AFP Lectures 1 & 2 – p.23/73

Observations

• Repetitive pattern: threading a counter
through a sequence of tree numbering
computations.

• It is very easy to pass on the wrong version of
the counter!

Can we do better?

MGS 2006: AFP Lectures 1 & 2 – p.24/73

Stateful Computations (1)

• A stateful computation consumes a state
and returns a result along with a possibly
updated state.

• The following type synonym captures this
idea:
type S a = Int -> (a, Int)

(Only Int state for the sake of simplicity.)
• A value (function) of type S a can now be

viewed as denoting a stateful computation
computing a value of type a.

MGS 2006: AFP Lectures 1 & 2 – p.25/73

Stateful Computations (2)

• When sequencing stateful computations, the
resulting state should be passed on to the
next computation.

• I.e. state updating is an effect, implicitly
affecting subsequent computations.
(As we would expect.)

MGS 2006: AFP Lectures 1 & 2 – p.26/73

Stateful Computations (3)

Computation of a value without changing the
state:

sReturn :: a -> S a

sReturn a = \n -> (a, n)

Sequencing of stateful computations:

sSeq :: S a -> (a -> S b) -> S b

sSeq sa f = \n ->

let (a, n’) = sa n

in f a n’

MGS 2006: AFP Lectures 1 & 2 – p.27/73

Stateful Computations (4)

Reading and incrementing the state:

sInc :: S Int

sInc = \n -> (n, n + 1)

MGS 2006: AFP Lectures 1 & 2 – p.28/73

Numbering trees revisited

data Tree a = Leaf a | Tree a :ˆ: Tree a

numberTree :: Tree a -> Tree Int

numberTree t = fst (ntAux t 0)

where

ntAux (Leaf _) =

sInc ‘sSeq‘ \n -> sReturn (Leaf n)

ntAux (t1 :ˆ: t2) =

ntAux t1 ‘sSeq‘ \t1’ ->

ntAux t2 ‘sSeq‘ \t2’ ->

sReturn (t1’ :ˆ: t2’)

MGS 2006: AFP Lectures 1 & 2 – p.29/73

Observations

• The “plumbing” has been captured by the
abstractions.

• In particular, there is no longer any risk of
“passing on” the wrong version of the state!

MGS 2006: AFP Lectures 1 & 2 – p.30/73

Comparison of the examples

• Both examples characterized by sequencing
of effectful computations.

• Both examples could be neatly structured by
introducing identically structured abstractions
that encapsulated the effects:
- A type denoting computations
- A combinator for computing a value without

any effect
- A combinator for sequencing computations

• In fact, both examples are instances of the
general notion of a MONAD.

MGS 2006: AFP Lectures 1 & 2 – p.31/73

Monads in Functional Programming

A monad is represented by:
• A type constructor

M :: * -> *
M T represents computations of a value of type T.

• A polymorphic function
return :: a -> M a

for lifting a value to a computation.
• A polymorphic function

(>>=) :: M a -> (a -> M b) -> M b

for sequencing computations.
MGS 2006: AFP Lectures 1 & 2 – p.32/73

Exercise 2: join and fmap

Equivalently, the notion of a monad can be
captured through the following functions:

return :: a -> M a
join :: (M (M a)) -> M a
fmap :: (a -> b) -> (M a -> M b)

join “flattens” a computation, fmap “lifts” a
function to map computations to computations.

Define join and fmap in terms of >>= (and
return), and >>= in terms of join and fmap.

MGS 2006: AFP Lectures 1 & 2 – p.33/73

Exercise 2: Solution

join :: M (M a) -> M a

join mm = mm >>= id

fmap :: (a -> b) -> M a -> M b

fmap f m = m >>= \x -> return (f x)

(>>=) :: M a -> (a -> M b) -> M b

m >>= f = join (fmap f m)

MGS 2006: AFP Lectures 1 & 2 – p.34/73

Monad laws

Additionally, some simple laws must be satisfied:

return x >>= f = f x

m >>= return = m

(m >>= f) >>= g = m >>= (λx → f x >>= g)

I.e., return is the right and left identity for >>=,
and >>= is associative.

MGS 2006: AFP Lectures 1 & 2 – p.35/73

Exercise 3: The Identity Monad

The Identity Monad can be understood as
representing effect-free computations:

type I a = a

1. Provide suitable definitions of return and
>>=.

2. Verify that the monad laws hold for your
definitions.

MGS 2006: AFP Lectures 1 & 2 – p.36/73

Exercise 3: Solution
return :: a -> I a

return = id

(>>=) :: I a -> (a -> I b) -> I b

m >>= f = f m

-- or: (>>=) = flip ($)

Simple calculations verify the laws, e.g.:

return x >>= f = id x >>= f

= x >>= f

= f x

MGS 2006: AFP Lectures 1 & 2 – p.37/73

Monads in Category Theory (1)

The notion of a monad originated in Category
Theory. There are several equivalent definitions
(Benton, Hughes, Moggi 2000):

• Kleisli triple/triple in extension form: Most
closely related to the >>= version:

A Klesili triple over a category C is a
triple (T, η, _∗), where T : |C| → |C|,
ηA : A → TA for A ∈ |C|, f ∗ : TA → TB
for f : A → TB.

(Additionally, some laws must be satisfied.)

MGS 2006: AFP Lectures 1 & 2 – p.38/73

Monads in Category Theory (2)

• Monad/triple in monoid form: More akin to
the join/fmap version:

A monad over a category C is a triple
(T, η, µ), where T : C → C is a functor,
η : idC→̇T and µ : T 2→̇T are natural
transformations.

(Additionally, some commuting diagrams
must be satisfied.)

MGS 2006: AFP Lectures 1 & 2 – p.39/73

Monads in Haskell (1)

In Haskell, the notion of a monad is captured by
a Type Class:

class Monad m where

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

This allows the names of the common functions
to be overloaded, and the sharing of derived
definitions.

MGS 2006: AFP Lectures 1 & 2 – p.40/73

Monads in Haskell (2)

The Haskell monad class have two further
methods with default instances:

(>>) :: m a -> m b -> m b

m >> k = m >>= _ -> k

fail :: String -> m a

fail s = error s

MGS 2006: AFP Lectures 1 & 2 – p.41/73

The Maybe monad in Haskell

instance Monad Maybe where

-- return :: a -> Maybe a

return = Just

-- (>>=) :: Maybe a -> (a -> Maybe b)

-> Maybe b

Nothing >>= _ = Nothing

(Just x) >>= f = f x

MGS 2006: AFP Lectures 1 & 2 – p.42/73

Exercise 4: A state monad in Haskell

Haskell 98 does not permit type synonyms to be
instances of classes. Hence we have to define a
new type:

newtype S a = S (Int -> (a, Int))

unS :: S a -> (Int -> (a, Int))

unS (S f) = f

Provide a Monad instance for S.

MGS 2006: AFP Lectures 1 & 2 – p.43/73

Exercise 4: Solution

instance Monad S where

return a = S (\s -> (a, s))

m >>= f = S $ \s ->

let (a, s’) = unS m s

in unS (f a) s’

MGS 2006: AFP Lectures 1 & 2 – p.44/73

Monad-specific operations (1)

To be useful, monads need to be equipped with
additional operations specific to the effects in
question. For example:

fail :: String -> Maybe a

fail s = Nothing

catch :: Maybe a -> Maybe a -> Maybe a

m1 ‘catch‘ m2 =

case m1 of

Just _ -> m1

Nothing -> m2
MGS 2006: AFP Lectures 1 & 2 – p.45/73

Monad-specific operations (2)

Typical operations on a state monad:

set :: Int -> S ()

set a = S (_ -> ((), a))

get :: S Int

get = S (\s -> (s, s))

Moreover, there is often a need to “run” a
computation. E.g.:

runS :: S a -> a

runS m = fst (unS m 0)

MGS 2006: AFP Lectures 1 & 2 – p.46/73

The do-notation (1)

Haskell provides convenient syntax for
programming with monads:

do

a <- exp
1

b <- exp
2

return exp3

is syntactic sugar for

exp
1
>>=\a ->

exp
2
>>=\b ->

return exp
3

MGS 2006: AFP Lectures 1 & 2 – p.47/73

The do-notation (2)

Computations can be done solely for effect,
ignoring the computed value:

do

exp
1

exp
2

return exp3

is syntactic sugar for

exp
1
>>=_ ->

exp
2
>>=_ ->

return exp
3

MGS 2006: AFP Lectures 1 & 2 – p.48/73

The do-notation (3)

A let-construct is also provided:

do

let a = exp
1

b = exp
2

return exp3

is equivalent to

do

a <- return exp
1

b <- return exp
2

return exp3

MGS 2006: AFP Lectures 1 & 2 – p.49/73

Numbering trees in do-notation

numberTree :: Tree a -> Tree Int

numberTree t = runS (ntAux t)

where

ntAux (Leaf _) = do

n <- get

set (n + 1)

return (Leaf n)

ntAux (t1 :ˆ: t2) = do

t1’ <- ntAux t1

t2’ <- ntAux t2

return (t1’ :ˆ: t2’)

MGS 2006: AFP Lectures 1 & 2 – p.50/73

Monadic utility functions

Some monad utilities, some from the Prelude,
some from the module Monad:
sequence :: Monad m => [m a] -> m [a]

sequence_ :: Monad m => [m a] -> m ()

mapM :: Monad m => (a -> m b) -> [a] -> m [b]

mapM_ :: Monad m => (a -> m b) -> [a] -> m ()

when :: Monad m => Bool -> m () -> m ()

foldM :: Monad m =>

(a -> b -> m a) -> a -> [b] -> m a

liftM :: Monad m => (a -> b) -> (m a -> m b)

MGS 2006: AFP Lectures 1 & 2 – p.51/73

Exercise 5: Monadic utilities

Define

when :: Monad m => Bool -> m () -> m ()

sequence :: Monad m => [m a] -> m [a]

mapM :: Monad m => (a -> m b) -> [a] -> m [b]

in terms of the basic monad functions.

MGS 2006: AFP Lectures 1 & 2 – p.52/73

Exercise 5: Solution (1)

when :: Monad m => Bool -> m () -> m ()

when p m = if p then m else return ()

sequence :: Monad m => [m a] -> m [a]

sequence [] = return []

sequence (ma:mas) = ma >>= \a ->

sequence mas >>= \as ->

return (a:as)

MGS 2006: AFP Lectures 1 & 2 – p.53/73

Exercise 5: Solution (2)

mapM :: Monad m => (a -> m b) -> [a] -> m [b]

mapM f [] = return []

mapM f (a:as) = f a >>= \b ->

mapM f as >>= \bs ->

return (b:bs)

MGS 2006: AFP Lectures 1 & 2 – p.54/73

The Haskell IO monad

In Haskell, IO is handled through the IO monad.
IO is abstract! Conceptually:

newtype IO a = IO (World -> (a, World))

Some operations:

putChar :: Char -> IO ()

putStr :: String -> IO ()

putStrLn :: String -> IO ()

getChar :: IO Char

getLine :: IO String

getContents :: String

MGS 2006: AFP Lectures 1 & 2 – p.55/73

The ST Monad: “real” state
The ST monad (common Haskell extension)
provides real, imperative state behind the scenes
to allow efficient implementation of imperative
algorithms:

data ST s a -- abstract

instance Monad (ST s)

newSTRef :: s ST a (STRef s a)

readSTRef :: STRef s a -> ST s a

writeSTRef :: STRef s a -> a -> ST s ()

runST :: (forall s . st s a) -> a
MGS 2006: AFP Lectures 1 & 2 – p.56/73

Nondeterminism: The list monad

instance Monad [] where

return a = [a]

m >>= f = concat (map f m)

fail s = []

Example:

do

x <- [1, 2]

y <- [’a’, ’b’]

return (x,y)

Result: [(1,’a’),(1,’b’),(2,’a’),(2,’b’)]
MGS 2006: AFP Lectures 1 & 2 – p.57/73

Environments: The reader monad

instance Monad ((->) e) where

return a = const a

m >>= f = \e -> f (m e) e

getEnv :: ((->) e) e

getEnv = id

Cf. the combinators S, K, and I!

I :: a -> a

K :: a -> b -> a

S :: (a -> b -> c) -> (a -> b) -> a -> c

(>>=) :: (a -> b) -> (b -> a -> c) -> a -> c
MGS 2006: AFP Lectures 1 & 2 – p.58/73

The continuation monad (1)

• In Continuation-Passing style (CPS), a
continuation representing the “rest of the
computation” is passed to each computation.

• A continuation is a function that when applied
to the result of the current subcomputation,
returns the final result of the overall
computation.

• Making continuations explicitly available
makes it possible to implement control-flow
effects, like jumps.

MGS 2006: AFP Lectures 1 & 2 – p.59/73

The continuation monad (2)

data CPS r a = CPS ((a -> r) -> r)

unCPS :: CPS r a -> ((a -> r) -> r)

unCPS (CPS f) = f

instance Monad (CPS r) where

return a = CPS (\k -> k a)

m >>= f = CPS $ \k ->

unCPS m (\a -> unCPS (f a) k)

MGS 2006: AFP Lectures 1 & 2 – p.60/73

The continuation monad (3)

callCC :: ((a -> CPS r b) -> CPS r a) -> CPS r a

callCC f = CPS $ \k ->

unCPS (f (\a -> CPS (_ -> k a))) k

runCPS :: CPS a a -> a

runCPS m = unCPS m id

MGS 2006: AFP Lectures 1 & 2 – p.61/73

Exercise 6: Control transfer

f :: Int -> Int -> Int

f x y = runCPS $ do

callCC $ \exit -> do

let d = x - y

when (d == 0) (exit (-1))

let z = (abs ((x + y) ‘div‘ d))

when (z > 10) (exit (-2))

return (zˆ3)

Compute f 10 6, f 10 10, and f 10 9.

MGS 2006: AFP Lectures 1 & 2 – p.62/73

A Concurrency Monad (1)

A Thread represents a process: a stream of
primitive atomic operations:

data Thread = Print Char Thread
| Fork Thread Thread
| End

Note that a Thread represents the entire rest of
a computation.

MGS 2006: AFP Lectures 1 & 2 – p.63/73

A Concurrency Monad (2)

Introduce a monad representing “interleavable
computations”. At this stage, this amounts to little
more than a convenient way to construct threads
by sequential composition.

How can Threads be composed sequentially?
The only way is to parameterize thread prefixes
on the rest of the Thread. This leads directly to
continuations.

MGS 2006: AFP Lectures 1 & 2 – p.64/73

A Concurrency Monad (3)

newtype CM a = CM ((a -> Thread) -> Thread)

fromCM :: CM a -> ((a -> Thread) -> Thread)

fromCM (CM x) = x

thread :: CM a -> Thread

thread m = fromCM m (const End)

instance Monad CM where

return x = CM (\k -> k x)

m >>= f = CM $ \k ->

fromCM m (\x -> fromCM (f x) k)
MGS 2006: AFP Lectures 1 & 2 – p.65/73

A Concurrency Monad (4)

Atomic operations:

cPrint :: Char -> CM ()

cPrint c = CM (\k -> Print c (k ()))

cFork :: CM a -> CM ()

cFork m = CM (\k -> Fork (thread m) (k ()))

cEnd :: CM a

cEnd = CM (_ -> End)

MGS 2006: AFP Lectures 1 & 2 – p.66/73

A Concurrency Monad (5)
Running a computation:

type Output = [Char]

type ThreadQueue = [Thread]

type State = (Output, ThreadQueue)

runCM :: CM a -> Output

runCM m = runHlp ("", []) (thread m)

where

runHlp s t =

case dispatch s t of

Left (s’, t) -> runHlp s’ t

Right o -> o
MGS 2006: AFP Lectures 1 & 2 – p.67/73

A Concurrency Monad (6)

Dispatch on the operation of the currently
running Thread. Then call the scheduler.

dispatch :: State -> Thread

-> Either (State, Thread) Output

dispatch (o, rq) (Print c t) =

schedule (o ++ [c], rq ++ [t])

dispatch (o, rq) (Fork t1 t2) =

schedule (o, rq ++ [t1, t2])

dispatch (o, rq) End =

schedule (o, rq)

MGS 2006: AFP Lectures 1 & 2 – p.68/73

A Concurrency Monad (7)

Selects next Thread to run, if any.

schedule :: State -> Either (State, Thread)

Output

schedule (o, []) = Right o

schedule (o, t:ts) = Left ((o, ts), t)

MGS 2006: AFP Lectures 1 & 2 – p.69/73

Example: Concurrent processes

p1 :: CM () p2 :: CM () p3 :: CM ()

p1 = do p2 = do p3 = do

cPrint ’a’ cPrint ’1’ cFork p1

cPrint ’b’ cPrint ’2’ cPrint ’A’

... ... cFork p2

cPrint ’j’ cPrint ’0’ cPrint ’B’

main = print (runCM p3)

Result: aAbc1Bd2e3f4g5h6i7j890
(As it stands, the output is only made available
after all threads have terminated.)

MGS 2006: AFP Lectures 1 & 2 – p.70/73

Alternative version
Incremental output:
runCM :: CM a -> Output

runCM m = dispatch [] (thread m)

dispatch :: ThreadQueue -> Thread -> Output

dispatch rq (Print c t) = c : schedule (rq ++ [t])

dispatch rq (Fork t1 t2) = schedule (rq ++ [t1, t2])

dispatch rq End = schedule rq

schedule :: ThreadQueue -> Output

schedule [] = []

schedule (t:ts) = dispatch ts t
MGS 2006: AFP Lectures 1 & 2 – p.71/73

Example: Concurrent processes 2

p1 :: CM () p2 :: CM () p3 :: CM ()

p1 = do p2 = do p3 = do

cPrint ’a’ cPrint ’1’ cFork p1

cPrint ’b’ undefined cPrint ’A’

... ... cFork p2

cPrint ’j’ cPrint ’0’ cPrint ’B’

main = print (runCM p3)

Result: aAbc1Bd*** Exception:
Prelude.undefined

MGS 2006: AFP Lectures 1 & 2 – p.72/73

Reading
• Nomaware. All About Monads.
http://www.nomaware.com/monads

• Nick Benton, John Hughes, Eugenio Moggi. Monads
and Effects. In International Summer School on
Applied Semantics 2000, Caminha, Portugal, 2000.

• Koen Claessen. A Poor Man’s Concurrency Monad.
Journal of Functional Programming, 9(3), 1999.

• Philip Wadler. The Essence of Functional
Programming. Proceedings of the 19th ACM
Symposium on Principles of Programming Languages
(POPL’92), 1992.

MGS 2006: AFP Lectures 1 & 2 – p.73/73

	Monads (1)
	Monads (2)
	Monads (3)
	First Two Lectures
	Example: A Simple Evaluator
	Making the evaluator safe (1)
	Making the evaluator safe (2)
	Making the evaluator safe (3)
	Making the evaluator safe (4)
	Any common pattern?
	Sequencing evaluations (1)
	Sequencing evaluations (2)
	Sequencing evaluations (3)
	Aside: Scope rules of $lambda $-abstractions
	Exercise 1: Inline 	exttt {evalSeq} (1)
	Exercise 1: Inline 	exttt {evalSeq} (2)
	Exercise 1: Inline 	exttt {evalSeq} (3)
		exttt {Maybe} viewed as a computation (1)
		exttt {Maybe} viewed as a computation (2)
		exttt {Maybe} viewed as a computation (3)
	The safe evaluator revisited
	Example: Numbering trees
	Observations
	Stateful Computations (1)
	Stateful Computations (2)
	Stateful Computations (3)
	Stateful Computations (4)
	Numbering trees revisited
	Observations
	Comparison of the examples
	Monads in Functional Programming
	Exercise 2: 	exttt {join} and 	exttt {fmap}
	Exercise 2: Solution
	Monad laws
	Exercise 3: The Identity Monad
	Exercise 3: Solution
	Monads in Category Theory (1)
	Monads in Category Theory (2)
	Monads in Haskell (1)
	Monads in Haskell (2)
	The 	exttt {Maybe} monad in Haskell
	Exercise 4: A state monad in Haskell
	Exercise 4: Solution
	Monad-specific operations (1)
	Monad-specific operations (2)
	The 	exttt {do}-notation (1)
	The 	exttt {do}-notation (2)
	The 	exttt {do}-notation (3)
	Numbering trees in 	exttt {do}-notation
	Monadic utility functions
	Exercise 5: Monadic utilities
	Exercise 5: Solution (1)
	Exercise 5: Solution (2)
	The Haskell IO monad
	The ST Monad: ``real'' state
	Nondeterminism: The list monad
	Environments: The reader monad
	The continuation monad (1)
	The continuation monad (2)
	The continuation monad (3)
	Exercise 6: Control transfer
	A Concurrency Monad (1)
	A Concurrency Monad (2)
	A Concurrency Monad (3)
	A Concurrency Monad (4)
	A Concurrency Monad (5)
	A Concurrency Monad (6)
	A Concurrency Monad (7)
	Example: Concurrent processes
	Alternative version
	Example: Concurrent processes 2
	Reading

