
MGS 2006: AFP Lecture 4
Functional Reactive Programming and Arrows

Henrik Nilsson

University of Nottingham, UK

MGS 2006: AFP Lecture 4 – p.1/45



Reactive programming

Reactive systems:

• Input arrives incrementally while system is
running.

• Output is generated in response to input in an
interleaved and timely fashion.

Contrast transformational systems.

The notions of
• time
• time-varying values, or signals

are inherent and central for reactive systems.

MGS 2006: AFP Lecture 4 – p.2/45



Reactive programming

Reactive systems:
• Input arrives incrementally while system is

running.

• Output is generated in response to input in an
interleaved and timely fashion.

Contrast transformational systems.

The notions of
• time
• time-varying values, or signals

are inherent and central for reactive systems.

MGS 2006: AFP Lecture 4 – p.2/45



Reactive programming

Reactive systems:
• Input arrives incrementally while system is

running.
• Output is generated in response to input in an

interleaved and timely fashion.

Contrast transformational systems.

The notions of
• time
• time-varying values, or signals

are inherent and central for reactive systems.

MGS 2006: AFP Lecture 4 – p.2/45



Reactive programming

Reactive systems:
• Input arrives incrementally while system is

running.
• Output is generated in response to input in an

interleaved and timely fashion.

Contrast transformational systems.

The notions of
• time
• time-varying values, or signals

are inherent and central for reactive systems.

MGS 2006: AFP Lecture 4 – p.2/45



Reactive programming

Reactive systems:
• Input arrives incrementally while system is

running.
• Output is generated in response to input in an

interleaved and timely fashion.

Contrast transformational systems.

The notions of
• time
• time-varying values, or signals

are inherent and central for reactive systems.
MGS 2006: AFP Lecture 4 – p.2/45



Functional Reactive Programming (1)

Functional Reactive Programming (FRP):
• Paradigm for reactive programming in a

functional setting.

• Originated from Functional Reactive
Animation (Fran) (Elliott & Hudak).

• Has evolved in a number of directions and
into different concrete implementations.

• (Usually) continuous notion of time and
additional support for discrete events.

MGS 2006: AFP Lecture 4 – p.3/45



Functional Reactive Programming (1)

Functional Reactive Programming (FRP):
• Paradigm for reactive programming in a

functional setting.
• Originated from Functional Reactive

Animation (Fran) (Elliott & Hudak).

• Has evolved in a number of directions and
into different concrete implementations.

• (Usually) continuous notion of time and
additional support for discrete events.

MGS 2006: AFP Lecture 4 – p.3/45



Functional Reactive Programming (1)

Functional Reactive Programming (FRP):
• Paradigm for reactive programming in a

functional setting.
• Originated from Functional Reactive

Animation (Fran) (Elliott & Hudak).
• Has evolved in a number of directions and

into different concrete implementations.

• (Usually) continuous notion of time and
additional support for discrete events.

MGS 2006: AFP Lecture 4 – p.3/45



Functional Reactive Programming (1)

Functional Reactive Programming (FRP):
• Paradigm for reactive programming in a

functional setting.
• Originated from Functional Reactive

Animation (Fran) (Elliott & Hudak).
• Has evolved in a number of directions and

into different concrete implementations.
• (Usually) continuous notion of time and

additional support for discrete events.

MGS 2006: AFP Lecture 4 – p.3/45



Functional Reactive Programming (2)

Yampa:
• The most recent Yale FRP implementation.

• Embedding in Haskell (a Haskell library).
• Arrows used as the basic structuring

framework.
• Continuous time.
• Discrete-time signals modelled by

continuous-time signals and an option type.
• Advanced switching constructs allows for

highly dynamic system structure.

MGS 2006: AFP Lecture 4 – p.4/45



Functional Reactive Programming (2)

Yampa:
• The most recent Yale FRP implementation.
• Embedding in Haskell (a Haskell library).

• Arrows used as the basic structuring
framework.

• Continuous time.
• Discrete-time signals modelled by

continuous-time signals and an option type.
• Advanced switching constructs allows for

highly dynamic system structure.

MGS 2006: AFP Lecture 4 – p.4/45



Functional Reactive Programming (2)

Yampa:
• The most recent Yale FRP implementation.
• Embedding in Haskell (a Haskell library).
• Arrows used as the basic structuring

framework.

• Continuous time.
• Discrete-time signals modelled by

continuous-time signals and an option type.
• Advanced switching constructs allows for

highly dynamic system structure.

MGS 2006: AFP Lecture 4 – p.4/45



Functional Reactive Programming (2)

Yampa:
• The most recent Yale FRP implementation.
• Embedding in Haskell (a Haskell library).
• Arrows used as the basic structuring

framework.
• Continuous time.

• Discrete-time signals modelled by
continuous-time signals and an option type.

• Advanced switching constructs allows for
highly dynamic system structure.

MGS 2006: AFP Lecture 4 – p.4/45



Functional Reactive Programming (2)

Yampa:
• The most recent Yale FRP implementation.
• Embedding in Haskell (a Haskell library).
• Arrows used as the basic structuring

framework.
• Continuous time.
• Discrete-time signals modelled by

continuous-time signals and an option type.

• Advanced switching constructs allows for
highly dynamic system structure.

MGS 2006: AFP Lecture 4 – p.4/45



Functional Reactive Programming (2)

Yampa:
• The most recent Yale FRP implementation.
• Embedding in Haskell (a Haskell library).
• Arrows used as the basic structuring

framework.
• Continuous time.
• Discrete-time signals modelled by

continuous-time signals and an option type.
• Advanced switching constructs allows for

highly dynamic system structure.
MGS 2006: AFP Lecture 4 – p.4/45



Related languages

FRP related to:
• Synchronous languages, like Esterel, Lucid

Synchrone.
• Modeling languages, like Simulink, Modelica.

Distinguishing features of FRP:
• First class reactive components.
• Allows highly dynamic system structure.
• Supports hybrid (mixed continuous and

discrete) systems.

MGS 2006: AFP Lecture 4 – p.5/45



Related languages

FRP related to:
• Synchronous languages, like Esterel, Lucid

Synchrone.
• Modeling languages, like Simulink, Modelica.

Distinguishing features of FRP:
• First class reactive components.
• Allows highly dynamic system structure.
• Supports hybrid (mixed continuous and

discrete) systems.

MGS 2006: AFP Lecture 4 – p.5/45



FRP applications

Some domains where FRP has been used:
• Graphical Animation (Fran: Elliott, Hudak)
• Robotics (Frob: Peterson, Hager, Hudak,

Elliott, Pembeci, Nilsson)
• Vision (FVision: Peterson, Hudak, Reid,

Hager)
• GUIs (Fruit: Courtney)
• Hybrid modeling (Nilsson, Hudak, Peterson)

MGS 2006: AFP Lecture 4 – p.6/45



Yampa?

Y et
Another
Mostly
Pointless
Acronym

???

No . . .

MGS 2006: AFP Lecture 4 – p.7/45



Yampa?

Y et
Another
Mostly
Pointless
Acronym

???

No . . .

MGS 2006: AFP Lecture 4 – p.7/45



Yampa?

Y et
Another
Mostly
Pointless
Acronym

???

No . . .

MGS 2006: AFP Lecture 4 – p.7/45



Yampa?

Y et
Another
Mostly
Pointless
Acronym

???

No . . .

MGS 2006: AFP Lecture 4 – p.7/45



Yampa?

Yampa is a river . . .

MGS 2006: AFP Lecture 4 – p.7/45



Yampa?

. . . with long calmly flowing sections . . .

MGS 2006: AFP Lecture 4 – p.7/45



Yampa?

. . . and abrupt whitewater transitions in between.

A good metaphor for hybrid systems!
MGS 2006: AFP Lecture 4 – p.7/45



Signal functions

Key concept: functions on signals.

Intuition:

Signal α ≈ Time→α

x :: Signal T1
y :: Signal T2
f :: Signal T1 →Signal T2

Additionally: causality requirement.

MGS 2006: AFP Lecture 4 – p.8/45



Signal functions

Key concept: functions on signals.

Intuition:

Signal α ≈ Time→α

x :: Signal T1
y :: Signal T2
f :: Signal T1 →Signal T2

Additionally: causality requirement.

MGS 2006: AFP Lecture 4 – p.8/45



Signal functions

Key concept: functions on signals.

Intuition:

Signal α ≈ Time→α

x :: Signal T1
y :: Signal T2
f :: Signal T1 →Signal T2

Additionally: causality requirement.

MGS 2006: AFP Lecture 4 – p.8/45



Signal functions and state

Alternative view:

Signal functions can encapsulate state.

state(t) summarizes input history x(t′), t′ ∈ [0, t].

Functions on signals are either:
• Stateful : y(t) depends on x(t) and state(t)

• Stateless: y(t) depends only on x(t)

MGS 2006: AFP Lecture 4 – p.9/45



Signal functions and state

Alternative view:

Signal functions can encapsulate state.

state(t) summarizes input history x(t′), t′ ∈ [0, t].

Functions on signals are either:
• Stateful : y(t) depends on x(t) and state(t)

• Stateless: y(t) depends only on x(t)

MGS 2006: AFP Lecture 4 – p.9/45



Signal functions and state

Alternative view:

Signal functions can encapsulate state.

state(t) summarizes input history x(t′), t′ ∈ [0, t].

Functions on signals are either:
• Stateful : y(t) depends on x(t) and state(t)

• Stateless: y(t) depends only on x(t)

MGS 2006: AFP Lecture 4 – p.9/45



Example: Video tracker

Video trackers are typically stateful signal
functions:

MGS 2006: AFP Lecture 4 – p.10/45



Signal functions in Yampa

• Signal functions are first class entities.
Intuition: SF α β ≈ Signal α →Signal β

• Signals are not first class entities: they only
exist indirectly through signal functions.

• The second-class nature of signals allows
causality to be exploited for an efficient
implementation.

MGS 2006: AFP Lecture 4 – p.11/45



Signal functions in Yampa

• Signal functions are first class entities.
Intuition: SF α β ≈ Signal α →Signal β

• Signals are not first class entities: they only
exist indirectly through signal functions.

• The second-class nature of signals allows
causality to be exploited for an efficient
implementation.

MGS 2006: AFP Lecture 4 – p.11/45



Signal functions in Yampa

• Signal functions are first class entities.
Intuition: SF α β ≈ Signal α →Signal β

• Signals are not first class entities: they only
exist indirectly through signal functions.

• The second-class nature of signals allows
causality to be exploited for an efficient
implementation.

MGS 2006: AFP Lecture 4 – p.11/45



Example: Robotics (1)

[PPDP’02, with Izzet Pembeci and Greg Hager,
Johns Hopkins University]

Hardware setup:

MGS 2006: AFP Lecture 4 – p.12/45



Example: Robotics (2)

Software architecture:

MGS 2006: AFP Lecture 4 – p.13/45



Example: Robotics (3)

MGS 2006: AFP Lecture 4 – p.14/45



Yampa and Arrows (1)

Systems are described by combining signal
functions (forming new signal functions):

� � �

� � �

� �



MGS 2006: AFP Lecture 4 – p.15/45



Yampa and Arrows (2)

Yampa uses John Hughes’ arrow framework:
the signal function type is an arrow.

Signal function instances of core combinators:
• arr :: (a -> b) -> SF a b

• >>> :: SF a b -> SF b c -> SF a c

• first :: SF a b -> SF (a,c) (b,c)

• loop :: SF (a,c) (b,c) -> SF a b

Enough to express any conceivable “wiring”.

MGS 2006: AFP Lecture 4 – p.16/45



Yampa and Arrows (2)

Yampa uses John Hughes’ arrow framework:
the signal function type is an arrow.

Signal function instances of core combinators:
• arr :: (a -> b) -> SF a b

• >>> :: SF a b -> SF b c -> SF a c

• first :: SF a b -> SF (a,c) (b,c)

• loop :: SF (a,c) (b,c) -> SF a b

Enough to express any conceivable “wiring”.

MGS 2006: AFP Lecture 4 – p.16/45



Arrows, Monads, and FRP (1)

• Like monads, arrows represent a form of
effectful computations.

• In fact, some arrows, those that support an
apply operation, are also monads (but not
vice versa).

MGS 2006: AFP Lecture 4 – p.17/45



Arrows, Monads, and FRP (2)

• Could Yampa be based on monads instead?

NO! Essentially because
(>>=) :: Monad m =>

m a -> (a -> m b) -> m b

implies that a new signal function would have
to be computed at every point in time,
depending on the result of the first
computation. This does not make much
sense in a dataflow setting.

• But possibly on co-monads (Uustalu, Vene
2005)

MGS 2006: AFP Lecture 4 – p.18/45



The arrow syntactic sugar

Using the basic combinators directly is often very
cumbersome. Ross Paterson’s syntactic sugar
for arrows provides a convenient alternative:

proc pat -> do [ rec ]
pat1 <- sfexp1 -< exp1

pat2 <- sfexp2 -< exp2

. . .
pat

n
<- sfexp

n
-< exp

n

returnA -< exp

Also: let pat = exp ≡ pat <- arr id -< exp

MGS 2006: AFP Lecture 4 – p.19/45



Some further basic signal functions

• identity :: SF a a
identity = arr id

• constant :: b -> SF a b
constant b = arr (const b)

• integral :: VectorSpace a s=>SF a a

• time :: SF a Time
time = constant 1.0 >>> integral

• (^<<) :: (b->c) -> SF a b -> SF a c
f (^<<) sf = sf >>> arr f

MGS 2006: AFP Lecture 4 – p.20/45



Some further basic signal functions

• identity :: SF a a
identity = arr id

• constant :: b -> SF a b
constant b = arr (const b)

• integral :: VectorSpace a s=>SF a a

• time :: SF a Time
time = constant 1.0 >>> integral

• (^<<) :: (b->c) -> SF a b -> SF a c
f (^<<) sf = sf >>> arr f

MGS 2006: AFP Lecture 4 – p.20/45



Some further basic signal functions

• identity :: SF a a
identity = arr id

• constant :: b -> SF a b
constant b = arr (const b)

• integral :: VectorSpace a s=>SF a a

• time :: SF a Time
time = constant 1.0 >>> integral

• (^<<) :: (b->c) -> SF a b -> SF a c
f (^<<) sf = sf >>> arr f

MGS 2006: AFP Lecture 4 – p.20/45



Some further basic signal functions

• identity :: SF a a
identity = arr id

• constant :: b -> SF a b
constant b = arr (const b)

• integral :: VectorSpace a s=>SF a a

• time :: SF a Time
time = constant 1.0 >>> integral

• (^<<) :: (b->c) -> SF a b -> SF a c
f (^<<) sf = sf >>> arr f

MGS 2006: AFP Lecture 4 – p.20/45



Some further basic signal functions

• identity :: SF a a
identity = arr id

• constant :: b -> SF a b
constant b = arr (const b)

• integral :: VectorSpace a s=>SF a a

• time :: SF a Time
time = constant 1.0 >>> integral

• (^<<) :: (b->c) -> SF a b -> SF a c
f (^<<) sf = sf >>> arr f

MGS 2006: AFP Lecture 4 – p.20/45



A bouncing ball

y = y0 +

∫
v dt

v = v0 +

∫
−9.81

On impact:

v = −v(t−)

(fully elastic collision)

MGS 2006: AFP Lecture 4 – p.21/45



Modelling the bouncing ball: part 1

Free-falling ball:

type Pos = Double

type Vel = Double

fallingBall ::

Pos -> Vel -> SF () (Pos, Vel)

fallingBall y0 v0 = proc () -> do

v <- (v0 +) ˆ<< integral -< -9.81

y <- (y0 +) ˆ<< integral -< v

returnA -< (y, v)

MGS 2006: AFP Lecture 4 – p.22/45



Events

Conceptually, discrete-time signals are only
defined at discrete points in time, often
associated with the occurrence of some event.

Yampa models discrete-time signals by lifting the
range of continuous-time signals:

data Event a = NoEvent | Event a

Discrete-time signal = Signal (Eventα).

Associating information with an event
occurrence:

tag :: Event a -> b -> Event b

MGS 2006: AFP Lecture 4 – p.23/45



Events

Conceptually, discrete-time signals are only
defined at discrete points in time, often
associated with the occurrence of some event.

Yampa models discrete-time signals by lifting the
range of continuous-time signals:

data Event a = NoEvent | Event a

Discrete-time signal = Signal (Eventα).

Associating information with an event
occurrence:

tag :: Event a -> b -> Event b

MGS 2006: AFP Lecture 4 – p.23/45



Events

Conceptually, discrete-time signals are only
defined at discrete points in time, often
associated with the occurrence of some event.

Yampa models discrete-time signals by lifting the
range of continuous-time signals:

data Event a = NoEvent | Event a

Discrete-time signal = Signal (Eventα).

Associating information with an event
occurrence:

tag :: Event a -> b -> Event b

MGS 2006: AFP Lecture 4 – p.23/45



Events

Conceptually, discrete-time signals are only
defined at discrete points in time, often
associated with the occurrence of some event.

Yampa models discrete-time signals by lifting the
range of continuous-time signals:

data Event a = NoEvent | Event a

Discrete-time signal = Signal (Eventα).

Associating information with an event
occurrence:

tag :: Event a -> b -> Event b
MGS 2006: AFP Lecture 4 – p.23/45



Some basic event sources

• never :: SF a (Event b)

• now :: b -> SF a (Event b)

• after :: Time -> b -> SF a (Event b)

• repeatedly ::
Time -> b -> SF a (Event b)

• edge :: SF Bool (Event ())

MGS 2006: AFP Lecture 4 – p.24/45



Modelling the bouncing ball: part 2

Detecting when the ball goes through the floor:

fallingBall’ ::

Pos -> Vel

-> SF () ((Pos,Vel), Event (Pos,Vel))

fallingBall’ y0 v0 = proc () -> do

yv@(y, _) <- fallingBall y0 v0 -< ()

hit <- edge -< y <= 0

returnA -< (yv, hit ‘tag‘ yv)

MGS 2006: AFP Lecture 4 – p.25/45



Switching

Q: How and when do signal functions “start”?

A: • Switchers “apply” a signal functions to its
input signal at some point in time.

• This creates a “running” signal function
instance.

• The new signal function instance often
replaces the previously running instance.

Switchers thus allow systems with varying
structure to be described.

MGS 2006: AFP Lecture 4 – p.26/45



Switching

Q: How and when do signal functions “start”?

A: • Switchers “apply” a signal functions to its
input signal at some point in time.

• This creates a “running” signal function
instance.

• The new signal function instance often
replaces the previously running instance.

Switchers thus allow systems with varying
structure to be described.

MGS 2006: AFP Lecture 4 – p.26/45



Switching

Q: How and when do signal functions “start”?

A: • Switchers “apply” a signal functions to its
input signal at some point in time.

• This creates a “running” signal function
instance.

• The new signal function instance often
replaces the previously running instance.

Switchers thus allow systems with varying
structure to be described.

MGS 2006: AFP Lecture 4 – p.26/45



Switching

Q: How and when do signal functions “start”?

A: • Switchers “apply” a signal functions to its
input signal at some point in time.

• This creates a “running” signal function
instance.

• The new signal function instance often
replaces the previously running instance.

Switchers thus allow systems with varying
structure to be described.

MGS 2006: AFP Lecture 4 – p.26/45



Switching

Q: How and when do signal functions “start”?

A: • Switchers “apply” a signal functions to its
input signal at some point in time.

• This creates a “running” signal function
instance.

• The new signal function instance often
replaces the previously running instance.

Switchers thus allow systems with varying
structure to be described.

MGS 2006: AFP Lecture 4 – p.26/45



The basic switch

Idea:
• Allows one signal function to be replaced by

another.
• Switching takes place on the first occurrence

of the switching event source.

switch ::

SF a (b, Event c)

-> (c -> SF a b)

-> SF a b

MGS 2006: AFP Lecture 4 – p.27/45



The basic switch

Idea:
• Allows one signal function to be replaced by

another.
• Switching takes place on the first occurrence

of the switching event source.

switch :: Initial SF with event source

SF a (b, Event c)

-> (c -> SF a b)

-> SF a b

MGS 2006: AFP Lecture 4 – p.27/45



The basic switch

Idea:
• Allows one signal function to be replaced by

another.
• Switching takes place on the first occurrence

of the switching event source.

switch :: Function yielding SF to switch into

SF a (b, Event c)

-> (c -> SF a b)

-> SF a b

MGS 2006: AFP Lecture 4 – p.27/45



Modelling the bouncing ball: part 3

Making the ball bounce:

bouncingBall :: Pos -> SF () (Pos, Vel)

bouncingBall y0 = bbAux y0 0.0

where

bbAux y0 v0 =

switch (fallingBall’ y0 v0) $ \(y,v) ->

bbAux y (-v)

MGS 2006: AFP Lecture 4 – p.28/45



Simulation of bouncing ball

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

y
dy/dt

MGS 2006: AFP Lecture 4 – p.29/45



Highly dynamic system structure?

Basic switch allows one signal function to be
replaced by another.

• What about more general structural changes?

• What about state?

MGS 2006: AFP Lecture 4 – p.30/45



Highly dynamic system structure?

Basic switch allows one signal function to be
replaced by another.

• What about more general structural changes?

• What about state?

MGS 2006: AFP Lecture 4 – p.30/45



Highly dynamic system structure?

Basic switch allows one signal function to be
replaced by another.

• What about more general structural changes?

• What about state?

MGS 2006: AFP Lecture 4 – p.30/45



Example: Space Invaders

MGS 2006: AFP Lecture 4 – p.31/45



Overall game structure

gun

alien

bullet

alien

...

killOrSpawn

ObjInput ObjOutput

} [ObjectOutput]

dpSwitch

route

MGS 2006: AFP Lecture 4 – p.32/45



Dynamic signal function collections

Idea:

• Switch over collections of signal functions.
• On event, “freeze” running signal functions

into collection of signal function continuations,
preserving encapsulated state.

• Modify collection as needed and switch back in.

MGS 2006: AFP Lecture 4 – p.33/45



Dynamic signal function collections

Idea:
• Switch over collections of signal functions.

• On event, “freeze” running signal functions
into collection of signal function continuations,
preserving encapsulated state.

• Modify collection as needed and switch back in.

MGS 2006: AFP Lecture 4 – p.33/45



Dynamic signal function collections

Idea:
• Switch over collections of signal functions.
• On event, “freeze” running signal functions

into collection of signal function continuations,
preserving encapsulated state.

• Modify collection as needed and switch back in.

MGS 2006: AFP Lecture 4 – p.33/45



Dynamic signal function collections

Idea:
• Switch over collections of signal functions.
• On event, “freeze” running signal functions

into collection of signal function continuations,
preserving encapsulated state.

• Modify collection as needed and switch back in.

MGS 2006: AFP Lecture 4 – p.33/45



dpSwitch

Need ability to express:
• How input routed to each signal function.
• When collection changes shape.
• How collection changes shape.

dpSwitch :: Functor col =>

(forall sf . (a -> col sf -> col (b,sf)))

-> col (SF b c)

-> SF (a, col c) (Event d)

-> (col (SF b c) -> d -> SF a (col c))

-> SF a (col c)

MGS 2006: AFP Lecture 4 – p.34/45



dpSwitch

Need ability to express:
• How input routed to each signal function.
• When collection changes shape.
• How collection changes shape.

dpSwitch :: Functor col =>

(forall sf . (a -> col sf -> col (b,sf)))

-> col (SF b c) Routing function

-> SF (a, col c) (Event d)

-> (col (SF b c) -> d -> SF a (col c))

-> SF a (col c)

MGS 2006: AFP Lecture 4 – p.34/45



dpSwitch

Need ability to express:
• How input routed to each signal function.
• When collection changes shape.
• How collection changes shape.

dpSwitch :: Functor col =>

(forall sf . (a -> col sf -> col (b,sf)))

-> col (SF b c) Initial collection

-> SF (a, col c) (Event d)

-> (col (SF b c) -> d -> SF a (col c))

-> SF a (col c)

MGS 2006: AFP Lecture 4 – p.34/45



dpSwitch

Need ability to express:
• How input routed to each signal function.
• When collection changes shape.
• How collection changes shape.

dpSwitch :: Functor col =>

(forall sf . (a -> col sf -> col (b,sf)))

-> col (SF b c) Event source

-> SF (a, col c) (Event d)

-> (col (SF b c) -> d -> SF a (col c))

-> SF a (col c)

MGS 2006: AFP Lecture 4 – p.34/45



dpSwitch

Need ability to express:
• How input routed to each signal function.
• When collection changes shape.
• How collection changes shape.

dpSwitch :: Functor col =>

(forall sf . (a -> col sf -> col (b,sf)))

-> col (SF b c) Function yielding SF to switch into

-> SF (a, col c) (Event d)

-> (col (SF b c) -> d -> SF a (col c))

-> SF a (col c)

MGS 2006: AFP Lecture 4 – p.34/45



Describing the alien behavior (1)

type Object = SF ObjInput ObjOutput

alien :: RandomGen g =>

g -> Position2 -> Velocity -> Object

alien g p0 vyd = proc oi -> do

rec

-- Pick a desired horizontal position

rx <- noiseR (xMin, xMax) g -< ()

smpl <- occasionally g 5 () -< ()

xd <- hold (point2X p0) -< smpl ‘tag‘ rx

...

MGS 2006: AFP Lecture 4 – p.35/45



Describing the alien behavior (2)

...

-- Controller

let axd = 5 * (xd - point2X p)

- 3 * (vector2X v)

ayd = 20 * (vyd - (vector2Y v))

ad = vector2 axd ayd

h = vector2Theta ad

...

MGS 2006: AFP Lecture 4 – p.36/45



Describing the alien behavior (3)

...

-- Physics

let a = vector2Polar

(min alienAccMax

(vector2Rho ad))

h

vp <- iPre v0 -< v

ffi <- forceField -< (p, vp)

v <- (v0 ˆ+ˆ) ˆ<< impulseIntegral

-< (gravity ˆ+ˆ a, ffi)

p <- (p0 .+ˆ) ˆ<< integral -< v

...
MGS 2006: AFP Lecture 4 – p.37/45



Describing the alien behavior (4)

...

-- Shields

sl <- shield -< oiHit oi

die <- edge -< sl <= 0

returnA -< ObjOutput {

ooObsObjState = oosAlien p h v,

ooKillReq = die,

ooSpawnReq = noEvent

}

where

v0 = zeroVector
MGS 2006: AFP Lecture 4 – p.38/45



Other functional approaches?

Transition function operating on world model with
explicit state (e.g. Asteroids by Lüth):

• Model snapshot of world with all state
components.

• Transition function takes input and current
world snapshot to output and the next world
snapshot.

One could also use this technique within Yampa
to avoid switching over dynamic collections.

MGS 2006: AFP Lecture 4 – p.39/45



Why use Yampa, then?

• Yampa provides a lot of functionality for
programming with time-varying values:
- Captures common patterns.
- Carefully designed to facilitate reuse.

• Yampa allows state to be nicely encapsulated
by signal functions:
- Avoids keeping track of all state globally.
- Adding more state usually does not imply

any major changes to type or code
structure.

MGS 2006: AFP Lecture 4 – p.40/45



State in alien

Each of the following signal functions used in
alien encapsulate state:

• noiseR

• occasionally

• hold

• iPre

• forceField

• impulseIntegral

• integral

• shield

• edge

MGS 2006: AFP Lecture 4 – p.41/45



Why not imperative, then?

If state is so important, why not stick to
imperative/object-oriented programming where
we have “state for free”?

• Advantages of declarative programming
retained:
- High abstraction level.
- Referential transparency, algebraic laws:

formal reasoning ought to be simpler.

• Synchronous approach avoids
“event-call-back soup”, meaning robust,
easy-to-understand semantics.

MGS 2006: AFP Lecture 4 – p.42/45



Why not imperative, then?

If state is so important, why not stick to
imperative/object-oriented programming where
we have “state for free”?

• Advantages of declarative programming
retained:
- High abstraction level.
- Referential transparency, algebraic laws:

formal reasoning ought to be simpler.

• Synchronous approach avoids
“event-call-back soup”, meaning robust,
easy-to-understand semantics.

MGS 2006: AFP Lecture 4 – p.42/45



Why not imperative, then?

If state is so important, why not stick to
imperative/object-oriented programming where
we have “state for free”?

• Advantages of declarative programming
retained:
- High abstraction level.
- Referential transparency, algebraic laws:

formal reasoning ought to be simpler.
• Synchronous approach avoids

“event-call-back soup”, meaning robust,
easy-to-understand semantics.

MGS 2006: AFP Lecture 4 – p.42/45



Obtaining Yampa

Yampa 0.92 is available from

http://www.haskell.org/yampa

MGS 2006: AFP Lecture 4 – p.43/45



Reading

• John Hughes. Generalising monads to arrows. Science
of Computer Programming, 37:67–111, May 2000

• John Hughes. Programming with arrows. In Advanced
Functional Programming, 2004. To be published by
Springer Verlag.

• Henrik Nilsson, Antony Courtney, and John Peterson.
Functional reactive programming, continued. In
Proceedings of the 2002 Haskell Workshop, pp. 51–64,
October 2002.

MGS 2006: AFP Lecture 4 – p.44/45



Reading (2)

• Paul Hudak, Antony Courtney, Henrik Nilsson, and
John Peterson. Arrows, robots, and functional reactive
programming. In Advanced Functional Programming,
2002. LNCS 2638, pp. 159–187.

• Tarmo Uustalu and Varmo Vene. The Essence of
Dataflow Programming. 2005

MGS 2006: AFP Lecture 4 – p.45/45


	Reactive programming
	Functional Reactive Programming (1)
	Functional Reactive Programming (2)
	Related languages
	FRP applications
	Yampa?
	Signal functions
	Signal functions and state
	Example: Video tracker
	Signal functions in Yampa
	Example: Robotics (1)
	Example: Robotics (2)
	Example: Robotics (3)
	Yampa and Arrows (1)
	Yampa and Arrows (2)
	Arrows, Monads, and FRP (1)
	Arrows, Monads, and FRP (2)
	The arrow syntactic sugar
	Some further basic signal functions
	A bouncing ball
	Modelling the bouncing ball: part 1
	Events
	Some basic event sources
	Modelling the bouncing ball: part 2
	Switching
	The basic switch
	Modelling the bouncing ball: part 3
	Simulation of bouncing ball
	Highly dynamic system structure?
	Example: Space Invaders
	Overall game structure
	Dynamic signal function collections
		exttt {dpSwitch}
	Describing the alien behavior (1)
	Describing the alien behavior (2)
	Describing the alien behavior (3)
	Describing the alien behavior (4)
	Other functional approaches?
	Why use Yampa, then?
	State in 	exttt {alien}
	Why not imperative, then?
	Obtaining Yampa
	Reading
	Reading (2)

