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Reactive programming

Reactive systems:

• Input arrives incrementally while system is
running.

• Output is generated in response to input in an
interleaved and timely fashion.

Contrast transformational systems.

The notions of
• time
• time-varying values, or signals

are inherent and central for reactive systems.
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Functional Reactive Programming (1)

Functional Reactive Programming (FRP):
• Paradigm for reactive programming in a

functional setting.

• Originated from Functional Reactive
Animation (Fran) (Elliott & Hudak).

• Has evolved in a number of directions and
into different concrete implementations.

• (Usually) continuous notion of time and
additional support for discrete events.
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Functional Reactive Programming (2)

Yampa:
• The most recent Yale FRP implementation.

• Embedding in Haskell (a Haskell library).
• Arrows used as the basic structuring

framework.
• Continuous time.
• Discrete-time signals modelled by

continuous-time signals and an option type.
• Advanced switching constructs allows for

highly dynamic system structure.
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Related languages

FRP related to:
• Synchronous languages, like Esterel, Lucid

Synchrone.
• Modeling languages, like Simulink, Modelica.

Distinguishing features of FRP:
• First class reactive components.
• Allows highly dynamic system structure.
• Supports hybrid (mixed continuous and

discrete) systems.
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FRP applications

Some domains where FRP has been used:
• Graphical Animation (Fran: Elliott, Hudak)
• Robotics (Frob: Peterson, Hager, Hudak,

Elliott, Pembeci, Nilsson)
• Vision (FVision: Peterson, Hudak, Reid,

Hager)
• GUIs (Fruit: Courtney)
• Hybrid modeling (Nilsson, Hudak, Peterson)
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Yampa?

Y et
Another
Mostly
Pointless
Acronym

???

No . . .
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Yampa?

Yampa is a river . . .
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Yampa?

. . . with long calmly flowing sections . . .
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Yampa?

. . . and abrupt whitewater transitions in between.

A good metaphor for hybrid systems!
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Signal functions

Key concept: functions on signals.

Intuition:

Signal α ≈ Time→α

x :: Signal T1
y :: Signal T2
f :: Signal T1 →Signal T2

Additionally: causality requirement.
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Signal functions and state

Alternative view:

Signal functions can encapsulate state.

state(t) summarizes input history x(t′), t′ ∈ [0, t].

Functions on signals are either:
• Stateful : y(t) depends on x(t) and state(t)

• Stateless: y(t) depends only on x(t)
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Example: Video tracker

Video trackers are typically stateful signal
functions:

MGS 2006: AFP Lecture 4 – p.10/45



Signal functions in Yampa

• Signal functions are first class entities.
Intuition: SF α β ≈ Signal α →Signal β

• Signals are not first class entities: they only
exist indirectly through signal functions.

• The second-class nature of signals allows
causality to be exploited for an efficient
implementation.

MGS 2006: AFP Lecture 4 – p.11/45



Signal functions in Yampa

• Signal functions are first class entities.
Intuition: SF α β ≈ Signal α →Signal β

• Signals are not first class entities: they only
exist indirectly through signal functions.

• The second-class nature of signals allows
causality to be exploited for an efficient
implementation.

MGS 2006: AFP Lecture 4 – p.11/45



Signal functions in Yampa

• Signal functions are first class entities.
Intuition: SF α β ≈ Signal α →Signal β

• Signals are not first class entities: they only
exist indirectly through signal functions.

• The second-class nature of signals allows
causality to be exploited for an efficient
implementation.

MGS 2006: AFP Lecture 4 – p.11/45



Example: Robotics (1)

[PPDP’02, with Izzet Pembeci and Greg Hager,
Johns Hopkins University]

Hardware setup:
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Example: Robotics (2)

Software architecture:
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Example: Robotics (3)
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Yampa and Arrows (1)

Systems are described by combining signal
functions (forming new signal functions):

� � �

� � �

� �
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Yampa and Arrows (2)

Yampa uses John Hughes’ arrow framework:
the signal function type is an arrow.

Signal function instances of core combinators:
• arr :: (a -> b) -> SF a b

• >>> :: SF a b -> SF b c -> SF a c

• first :: SF a b -> SF (a,c) (b,c)

• loop :: SF (a,c) (b,c) -> SF a b

Enough to express any conceivable “wiring”.
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Arrows, Monads, and FRP (1)

• Like monads, arrows represent a form of
effectful computations.

• In fact, some arrows, those that support an
apply operation, are also monads (but not
vice versa).
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Arrows, Monads, and FRP (2)

• Could Yampa be based on monads instead?

NO! Essentially because
(>>=) :: Monad m =>

m a -> (a -> m b) -> m b

implies that a new signal function would have
to be computed at every point in time,
depending on the result of the first
computation. This does not make much
sense in a dataflow setting.

• But possibly on co-monads (Uustalu, Vene
2005)
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The arrow syntactic sugar

Using the basic combinators directly is often very
cumbersome. Ross Paterson’s syntactic sugar
for arrows provides a convenient alternative:

proc pat -> do [ rec ]
pat1 <- sfexp1 -< exp1

pat2 <- sfexp2 -< exp2

. . .
pat

n
<- sfexp

n
-< exp

n

returnA -< exp

Also: let pat = exp ≡ pat <- arr id -< exp
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Some further basic signal functions

• identity :: SF a a
identity = arr id

• constant :: b -> SF a b
constant b = arr (const b)

• integral :: VectorSpace a s=>SF a a

• time :: SF a Time
time = constant 1.0 >>> integral

• (^<<) :: (b->c) -> SF a b -> SF a c
f (^<<) sf = sf >>> arr f
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A bouncing ball

y = y0 +

∫
v dt

v = v0 +

∫
−9.81

On impact:

v = −v(t−)

(fully elastic collision)
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Modelling the bouncing ball: part 1

Free-falling ball:

type Pos = Double

type Vel = Double

fallingBall ::

Pos -> Vel -> SF () (Pos, Vel)

fallingBall y0 v0 = proc () -> do

v <- (v0 +) ˆ<< integral -< -9.81

y <- (y0 +) ˆ<< integral -< v

returnA -< (y, v)
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Events

Conceptually, discrete-time signals are only
defined at discrete points in time, often
associated with the occurrence of some event.

Yampa models discrete-time signals by lifting the
range of continuous-time signals:

data Event a = NoEvent | Event a

Discrete-time signal = Signal (Eventα).

Associating information with an event
occurrence:

tag :: Event a -> b -> Event b
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Some basic event sources

• never :: SF a (Event b)

• now :: b -> SF a (Event b)

• after :: Time -> b -> SF a (Event b)

• repeatedly ::
Time -> b -> SF a (Event b)

• edge :: SF Bool (Event ())
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Modelling the bouncing ball: part 2

Detecting when the ball goes through the floor:

fallingBall’ ::

Pos -> Vel

-> SF () ((Pos,Vel), Event (Pos,Vel))

fallingBall’ y0 v0 = proc () -> do

yv@(y, _) <- fallingBall y0 v0 -< ()

hit <- edge -< y <= 0

returnA -< (yv, hit ‘tag‘ yv)
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Switching

Q: How and when do signal functions “start”?

A: • Switchers “apply” a signal functions to its
input signal at some point in time.

• This creates a “running” signal function
instance.

• The new signal function instance often
replaces the previously running instance.

Switchers thus allow systems with varying
structure to be described.

MGS 2006: AFP Lecture 4 – p.26/45



Switching

Q: How and when do signal functions “start”?

A: • Switchers “apply” a signal functions to its
input signal at some point in time.

• This creates a “running” signal function
instance.

• The new signal function instance often
replaces the previously running instance.

Switchers thus allow systems with varying
structure to be described.

MGS 2006: AFP Lecture 4 – p.26/45



Switching

Q: How and when do signal functions “start”?

A: • Switchers “apply” a signal functions to its
input signal at some point in time.

• This creates a “running” signal function
instance.

• The new signal function instance often
replaces the previously running instance.

Switchers thus allow systems with varying
structure to be described.

MGS 2006: AFP Lecture 4 – p.26/45



Switching

Q: How and when do signal functions “start”?

A: • Switchers “apply” a signal functions to its
input signal at some point in time.

• This creates a “running” signal function
instance.

• The new signal function instance often
replaces the previously running instance.

Switchers thus allow systems with varying
structure to be described.

MGS 2006: AFP Lecture 4 – p.26/45



Switching

Q: How and when do signal functions “start”?

A: • Switchers “apply” a signal functions to its
input signal at some point in time.

• This creates a “running” signal function
instance.

• The new signal function instance often
replaces the previously running instance.

Switchers thus allow systems with varying
structure to be described.

MGS 2006: AFP Lecture 4 – p.26/45



The basic switch

Idea:
• Allows one signal function to be replaced by

another.
• Switching takes place on the first occurrence

of the switching event source.

switch ::

SF a (b, Event c)

-> (c -> SF a b)

-> SF a b
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-> (c -> SF a b)

-> SF a b
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Modelling the bouncing ball: part 3

Making the ball bounce:

bouncingBall :: Pos -> SF () (Pos, Vel)

bouncingBall y0 = bbAux y0 0.0

where

bbAux y0 v0 =

switch (fallingBall’ y0 v0) $ \(y,v) ->

bbAux y (-v)
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Simulation of bouncing ball

-5
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y
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Highly dynamic system structure?

Basic switch allows one signal function to be
replaced by another.

• What about more general structural changes?

• What about state?
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Example: Space Invaders
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Overall game structure

gun

alien

bullet

alien

...

killOrSpawn

ObjInput ObjOutput

} [ObjectOutput]

dpSwitch

route
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Dynamic signal function collections

Idea:

• Switch over collections of signal functions.
• On event, “freeze” running signal functions

into collection of signal function continuations,
preserving encapsulated state.

• Modify collection as needed and switch back in.
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dpSwitch

Need ability to express:
• How input routed to each signal function.
• When collection changes shape.
• How collection changes shape.

dpSwitch :: Functor col =>

(forall sf . (a -> col sf -> col (b,sf)))

-> col (SF b c)

-> SF (a, col c) (Event d)

-> (col (SF b c) -> d -> SF a (col c))

-> SF a (col c)
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Describing the alien behavior (1)

type Object = SF ObjInput ObjOutput

alien :: RandomGen g =>

g -> Position2 -> Velocity -> Object

alien g p0 vyd = proc oi -> do

rec

-- Pick a desired horizontal position

rx <- noiseR (xMin, xMax) g -< ()

smpl <- occasionally g 5 () -< ()

xd <- hold (point2X p0) -< smpl ‘tag‘ rx

...
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Describing the alien behavior (2)

...

-- Controller

let axd = 5 * (xd - point2X p)

- 3 * (vector2X v)

ayd = 20 * (vyd - (vector2Y v))

ad = vector2 axd ayd

h = vector2Theta ad

...
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Describing the alien behavior (3)

...

-- Physics

let a = vector2Polar

(min alienAccMax

(vector2Rho ad))

h

vp <- iPre v0 -< v

ffi <- forceField -< (p, vp)

v <- (v0 ˆ+ˆ) ˆ<< impulseIntegral

-< (gravity ˆ+ˆ a, ffi)

p <- (p0 .+ˆ) ˆ<< integral -< v

...
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Describing the alien behavior (4)

...

-- Shields

sl <- shield -< oiHit oi

die <- edge -< sl <= 0

returnA -< ObjOutput {

ooObsObjState = oosAlien p h v,

ooKillReq = die,

ooSpawnReq = noEvent

}

where

v0 = zeroVector
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Other functional approaches?

Transition function operating on world model with
explicit state (e.g. Asteroids by Lüth):

• Model snapshot of world with all state
components.

• Transition function takes input and current
world snapshot to output and the next world
snapshot.

One could also use this technique within Yampa
to avoid switching over dynamic collections.
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Why use Yampa, then?

• Yampa provides a lot of functionality for
programming with time-varying values:
- Captures common patterns.
- Carefully designed to facilitate reuse.

• Yampa allows state to be nicely encapsulated
by signal functions:
- Avoids keeping track of all state globally.
- Adding more state usually does not imply

any major changes to type or code
structure.
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State in alien

Each of the following signal functions used in
alien encapsulate state:

• noiseR

• occasionally

• hold

• iPre

• forceField

• impulseIntegral

• integral

• shield

• edge
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Why not imperative, then?

If state is so important, why not stick to
imperative/object-oriented programming where
we have “state for free”?

• Advantages of declarative programming
retained:
- High abstraction level.
- Referential transparency, algebraic laws:

formal reasoning ought to be simpler.

• Synchronous approach avoids
“event-call-back soup”, meaning robust,
easy-to-understand semantics.
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Obtaining Yampa

Yampa 0.92 is available from

http://www.haskell.org/yampa
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Reading

• John Hughes. Generalising monads to arrows. Science
of Computer Programming, 37:67–111, May 2000

• John Hughes. Programming with arrows. In Advanced
Functional Programming, 2004. To be published by
Springer Verlag.

• Henrik Nilsson, Antony Courtney, and John Peterson.
Functional reactive programming, continued. In
Proceedings of the 2002 Haskell Workshop, pp. 51–64,
October 2002.
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Reading (2)

• Paul Hudak, Antony Courtney, Henrik Nilsson, and
John Peterson. Arrows, robots, and functional reactive
programming. In Advanced Functional Programming,
2002. LNCS 2638, pp. 159–187.

• Tarmo Uustalu and Varmo Vene. The Essence of
Dataflow Programming. 2005
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