

MGS 2006: AFP Lectures 1 \& 2
Introduction to Monads
Henrik Nilsson
University of Nottingham, UK

Monads (3)

- Key idea of monads: computations as first-class entities.
- Monads promotes disciplined, modular use of effects since the type of a program reflects which effects that occurs.
- Monads allows us great flexibility in tailoring the effect structure to our precise needs.

Making the evaluator safe (1)

safeEval :: Exp -> Maybe Integer

safeEval (Lit n) = Just n
safeEval (Add e1 e2) =
case safeEval e1 of
Nothing -> Nothing
Just n1 ->
case safeEval e2 of Nothing -> Nothing Just n2 -> Just (n1 + n2)

Monads (1)

"Shall I be pure or impure?" (Wadler, 1992)

- Absence of effects
- makes programs easier to understand and reason about
- make lazy evaluation viable
- enhances modularity and reuse.
- Effects (state, exceptions, ...) can
- yield concise programs
- facilitate modifications
- improve the efficiency.

First Two Lectures

- Effectful computations: motivating examples
- Monads
- The Haskell do-notation
- Some standard monads
- A concurrency monad

Making the evaluator safe (2)

safeEval (Sub e1 e2) =
case safeEval e1 of
Nothing -> Nothing
Just n1 ->

> case safeEval e2 of
> Nothing $->$ Nothing
> Just n2 -> Just (n1 - n2)

Monads (2)

- Monads bridges the gap: allow effectful programming in a pure setting.
- Thus we shall be both pure and impure, whatever takes our fancy!
- Monads originated in Category Theory.
- Adapted by Moggi for structuring denotationa semantics.
- Adapted by Wadler for structuring functional programs.

Example: A Simple Evaluator

data $\operatorname{Exp}=$ Lit Integer
| Add Exp Exp
| Sub Exp Exp
| Mul Exp Exp
| Div Exp Exp
eval :: Exp -> Integer
eval (Lit n) \quad n
eval (Add e1 e2) = eval e1 + eval e2
eval (Sub e1 e2) = eval e1 - eval e2
eval (Mul e1 e2) = eval e1 * eval e2
eval (Div e1 e2) = eval e1 `div` eval e2

Making the evaluator safe (3)

safeEval (Mul e1 e2) =
case safeEval e1 of
Nothing -> Nothing
Just n1 ->
case safeEval e2 of
Nothing -> Nothing
Just n2 -> Just (n1 * n2)

Any common pattern?

Clearly a lot of code duplication!

Can we factor out a common pattern?

We note:

- Sequencing of evaluations.
- If one evaluation fail, fail overall.
- Otherwise, make result available to following evaluations.

Sequencing evaluations (3)

safeEval (Mul e1 e2) =
safeEval e1 `evalSeq` (\n1 -> safeEval e2 `evalSeq` (\n2 -> Just (n1 - n2)))
safeEval (Div e1 e2) = safeEval e1 `evalSeq` (\n1 -> safeEval e2 'evalSeq`(\n2 -> if \(\mathrm{n} 2=0\) then Nothing else Just (n1`div` n2)))

Exercise 1: Inline evalSeq (2)

safeEval (Add e1 e2) =
case (safeEval e1) of
Nothing -> Nothing
Just n1 -> safeEval e2 `evalSeq` ($\backslash \mathrm{n} 2$-> ...)
$=$
safeEval (Add e1 e2) =
case (safeEval e1) of
Nothing -> Nothing
Just n1 -> case safeEval e2 of
Nothing -> Nothing
Just a -> (\n2 -> ...) a

Sequencing evaluations (1)

evalSeq :: Maybe Integer
-> (Integer -> Maybe Integer) -> Maybe Integer
evalSeq ma $f=$
case ma of
Nothing -> Nothing
Just a -> fa

Aside: Scope rules of λ-abstractions

The scope rules of λ-abstractions are such that parentheses can be omitted:
safeEval :: Exp -> Maybe Integer
safeEval (Add e1 e2) =
safeEval e1 `evalSeq` \n1 ->
safeEval e2 `evalSeq` \n2 ->
Just (n1 + n2)
...
\square

Exercise 1: Inline evalSeq (3)

$=$
safeEval (Add e1 e2) = case (safeEval e1) of Nothing -> Nothing
Just n1 -> case safeEval e2 of
Nothing -> Nothing
Just n2 -> (Just n1 + n2)

- Consider a value of type Maybe a as
denoting a computation of a value of type a that may fail.
- When sequencing possibly failing computations, a natural choice is to fail overall once a subcomputation fails.
- I.e. failure is an effect, implicitly affecting subsequent computations.
- Let's generalize and adopt names reflecting our intentions.

```
The safe evaluator revisited
safeEval :: Exp -> Maybe Integer
safeEval (Lit n) = mbReturn n
safeEval (Add e1 e2) =
    safeEval e1 `mbSeq` \n1 ->
    safeEval e2 `mbSeq` \n2 ->
    mbReturn (n1 + n2)
safeEval (Div e1 e2) =
    safeEval e1 `mbSeq` \n1 ->
    safeEval e2 `mbSeq`\n2 ->
    if n2 == 0 then mbFail
    else mbReturn (n1 `div` n2)))
```


Stateful Computations (1)

- A stateful computation consumes a state and returns a result along with a possibly updated state.
- The following type synonym captures this idea:
type $S a=$ Int \rightarrow (a, Int)
(Only Int state for the sake of simplicity.)
- A value (function) of type s a can now be viewed as denoting a stateful computation computing a value of type a.

Successful computation of a value:
mbReturn :: a -> Maybe a
mbReturn = Just

Sequencing of possibly failing computations:
mbSeq :: Maybe a -> (a -> Maybe b) -> Maybe b mbSeq ma $\mathrm{f}=$
case ma of
Nothing -> Nothing

$$
\text { Just a } \rightarrow \text { fa }
$$

Example: Numbering trees

data Tree $a=$ Leaf $a \mid$ Tree $a \quad:^{\wedge}$: Tree a
numberTree : : Tree a $->$ Tree Int
numberTree $t=$ fst (ntAux $t 0)$
where
ntAux (Leaf _) $n=$ (Leaf $n, n+1$) ntAux ($t 1$: ${ }^{\wedge}$: t2) $n=$
let ($\mathrm{t} 1^{\prime}, \mathrm{n}^{\prime}$) $=$ ntAux t 1 n
in let $\left(t 2^{\prime}, n^{\prime \prime}\right)=$ ntAux $t 2 n^{\prime}$ in (t1' : ${ }^{\wedge}$: t2', $n^{\prime \prime}$)

Stateful Computations (2)

- When sequencing stateful computations, the resulting state should be passed on to the next computation.
- I.e. state updating is an effect, implicitly affecting subsequent computations. (As we would expect.)

Failing computation:
mbFail :: Maybe a
mbFail $=$ Nothing

Observations

- Repetitive pattern: threading a counter through a sequence of tree numbering computations.
- It is very easy to pass on the wrong version of the counter!

Can we do better?

Stateful Computations (3)

Computation of a value without changing the state:

$$
\begin{aligned}
& \text { sReturn :: a -> S a } \\
& \text { sReturn a = \n -> (a, n) }
\end{aligned}
$$

Sequencing of stateful computations:

$$
\begin{aligned}
& \text { sSeq :: S a -> (a -> S b) -> S b } \\
& \text { sSeq sa } f=\backslash n-> \\
& \text { let }\left(a, n^{\prime}\right)=\text { sa } n \\
& \text { in } f a n^{\prime}
\end{aligned}
$$

Stateful Computations (4)

Reading and incrementing the state:
sInc :: S Int
sInc $=\backslash n->(n, n+1)$

Comparison of the examples

- Both examples characterized by sequencing of effectful computations.
- Both examples could be neatly structured by introducing identically structured abstractions that encapsulated the effects:
- A type denoting computations
- A combinator for computing a value without any effect
- A combinator for sequencing computations
- In fact, both examples are instances of the general notion of a MONAD.

Exercise 2: Solution

```
join :: M (M a) -> M a
join mm = mm >>= id
fmap :: (a -> b) -> M a -> M b
fmap f m = m >>= \x -> return (f x)
(>>=) :: M a -> (a -> M b) -> M b
m >>= f = join (fmap f m)
```


Numbering trees revisited

```
numberTree :: Tree a -> Tree Int
numberTree t = fst (ntAux t 0)
    where
        ntAux (Leaf _)
            sInc `sSeq` \n -> sReturn (Leaf n)
            ntAux (t1 :`: t2) =
                ntAux t1 `sSeq` \t1' ->
                ntAux t2 `sSeq` \t2' ->
                sReturn (t1' :^: t2')
```

```
Monads in Functional Programming
A monad is represented by:
    - A type constructor
        M ..
    M T represents computations of a value of type T.
    - A polymorphic function
        return :: a -> M a
    for lifting a value to a computation.
    - A polymorphic function
        (>>=) :: M a -> (a -> M b) -> M b
    for sequencing computations.
Monad laws
Additionally, some simple laws must be satisfied:
\[
\begin{aligned}
\text { return } x \gg=f & =f x \\
m \gg=\text { return } & =m \\
(m \gg=f) \gg=g & =m \gg=(\lambda x \rightarrow f x \gg=g)
\end{aligned}
\]
l.e., return is the right and left identity for \(\gg=\), and \(\gg=\) is associative.
```

- The "plumbing" has been captured by the abstractions.
- In particular, there is no longer any risk of "passing on" the wrong version of the state

Exercise 2: join and fmap

Equivalently, the notion of a monad can be captured through the following functions:

```
return :: a -> M a
join :: (M (M a)) -> M a
fmap :: (a -> b) -> (M a -> M b)
```

join "flattens" a computation, fmap "lifts" a function to map computations to computations

Define join and fmap in terms of $\gg=$ (and return), and >>= in terms of join and fmap

Exercise 3: The Identity Monad

The Identity Monad can be understood as representing effect-free computations:
type I a = a

1. Provide suitable definitions of return and >>=.
2. Verify that the monad laws hold for your definitions.
```
Exercise 3: Solution
    return :: a -> I a
    return = id
    (>>=) :: I a -> (a -> I b) -> I b
    m >>= f = fm
    -- or: (>>=) = flip ($)
```

Simple calculations verify the laws, e.g.:

$$
\begin{aligned}
\text { return } x \gg=f & =\text { id } x \gg=f \\
& =x \gg=f \\
& =f x
\end{aligned}
$$

Monads in Haskell (1)

In Haskell, the notion of a monad is captured by a Type Class:
class Monad m where
return : : a -> m a

$$
\text { (>>=) :: m a } \rightarrow(\mathrm{a} \rightarrow \mathrm{mb}) \text {-> m b }
$$

This allows the names of the common functions to be overloaded, and the sharing of derived

Exercise 4: A state monad in Haskell

Haskell 98 does not permit type synonyms to be instances of classes. Hence we have to define a new type:

$$
\begin{aligned}
& \text { newtype } S \text { a }=\text { S (Int }->(a, \text { Int)) } \\
& \text { unS :: S a -> (Int }->\text { (a, Int)) } \\
& \text { unS }(S \text { f) }=f
\end{aligned}
$$

Provide a Monad instance for S.
definitions.

Monads in Category Theory (1)

The notion of a monad originated in Category
Theory. There are several equivalent definitions (Benton, Hughes, Moggi 2000):

- Kleisli triple/triple in extension form: Most

 closely related to the >>= version: A Klesili triple over a category \mathcal{C} is a triple $\left(T, \eta,{ }^{*}\right)$, where $T:|\mathcal{C}| \rightarrow|\mathcal{C}|$, $\eta_{A}: A \rightarrow T A$ for $A \in|\mathcal{C}|, f^{*}: T A \rightarrow T B$ for $f: A \rightarrow T B$.(Additionally, some laws must be satisfied.)

Monads in Haskell (2)

The Haskell monad class have two further methods with default instances:
(>>) :: m a -> m b -> m b

$$
\mathrm{m} \gg \mathrm{k}=\mathrm{m} \gg=_{-}->\mathrm{k}
$$

fail : : String -> m a
fail s = error s

Monads in Category Theory (2)

- Monad/triple in monoid form: More akin to

the join/fmap version:

A monad over a category \mathcal{C} is a triple
(T, η, μ), where $T: \mathcal{C} \rightarrow \mathcal{C}$ is a functor, $\eta: \operatorname{id}_{\mathcal{C}} \dot{\rightarrow} T$ and $\mu: T^{2} \dot{\rightarrow} T$ are natural transformations.
(Additionally, some commuting diagrams must be satisfied.)

The Maybe monad in Haskell

```
instance Monad Maybe where
    -- return :: a -> Maybe a
    return = Just
    -- (>>=) :: Maybe a -> (a -> Maybe b)
        -> Maybe b
    Nothing >>= _ = Nothing
    (Just x) >>= 巵 = f x
```


Monad-specific operations (1)

To be useful, monads need to be equipped with additional operations specific to the effects in question. For example:

$$
\begin{aligned}
& \text { fail : : String -> Maybe a } \\
& \text { fail s = Nothing }
\end{aligned}
$$

catch :: Maybe a -> Maybe a -> Maybe a
m1 `catch` m2 =
case m1 of
Just _ -> mi
Nothing -> m2

Monad-specific operations (2)

Typical operations on a state monad:

$$
\begin{aligned}
& \text { set :: Int -> S () } \\
& \text { set } a=S\left(\backslash_{-}->((), a)\right) \\
& \text { get }:: S \text { Int } \\
& \text { get }=S(\backslash s \rightarrow(s, s))
\end{aligned}
$$

Moreover, there is often a need to "run" a computation. E.g.:
runs :: S a -> a
runs $m=$ fst (uns m)

The do-notation (3)

A let-construct is also provided:
do

$$
\begin{aligned}
& \text { let } \mathrm{a}=\exp _{1} \\
& \mathrm{~b}=\exp _{2} \\
& \text { return } \exp _{3}
\end{aligned}
$$

is equivalent to
do
a <- return $\exp _{1}$
b <- return $\exp _{2}$
return $\exp _{3}$

Exercise 5: Monadic utilities

Define

when :: Monad m => Bool -> m () -> m ()
sequence :: Monad m => [m a] -> m [a]
mapM :: Monad m => (a $->\mathrm{m}$ b) $->$ [a] $->\mathrm{m}[\mathrm{b}]$
in terms of the basic monad functions.

The do-notation (1)

Haskell provides convenient syntax for programming with monads:
do
a <- $\exp _{1}$
b <- exp 2
return $\exp _{3}$
is syntactic sugar for
$\exp _{1} \gg=\backslash a->$
$\exp _{2} \gg=\backslash \mathrm{b}->$
return $\exp _{3}$

Numbering trees in do-notation

numberTree :: Tree a -> Tree Int
ntAux (Leaf _) = do
return (Leaf n)
ntAux (t1 : ^: t2) = do
t2' <- ntAux t2
sequence (ma:mas) = ma >>= \a ->

$$
\text { numberTree } t=\text { runs (ntAux } t)
$$

where
n <- get
set ($\mathrm{n}+1$)
t1' <- ntAux t1
return (t1' : ^: t2')

Exercise 5: Solution (1)

when :: Monad m => Bool \rightarrow m () -> m ()
when p m = if p then m else return ()
sequence :: Monad m => [m a] $->m$ [a]
sequence [] = return []
sequence mas >>= \as -> return (a:as)

The do-notation (2)

Computations can be done solely for effect, ignoring the computed value:

do

$\exp _{1}$
$\exp _{2}$
return $\exp _{3}$
is syntactic sugar for
$\exp _{1} \gg=\backslash _$->
$\exp _{2} \gg=$ __ $^{->}$
return $\exp _{3}$

Monadic utility functions

Some monad utilities, some from the Prelude, some from the module Monad:
sequence : : Monad m => [m a] $\rightarrow \mathrm{m}$ [a]
sequence_ : : Monad m => [m a] -> m ()
mapM :: Monad m => (a -> m b) -> [a] -> m [b]
mapM_: Monad m => (a -> mb) -> [a] -> m ()
when : : Monad m => Bool -> m () -> m ()
foldM :: Monad m =>

$$
\text { (a -> b -> m a) -> a -> [b] }->\mathrm{m} \text { a }
$$

liftM :: Monad m => (a -> b) -> (m a -> m b)

Exercise 5: Solution (2)

mapM :: Monad m => (a -> m b) -> [a] -> m [b] mapM f [] = return []
$\operatorname{mapM} \mathrm{f}(\mathrm{a}: \mathrm{as})=\mathrm{f} \mathrm{a} \gg=\backslash \mathrm{b}->$
$\operatorname{mapM} \mathrm{f}$ as $\gg=\backslash \mathrm{bs}->$ return (b:bs)

The Haskell IO monad

In Haskell, IO is handled through the IO monad.
IO is abstract! Conceptually:

$$
\text { newtype IO } a=\text { IO (World -> (a, World)) }
$$

Some operations:

$$
\begin{array}{ll}
\text { putChar } & \text { :: Char -> IO () } \\
\text { putStr } & :: \text { String -> IO () } \\
\text { putStrLn } & \text { :: String -> IO () } \\
\text { getChar } & \text { :: IO Char } \\
\text { getLine } & \text { :: IO String } \\
\text { getContents } & : \text { String }
\end{array}
$$

Environments: The reader monad

instance Monad ((->) e) where return $\mathrm{a}=$ const a
$m \gg=f=\ e$-> f (me) e
getEnv :: ((->) e) e
getEnv = id
Cf. the combinators S, K, and I
I :: a $->$ a
K :: a -> b -> a
S :: (a -> b -> c) -> (a -> b) -> a -> c
(>>=) :: (a -> b) . -> (b -> a -> c) -> a -> c

The continuation monad (3)

callCC :: ($(\mathrm{a}->$ CPS r b) $->$ CPS r a) $->$ CPS r a
callCC $\mathrm{f}=\mathrm{CPS}$ \$ $\backslash \mathrm{k}$->
unCPS (f (\a -> CPS (_ $_{-}$-> k a))) k
runCPS :: CPS a a -> a
runCPS $m=u n C P S ~ m i d$

The ST Monad: "real" state

The ST monad (common Haskell extension) provides real, imperative state behind the scenes to allow efficient implementation of imperative algorithms:

$$
\begin{aligned}
& \text { data ST s a -- abstract } \\
& \text { instance Monad (ST s) }
\end{aligned}
$$

newSTRef :: s ST a (STRef s a)
readSTRef : : STRef s a -> ST s a
writeSTRef : : STRef s a -> a -> ST s ()

The continuation monad (1)

- In Continuation-Passing style (CPS), a continuation representing the "rest of the computation" is passed to each computation.
- A continuation is a function that when applied to the result of the current subcomputation, returns the final result of the overall computation.
- Making continuations explicitly available makes it possible to implement control-flow effects, like jumps.

Exercise 6: Control transfer

```
    f :: Int -> Int -> Int
f x y = runCPS $ do
    callcc $ \exit -> do
        let d = x - y
            when (d == 0) (exit (-1))
        let z = (abs ((x + y) `div` d))
        when (z > 10) (exit (-2))
        return (z^3)
```

Compute f 10 6, f 1010 , and f 109.

Nondeterminism: The list monad

instance Monad [] where
return $a=$ [a]
m >>= $f=$ concat (map f m)
fail $s=[]$

Example:

do

$$
\begin{aligned}
& x<-[1,2] \\
& y<-\left[a^{\prime}, b^{\prime}\right] \\
& \text { return }(x, y)
\end{aligned}
$$

Result: [(1, ' $\left.\left.a^{\prime}\right),\left(1,{ }^{\prime} b^{\prime}\right),\left(2,^{\prime} a^{\prime}\right),\left(2,^{\prime} b^{\prime}\right)\right]$

The continuation monad (2)

$$
\text { data CPS r a }=\operatorname{CPS}((a->r)->r)
$$

unCPS :: CPS r a -> ((a -> r) -> r)

$$
\text { unCPS }(\text { CPS } f)=f
$$

instance Monad (CPS r) where

$$
\text { return } a=\operatorname{CPS}(\backslash k \rightarrow k a)
$$

$\mathrm{m} \gg=\mathrm{f}=\mathrm{CPS} \$ \backslash \mathrm{k}->$
unCPS m ($\backslash \mathrm{a}->$ unCPS (f a) k)

A Concurrency Monad (1)

A Thread represents a process: a stream of primitive atomic operations:
data Thread = Print Char Thread
Fork Thread Thread End
Note that a Thread represents the entire rest of a computation.

A Concurrency Monad (2)

Introduce a monad representing "interleavable computations". At this stage, this amounts to little more than a convenient way to construct threads by sequential composition.
How can Threads be composed sequentially?
The only way is to parameterize thread prefixes on the rest of the Thread. This leads directly to continuations.

A Concurrency Monad (5)
Running a computation: ```type Output = [Char] type ThreadQueue = [Thread] type State = (Output, ThreadQueue) runCM :: CM a -> Output runCM m = runHlp ("", []) (thread m) where runHlp s t = case dispatch s t of Left (s', t) -> runHlp s' t Right 0. -> O.```
Example: Concurrent processes
main = print (runcm p3)
Result: aAbc1Bd2e3f4g5h6i7j890 (As it stands, the output is only made available after all threads have terminated.)

A Concurrency Monad (4)

Atomic operations

```
CPrint :: Char -> CM ()
cPrint c = CM (\k -> Print c (k ()))
cFork :: CM a -> CM ()
cFork m = CM (\k -> Fork (thread m) (k ()))
cEnd :: CM a
cEnd = CM (\_ -> End)
```


A Concurrency Monad (7)

Selects next Thread to run, if any.

$$
\begin{aligned}
& \text { schedule : : State } \rightarrow \text { Either (State, Thread) } \\
& \text { Output } \\
&\text { schedule (} 0,[])=\text { Right } \circ \\
&\text { schedule }(0, t: t s)=\text { Left ((o, ts), } t)
\end{aligned}
$$

Example: Concurrent processes 2

p1 : : CM ()	p2 : : CM ()	p3 : : CM ()
p1 = do	p2 = do	p3 = do
cPrint 'a'	cPrint '1'	cFork p1
cPrint 'b'	undefined	cPrint 'A'
\ldots	. .	cFork p2
cPrint 'j'	cPrint '0'	cPrint 'B'

main $=$ print (runCM p3
Result: aAbc1Bd*** Exception: Prelude.undefined

Reading

- Nomaware. All About Monads.
http://www.nomaware.com/monads
- Nick Benton, John Hughes, Eugenio Moggi. Monads and Effects. In International Summer School on
Applied Semantics 2000, Caminha, Portugal, 2000.
- Koen Claessen. A Poor Man's Concurrency Monad. Journal of Functional Programming, 9(3), 1999.
- Philip Wadler. The Essence of Functiona

Programming. Proceedings of the 19th ACM
Symposium on Principles of Programming Languages
(POPL'92), 1992.

