Vo Transtormers ()

What if we need to support more than one type
of effect?

For example: State and Error/Partiality?

Henrik Nilsson We could implement a suitable monad from
scratch:

University of Nottingham, UK

newtype SE s a = SE (s -> Maybe (a, s))

Monad Transformers (2) Monad Transformers (3)
However: can help:
 Not always obvious how: « Amonad transformer transforms a monad
- How to combine state and error and CPS by adding support for an additional effect.
and...? « A library of monad transformers can be
- Should the combination of state and error developed, each adding a specific effect
have been (state, error, . ..), allowing the programmer to
newtype SE s a = SE (s -> (Maybe a, s)) mix and match.
« Duplication of effort: similar patterns related « A form of

to specific effects are going to be repeated
over and over in the various combinations.

_ resmn s e _ rossn e s Th e

« Introduction to Monad Transformers « A monad transformer maps monads to
monads. This is represented by a type
constructor of the following kind:

+ Some standard Monad Transformers and
their combinations

: T (% -> %) -> % -> %
« A concurrency monad transformer (with an . _
eye to giving semantics too/interpreting a * Additionally, we require monad transformers
Java-like language) to add computational effects. Thus we

require a mapping from computations in the
underlying monad to computations in the
transformed monad:

[ift :: Ma ->T Ma

_ rosmn s Toe _ rossn R s h e

Monad Transformers in Haskell (2) Classes for Specific Effects

» These requirements are captured by the A monad transformer adds specific effects to any
following (multi-parameter) type class: monad. Thus there can be many monads
class (Monad m, Monad (t m)) supporting the same operations. Introduce
=> MonadTransformer t m where classes to handle the overloading:
lift ::ma->1tma class Monad m => E m where
eFail :: m a
eHandle :: ma ->ma ->ma

class Monad m => S m s | m -> s where
sSet :: s ->m QO
sGet Z: m s

_ resme s eI _ rossn e s Thee

The Identity Monad The Error Monad Transformer (1)

We are going to construct monads by successive newtype ET m a = ET (m (Maybe a))
transformations of the identity monad: UnET (ET m) =m

newtype 1 a =1 a

instance Monad m => Monad (ET m here
unl (I a) = a ' ()W

return a = ET (return (Just a))

instance Monad 1 where
return a =1 a
m>>= f = £ (unl m)

m>>=f = ET $ do
ma <- UunkET m
case ma of
Nothing -> return Nothing
Just a -> untET (F a)

runl z: I a -> a
runl = unl

_ vosmn s _ oS 200 R Recue T poRe

The Error Monad Transformer (2) The Error Monad Transformer (3)
We need the ability to run transformed monads: Any monad transformed by ET is an instance of E:
runET :: Monad m => ET ma ->m a instance Monad m => E (ET m) where
runET etm = do eFail = ET (return Nothing)
ma <- unkET etm ml “eHandle“ m2 = ET $ do
case ma of ma <- unkET ml
Just a -> return a case ma of
ET is a monad transformer: Nothing -> unkET m2
Just _ -> return ma

instance Monad m => MonadTransformer ET m where
lift m = ET (m >>= \a -> return (Just a))

_ resme e o _ oS 00 A Recue R

The Error Monad Transformer (4)

A state monad transformed by ET is a state
monad:

instance S ms => S (ET m) s where
sSet s = lift (sSet s)
sGet = lift sCGet

Exercise 1: Solution

exl :: ET I Int
exl = eFail “eHandle“ return 1

exlr -: Int
ex1lr = runl (runkT exl)

Exercise 1: Running transf. monads

Let

exl = eFail “eHandle“ return 1

1. Suggest a possible type for ex 1.
2. How can ex1 be run, given your type?

The State Monad Transformer (1)

newtype ST s ma = ST (s -=> m (a, s))
unST (ST m) =m

instance Monad m => Monad (ST s m) where
return a = ST (\s -> return (a, S))

m>=Ff = ST $ \s -> do

(a, s’) <- unST m s
unST (f a) s’

The State Monad Transformer (2)

We need the ability to run transformed monads:

runST :: Monad m => ST s ma->s ->m a

runST stf sO = do
(a,) <- unST stf s0O
return a

ST is a monad transformer:

instance Monad m =>

MonadTransformer (ST s) m where

lift m = ST (\s -> m >>= \a ->

return (a, s))

Exercise 2: Effect ordering

Consider the code fragment
ex2a z: ST Int (ET I) Int

ex2a= (sSet 3 >> eFail) “eHandle® sGet

Note that the exact same code fragment also can

be typed as follows:
ex2b :: ET (ST Int 1) Int

ex2b = (sSet 42 >> eFail) “eHandle® sGet

What is

runl (runET (runST ex2a 0))
runl (runST (runkET ex2b) 0)

MGS 2006: AFP Lecture 3 — p.19/38

The State Monad Transformer (3)

Any monad transformed by ST is an instance of S:

instance Monad m => S (ST s m) s where
sSet s = ST (_ -> return (), s))
sGet ST (\s -> return (s, Ss))

An error monad transformed by ST is an error
monad:
instance E m => E (ST s m) where
eFail = lift eFail
ml “eHandle m2 = ST $ \s ->
unST ml s “eHandle® unST m2 s

_ oS 00 A RecueRTpee

Exercise 2: Solution

runl (runET (runST ex2a 0)) = O
runl (runST (runET ex2b) 0) = 3

_ oS 200 A Recue R

Exercise 3: Alternative ST? Exercise 4: Continuation monad transf.

To think about. The continuation monad transformer is given by:
Could ST have been defined in some other way, newtype CPST r m a = CPST ((a -> m r) ->m r)
e.g.

unCPST z: CPST rma -> ((@a->mr) ->mr)
unCPST (CPST f) = f

newtype ST s ma = ST (m (s -> (a, s)))
or perhaps

newtype ST s ma = ST (s -> (m a, s)) class Monad m => CPS m where
callCC :: ((@->mb) -=>ma) ->ma

Outline the various instances for CPCT and
monads transformed by it.

_ rosmm e o _ oS 200 R ecueaTpaae

Exercise 4: Solution (1)

Exercise 4: Solution (2)

instance Monad m => Monad (CPST r m) where As to effect ordering, making CPST the outer

return a = undefined transformer is the natural and easy choice:

m >>= Ff = undefin
undefined instance E m => E (CPST r m) where

eFail = undefined
ml “eHandle“ m2 = undefined

instance Monad m =>
MonadTransformer (CPST r) m where
lift m = undefined

instance S m s => S (CPST r m) s where
. sSet s = undefined
instance Monad m => CPS (CPST r m) where .
sGet = undefined

callCC ¥ = undefined

_ rosmn e o _ oS 00 A Recue R

The Continuation Monad Transformer (

The Continuation Monad Transformer ({

newtype CPST r ma = CPST ((a -=> mr) -> m r)

unCPST z: CPST rma -> ((@a->mr) -=>mr)
unCPST (CPST f) = f

instance Monad m => Monad (CPST r m) where
return a = CPST (\k -> k a)
m >>= f = CPST $ \k >
unCPST m (\a -> unCPST (f a) k)

_ rosmm e Tp s

The Continuation Monad Transformer (

We need the ability to run transformed monads:

runCPST :: Monad m => CPST ama ->m a
runCPST m = unCPST m return

CPST is a monad transformer:

instance Monad m =>
MonadTransformer (CPST r) m where
lift m = CPST $ \k -> m >>= k

The Continuation Monad Transformer (4

Any monad transformed by CPST is an instance
of CPS:

instance Monad m => CPS (CPST r m) where
callCC ¥ = CPST $ \k ->
unCPST (F (\a -> CPST $ _ -> k a)) k

MGS 2006: AFP Lecture 3 — p.27/38

An error monad transformed by CPST is an error
monad:

instance E m => E (CPST r m) where
eFail = lift eFail
ml “eHandle m2 = CPST $ \k ->
unCPST ml k “eHandle“ unCPST m2 k

A state monad transformed by CPST is a state
monad:

instance S ms => S (CPST r m) s where
sSet s = lift (sSet s)
sGet = lift sCet

MGS 2006: AFP Lecture 3 — p.28/38

Example: CPS and state (1) Example: CPS and state (2)

f:: (CPSmMSmIiInt) => Int -> Int -> m (Int,Int) TTT
X <- sGet

fxy=do
x <- callCC $ \exit -> do sSet (x * 2)
letd =x -y when (z > 10) (exit (-2))
sSet 11 X <- sGet
when (d == 0) (exit (-1)) sSet (x * 2)
let z = (abs ((x + y) “div*® d)) return (z73)
s <- sGet

return (x, s)

Example: CPS and state (3) A Concurrency Monad Transformer (1)
run m = runl (runST (runCPST m 0) class Monad m => GlobalStateMonad m where
gRead :: m Char

gWrite -: Char -=>m QO
gPrint :: Char -=>m O

run (f 10 6) = (64, 44)

run (f 10 10) = (-1, 11)
run (f 10 9) = (-2, 22) class Monad m => ConcMonad m where
cFork ::ma->m QO
CEnd :: ma

_ resmn R o _

A Concurrency Monad Transformer (2) A Concurrency Monad Transformer (3)

thread z: Monad m => CT m a -> Thread m
thread m = fromCT m (const End)

data Thread m = Atom (m (Thread m))
| Fork (Thread m) (Thread m)
|

End _
instance Monad m => Monad (CT m) where

return x = CT (\k -> k x)
m>=Ff =CT$
\k -> FfromCT m (\x -> FfromCT (F x) k)

type ThreadQueue m = [Thread m]

newtype CT m a = CT ((a->Thread m) -> Thread m)

instance Monad m =>
MonadTransformer CT m where
lLiftm=CT $
\k -> Atom (m >>= \x -> return (k x))

fromCT -: CT m a -> ((a->Thread m) -> Thread m)
fromCT (CT X) = X

A Concurrency Monad Transformer (4) A Concurrency Monad Transformer (5)
runCT z: Monad m => CT ma ->m
instance Monad m => ConcMonad (CT m) where runCT m = mmap (const ()) (dispatch [] (thread m))
cFork m = CT (\k -> Fork (thread m) (k))
cEnd = CT (_ -> End) dispatch :: Monad m =>
ThreadQueue m -> Thread m -> m O
dispatch rg (Atom m) =m >= \t ->

schedule (rq ++ [t])
schedule (rg++[tl1,t2])
schedule rq

dispatch rq (Fork tl t2)
dispatch rg End

schedule :: Monad m => ThreadQueue m -> m ()
schedule [] = return

_ Hes R AT e _d 'S patc h tS t e AT e T

: (ConcMonad m, GlobalStateMonad m,

* Nick Benton, John Hughes, Eugenio Moggi. Monads
ErrorMonad m, StateMonad m) =>m ()

q and Effects. In International Summer School on

p3 = Wo't . Applied Semantics 2000, Caminha, Portugal, 2000.
gWrite 772~

* Koen Claessen. A Poor Man’s Concurrency Monad.

sWrite °S”

cFork pl1l Journal of Functional Programming, 9(3), 1999.
gPrint A’ * Sheng Liang, Paul Hudak, Mark Jones. Monad

cFork p2 Transformers and Modular Interpreters. In Proceedings
gPrint ’B’ of the 22nd ACM Symposium on Principles of

X <- sRead Programming Languages (POPL95), January 1995,
gPrint x San Francisco, California

X <- gRead

_ rossm e e _ oS 200 A Recue T

	Monad Transformers (1)
	Monad Transformers (2)
	Monad Transformers (3)
	Lecture 3
	Monad Transformers in Haskell (1)
	Monad Transformers in Haskell (2)
	Classes for Specific Effects
	The Identity Monad
	The Error Monad Transformer (1)
	The Error Monad Transformer (2)
	The Error Monad Transformer (3)
	The Error Monad Transformer (4)
	Exercise 1: Running transf. monads
	Exercise 1: Solution
	The State Monad Transformer (1)
	The State Monad Transformer (2)
	The State Monad Transformer (3)
	Exercise 2: Effect ordering
	Exercise 2: Solution
	Exercise 3: Alternative 	exttt {ST}?
	Exercise 4: Continuation monad transf.
	Exercise 4: Solution (1)
	Exercise 4: Solution (2)
	The Continuation Monad Transformer (1)
	The Continuation Monad Transformer (2)
	The Continuation Monad Transformer (3)
	The Continuation Monad Transformer (4)
	Example: CPS and state (1)
	Example: CPS and state (2)
	Example: CPS and state (3)
	A Concurrency Monad Transformer (1)
	A Concurrency Monad Transformer (2)
	A Concurrency Monad Transformer (3)
	A Concurrency Monad Transformer (4)
	A Concurrency Monad Transformer (5)
	Example: A concurrent process
	Reading

