MGS 2007: ADV Lectures 1 \& 2

Monads and Monad Transformers
Henrik Nilsson

University of Nottingham, UK

Monads (1)

"Shall I be pure or impure?" (Wadler, 1992)

- Absence of effects
- makes programs easier to understand and reason about
- make lazy evaluation viable
- enhances modularity and reuse.
- Effects (state, exceptions, ...) can
- yield concise programs
- facilitate modifications
- improve the efficiency.

Monads (3)

Monads

- promote disciplined use of effects since the type reflects which effects can occur;
- allow great flexibility in tailoring the effect structure to precise needs;
- support changes to the effect structure with minimal impact on the overall program structure;
- allow integration into a pure setting of "real" effects such as
- I/O
- mutable state.

First Two Lectures

Example: A Simple Evaluator

- Effectful computations: motivating examples
- Monads
- The Haskell do-notation
- Some standard monads
- Monad transformers

Making the evaluator safe (1)

```
```

data Maybe a = Nothing | Just a

```
```

data Maybe a = Nothing | Just a
safeEval :: Exp -> Maybe Integer
safeEval :: Exp -> Maybe Integer
safeEval (Lit n) = Just n
safeEval (Lit n) = Just n
safeEval (Add e1 e2) =
safeEval (Add e1 e2) =
case safeEval e1 of
case safeEval e1 of
Nothing -> Nothing
Nothing -> Nothing
Just n1 ->
Just n1 ->
case safeEval e2 of
case safeEval e2 of
Nothing -> Nothing
Nothing -> Nothing
Just n2 -> Just (n1 + n2)

```
```

 Just n2 -> Just (n1 + n2)
    ```
```


Making the evaluator safe (2)

```
```

 case safeEval e1 of
    ```
```

 case safeEval e1 of
 Nothing -> Nothing
 Nothing -> Nothing
 Just n1 ->
 Just n1 ->
 case safeEval e2 of
 case safeEval e2 of
 Nothing -> Nothing
 Nothing -> Nothing
 Just n2 -> Just (n1 - n2)
 Just n2 -> Just (n1 - n2)
 safeEval (Sub e1 e2) =

```
```

safeEval (Sub e1 e2) =

```
```

```
data Exp = Lit Integer
    | Add Exp Exp
    | Sub Exp Exp
    | Mul Exp Exp
    | Div Exp Exp
eval :: Exp -> Integer
eval (Lit n) = n
eval (Add e1 e2) = eval e1 + eval e2
eval (Sub e1 e2) = eval e1 - eval e2
eval (Mul e1 e2) = eval e1 * eval e2
eval (Div e1 e2) = eval e1 'div' eval e2
```

\square

Making the evaluator safe (3)

```
```

safeEval (Mul e1 e2) =

```
```

safeEval (Mul e1 e2) =
case safeEval e1 of
case safeEval e1 of
Nothing -> Nothing
Nothing -> Nothing
Just n1 ->
Just n1 ->
case safeEval e2 of
case safeEval e2 of
Nothing -> Nothing
Nothing -> Nothing
Just n2 -> Just (n1 * n2)

```
```

 Just n2 -> Just (n1 * n2)
    ```
```

Making the evaluator safe (4)

```
safeEval (Div e1 e2) =
    case safeEval e1 of
        Nothing -> Nothing
    Just n1 ->
        case safeEval e2 of
            Nothing -> Nothing
            Just n2 ->
                if n2 == 0
                then Nothing
                else Just (n1 `div` n2)
```


data Tree $a=$ Leaf $a \mid$ Node (Tree a) (Tree a)
numberTree : : Tree a -> Tree Int
numberTree $t=$ fst (ntAux t)
where
ntAux : : Tree a -> Int -> (Tree Int, Int)
ntAux (Leaf _) $n=$ (Leaf $n, n+1$)
ntAux (Node t1 t2) $n=$
let ($t 1^{\prime}, \mathrm{n}^{\prime}$) $=$ ntAux t 1 n
in let ($t 2^{\prime}, \mathrm{n}^{\prime \prime}$) $=$ ntAux $\mathrm{t} 2 \mathrm{n}^{\prime}$
in (Node t1' t2', $n^{\prime \prime}$)

Observations

- Repetitive pattern: threading a counter through a sequence of tree numbering computations.
- It is very easy to pass on the wrong version of the counter!

Can we do better?


```
safeEval :: Exp -> Maybe Integer
safeEval (Lit n) = Just n
safeEval (Add e1 e2) =
    safeEval e1 'evalSeq` (\n1 ->
    safeEval e2 'evalSeq' (\n2 ->
    Just (n1 + n2)))
safeEval (Sub e1 e2) =
    safeEval e1 'evalSeq` (\n1 ->
    safeEval e2 'evalSeq` (\n2 ->
    Just (n1 - n2)))
```


Sequencing evaluations (1)

Sequencing is common to both examples, with the outcome of a computation affecting subsequent computations.

```
evalSeq :: Maybe Integer
    -> (Integer -> Maybe Integer)
    -> Maybe Integer
evalSeq ma f =
    case ma of
        Nothing -> Nothing
        Just a -> f a
```



```
safeEval (Mul e1 e2) =
```

safeEval (Mul e1 e2) =
safeEval e1 'evalSeq` (\n1 -> safeEval e1 'evalSeq` (\n1 ->
safeEval e2 'evalSeq` (\n2 -> safeEval e2 'evalSeq` (\n2 ->
Just (n1 - n2)))
Just (n1 - n2)))
safeEval (Div e1 e2) =
safeEval (Div e1 e2) =
safeEval e1 'evalSeq` (\n1 -> safeEval e1 'evalSeq` (\n1 ->
safeEval e2 'evalSeq' (\n2 ->
safeEval e2 'evalSeq' (\n2 ->
if n2 == 0
if n2 == 0
then Nothing
then Nothing
else Just (n1 'div' n2)))

```
    else Just (n1 'div' n2)))
```


Aside: Scope rules of λ-abstractions

The scope rules of λ-abstractions are such that parentheses can be omitted:

```
safeEval :: Exp -> Maybe Integer
. . .
safeEval (Add e1 e2) =
    safeEval e1 `evalSeq` \n1 ->
    safeEval e2 'evalSeq` \n2 ->
    Just (n1 + n2)
```

```
MGS 2007: ADV Lectures 1&2-p.1772
Inlining evalSeq(2)
safeEval (Add e1 e2) =
    case (safeEval e1) of
        Nothing -> Nothing
        Just n1 -> safeEval e2 `evalSeq` (\n2 -> ...)
=
safeEval (Add e1 e2) =
    case (safeEval e1) of
        Nothing -> Nothing
        Just n1 -> case safeEval e2 of
                    Nothing -> Nothing
                    Just a -> (\n2 -> ...) a

\section*{Inlining evalSeq (1)}
```

safeEval (Add e1 e2) =
safeEval e1 `evalSeq` \n1 ->
safeEval e2 `evalSeq` \n2 ->
Just (n1 + n2)
=
safeEval (Add e1 e2) =
case (safeEval e1) of
Nothing -> Nothing
Just a -> (\n1 -> safeEval e2 ...) a

```

\(=\)
safeEval (Add e1 e2) =
    case (safeEval e1) of
        Nothing -> Nothing
        Just n1 -> case safeEval e2 of
            Nothing -> Nothing
            Just n2 -> (Just n1 + n2)

\section*{Excercise 1: Verify the other cases.}

\section*{Maybe viewed as a computation (1)}
- Consider a value of type Maybe a as denoting a computation of a value of type a that may fail.
- When sequencing possibly failing computations, a natural choice is to fail overall once a subcomputation fails.
- I.e. failure is an effect, implicitly affecting subsequent computations.
- Let's adopt names reflecting our intentions.


\section*{Failing computation:}
```

mbFail :: Maybe a
mbFail = Nothing

```

\section*{Maybe viewed as a computation (2)}

Successful computation of a value:
```

mbReturn :: a -> Maybe a
mbReturn = Just

```

Sequencing of possibly failing computations:
```

mbSeq :: Maybe a -> (a -> Maybe b) -> Maybe b
mbSeq ma f =
case ma of
Nothing -> Nothing
Just a -> f a

```

\section*{The safe evaluator revisited}
```

safeEval :: Exp -> Maybe Integer
safeEval (Lit n) = mbReturn n
safeEval (Add e1 e2) =
safeEval e1 `mbSeq` \n1 ->
safeEval e2 `mbSeq` \n2 ->
mbReturn (n1 + n2)
safeEval (Div e1 e2) =
safeEval e1 `mbSeq` \n1 ->
safeEval e2 `mbSeq` \n2 ->
if n2 == O then mbFail
else mbReturn (n1 `div` n2)))

```

\section*{Stateful Computations (1)}
- A stateful computation consumes a state and returns a result along with a possibly updated state.
- The following type synonym captures this idea:
type S a = Int -> (a, Int)
(Only Int state for the sake of simplicity.)
- A value (function) of type \(S\) a can now be viewed as denoting a stateful computation computing a value of type \(a\).

\section*{Stateful Computations (3)}

Computation of a value without changing the state:
```

sReturn :: a -> S a
sReturn a =

```

Sequencing of stateful computations:
```

sSeq :: S a -> (a -> S b) -> S b
sSeq sa f =

```

\section*{Stateful Computations (2)}
- When sequencing stateful computations, the resulting state should be passed on to the next computation.
- I.e. state updating is an effect, implicitly affecting subsequent computations. (As we would expect.)

Reading and incrementing the state:
```

sInc :: S Int
sInc = \n -> (n, n + 1)

```

\section*{Numbering trees revisited}
```

data Tree a = Leaf a Node (Tree a) (Tree a)
numberTree :: Tree a -> Tree Int
numberTree t = fst (ntAux t 0)
where
ntAux :: Tree a -> S (Tree Int)
ntAux (Leaf _) =
sInc 'sSeq` \n -> sReturn (Leaf n)
ntAux (Node t1 t2) =
ntAux t1 'sSeq' \t1' ->
ntAux t2 'sSeq' \t2' ->
sReturn (Node t1' t2')

```

\section*{Comparison of the examples}
- Both examples characterized by sequencing of effectful computations.
- Both examples could be neatly structured by introducing:
- A type denoting computations
- A function constructing an effect-free computation of a value
- A function constructing a computation by sequencing computations
- In fact, both examples are instances of the general notion of a MONAD.

\section*{Observations}
- The "plumbing" has been captured by the abstractions.
- In particular, there is no longer any risk of "passing on" the wrong version of the state!

\section*{Exercise 2: join and fmap}

Equivalently, the notion of a monad can be captured through the following functions:
```

return :: a -> M a
join :: (M (M a)) -> M a
fmap :: (a -> b) -> (M a -> M b)

```
join "flattens" a computation, fmap "lifts" a function to map computations to computations.
Define join and fmap in terms of >>= (and return), and >>= in terms of join and fmap.


Additionally, the following laws must be satisfied:
\[
\begin{aligned}
\text { return } x \gg=f & =f x \\
m \gg=\text { return } & =m \\
(m \gg=f) \gg=g & =m \gg=(\lambda x \rightarrow f x \gg=g)
\end{aligned}
\]
I.e., return is the right and left identity for \(\gg=\), and \(\gg=\) is associative.

\section*{Exercise 2: Solution}
```

join :: M (M a) -> M a
join mm = mm >>= id
fmap ::(a -> b) -> M a -> M b
fmap f m = m >>= \x -> return (f x)
(>>=) :: M a -> (a -> M b) -> M b
m >>= f = join (fmap f m)

```

\section*{Exercise 3: The Identity Monad}

The Identity Monad can be understood as representing effect-free computations:
```

type I a = a

```
1. Provide suitable definitions of return and >>=.
2. Verify that the monad laws hold for your definitions.

\section*{Exercise 3: Solution}
```

return :: a -> I a
return = id
(>>=) :: I a -> (a -> I b) -> I b
m >>= f = f m
-- or: (>>=) = flip (\$)

```

Simple calculations verify the laws, e.g.:
\[
\begin{aligned}
\text { return } x \gg=f & =\text { id } x \gg=f \\
& =x \gg=f \\
& =f x
\end{aligned}
\]

\section*{Monads in Haskell (2)}

The Haskell monad class has two further methods with default instances:
```

(>>) :: m a -> m b -> m b
m >> k = m >>= _ -> k
fail :: String -> m a
fail s = error s

```

\section*{Monads in Haskell (1)}

In Haskell, the notion of a monad is captured by a Type Class:
```

class Monad m where
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b

```

This allows the names of the common functions to be overloaded, and the sharing of derived definitions.
```

 MGS 2007: ADV Lectures 182 - - 3 3872
    ```

\section*{The Maybe monad in Haskell}
```

instance Monad Maybe where
-- return :: a -> Maybe a
return = Just
-- (>>=) :: Maybe a -> (a -> Maybe b)
-> Maybe b
Nothing >>= _ = Nothing
(Just x) >>= f = f x

```

\section*{Exercise 4: A state monad in Haskell}

Haskell 98 does not permit type synonyms to be instances of classes. Hence we have to define a new type:
```

newtype S a = S (Int -> (a, Int))
unS :: S a -> (Int -> (a, Int))
unS (S f) = f

```

Provide a Monad instance for \(S\).


To be useful, monads need to be equipped with additional operations specific to the effects in question. For example:
```

fail :: String -> Maybe a
fail s = Nothing
catch :: Maybe a -> Maybe a -> Maybe a
m1 'catch' m2 =
case m1 of
Just _ -> m1
Nothing -> m2

```

\section*{Exercise 4: Solution}
```

instance Monad S where
return $a=S(\backslash s->(a, s))$
$m \gg=f=S \$ \backslash s->$
let $\left(a, s^{\prime}\right)=u n s m s$
in uns (f a) s^{\prime}
instance Monad S where
return a = S (\s -> (a, s))
in uns (f a) s'

```


Typical operations on a state monad:
```

set :: Int -> S ()
set a = S (_ -> ((), a))
get :: S Int
get = S (\s -> (s, s))

```

Moreover, there is often a need to "run" a computation. E.g.:
```

runS :: S a -> a
runS m = fst (unS m 0)

```

\section*{The do-notation (1)}

Haskell provides convenient syntax for programming with monads:
do
\(a<-\exp _{1}\)
b \(<-\exp _{2}\)
return \(\exp _{3}\)
is syntactic sugar for
```

exp 1 >>= \a ->
exp 2 >>= \b ->
return exp3

```

\section*{The do-notation (3)}

A let-construct is also provided:
do
\[
\begin{array}{r}
\text { let } \begin{array}{r}
a=\exp _{1} \\
\mathrm{~b}=\exp _{2} \\
\text { return } \exp _{3}
\end{array}, ~
\end{array}
\]
is equivalent to
do
a \(<-\) return \(\exp _{1}\)
b \(<-\) return \(\exp _{2}\)
return \(\exp _{3}\)

\section*{The do-notation (2)}

Computations can be done solely for effect, ignoring the computed value:
do
```

exp
exp}
return exp3

```
is syntactic sugar for
```

exp 1 >>= _ ->
exp 2 >>= _ ->
return exp}

```

\section*{Numbering trees in do-notation}
```

numberTree :: Tree a -> Tree Int
numberTree t = runS (ntAux t)
where
ntAux :: Tree a -> S (Tree Int)
ntAux (Leaf _) = do
n <- get
set (n + 1)
return (Leaf n)
ntAux (Node t1 t2) = do
t1' <- ntAux t1
t2' <- ntAux t2
return (Node t1' t2')

```

\section*{Nondeterminism: The list monad}
instance Monad [] where
return a = [a]
\(\mathrm{m} \gg=\mathrm{f}=\) concat \((\operatorname{map} \mathrm{f} \mathrm{m})\)
fail \(s=[]\)
Example:
do
```

x <- [1, 2]
y <- ['a', 'b']
return (x,y)

```

Result: [(1,'a'), (1,' \(\left.\left.b^{\prime}\right),\left(2,^{\prime} a^{\prime}\right),\left(2, b^{\prime}\right)\right]\)

\section*{The Haskell IO monad}

In Haskell, IO is handled through the IO monad.
IO is abstract! Conceptually:
```

newtype IO a = IO (World -> (a, World))

```

Some operations:
```

putChar :: Char -> IO ()
putStr :: String -> IO ()
putStrLn :: String -> IO ()
getChar :: IO Char
getLine :: IO String
getContents :: String

```

\section*{Monad Transformers (2)}

\section*{However:}
- Not always obvious how: e.g., should the combination of state and error have been
```

newtype SE s a = SE (s -> (Maybe a, s))

```
- Duplication of effort: similar patterns related to specific effects are going to be repeated over and over in the various combinations.

\section*{MGS 2007: ADV Lectures 182 - -.5372 \\ Monad Transformers in Haskell (1)}
- A monad transformer maps monads to monads. This is represented by a type constructor of the following kind:
T :: (* -> *) -> (* -> *)
- Additionally, we require monad transformers to add computational effects. Thus we require a mapping from computations in the underlying monad to computations in the transformed monad:

\section*{Monad Transformers (3)}

Monad Transformers can help:
- A monad transformer transforms a monad by adding support for an additional effect.
- A library of monad transformers can be developed, each adding a specific effect (state, error, ...), allowing the programmer to mix and match.
- A form of aspect-oriented programming.

- These requirements are captured by the following (multi-parameter) type class:
```

class (Monad m, Monad (t m))
=> MonadTransformer t m where
lift :: m a -> t m a

```

\section*{Classes for Specific Effects}

A monad transformer adds specific effects to any monad. Thus there can be many monads supporting the same operations. Introduce classes to handle the overloading:
```

class Monad m => E m where
eFail :: m a
eHandle :: m a -> m a -> m a

```
class Monad \(m=>S m s \mid m \rightarrow s\) where
    sSet : : \(s \rightarrow m\) ()
    sGet : : m s

\section*{The Error Monad Transformer (1)}
```

```
```

newtype ET m a = ET (m (Maybe a))

```
```

```
newtype ET m a = ET (m (Maybe a))
```

```
```

newtype ET m a = ET (m (Maybe a))
unET (ET m) = m
unET (ET m) = m
unET (ET m) = m
instance Monad m => Monad (ET m) where
instance Monad m => Monad (ET m) where
instance Monad m => Monad (ET m) where
return a = ET (return (Just a))
return a = ET (return (Just a))
return a = ET (return (Just a))
m >>= f = ET \$ do
m >>= f = ET \$ do
m >>= f = ET \$ do
ma <- unET m
ma <- unET m
ma <- unET m
case ma of
case ma of
case ma of
Nothing -> return Nothing
Nothing -> return Nothing
Nothing -> return Nothing
Just a -> unET (f a)

```
```

```
            Just a -> unET (f a)
```

```
```

 Just a -> unET (f a)
    ```
```

```

We are going to construct monads by successive transformations of the identity monad:
```

newtype I a = I a
unI (I a) = a
instance Monad I where
return a = I a
m >>= f = f (unI m)
runI :: I a -> a
runI = unI

```

\section*{The Error Monad Transformer (2)}

We need the ability to run transformed monads:
```

runET :: Monad m => ET m a -> m a
runET etm = do
ma <- unET etm
case ma of
Just a -> return a

```

ET is a monad transformer:
```

instance Monad m => MonadTransformer ET m where
lift m = ET (m >>= \a -> return (Just a))

```

\section*{The Error Monad Transformer (3)}

\section*{The Error Monad Transformer (4)}

Any monad transformed by ET is an instance of E :
```

instance Monad m => E (ET m) where
eFail = ET (return Nothing)
m1 'eHandle' m2 = ET \$ do
ma <- unET m1
case ma of
Nothing -> unET m2
Just _ -> return ma

```

\section*{Exercise 5: Running transf. monads}

\section*{Let}
ex1 = eFail 'eHandle' return 1
1. Suggest a possible type for ex1.
2. How can ex1 be run, given your type?

A state monad transformed by ET is a state monad:
```

instance S m s => S (ET m) s where
sSet s = lift (sSet s)
sGet = lift sGet

```

```

ex1 :: ET I Int
ex1 = eFail 'eHandle' return 1
exlr :: Int
exlr = runI (runET exl)

```

\section*{The State Monad Transformer (1)}
```

newtype ST s m a = ST (s -> m (a, s))
unST (ST m) = m
instance Monad m => Monad (ST s m) where
return a = ST (\s -> return (a, s))
m >>= f = ST \$ \s -> do
(a, s') <- unST m s
unST (f a) s'

```

\section*{The State Monad Transformer (3)}

Any monad transformed by \(S T\) is an instance of \(S\) :
```

instance Monad m => S (ST s m) s where
sSet s = ST (_ -> return ((), s))
sGet = ST (\s -> return (s, s))

```

An error monad transformed by ST is an error monad:
```

instance E m => E (ST s m) where
eFail = lift eFail
m1 `eHandle` m2 = ST \$ \s ->
unST m1 s `eHandle` unST m2 s

```
unI (runET (runST ex2a 0))
runI (runST (runET ex2b) 0)

\section*{Exercise 6: Solution}
```

runI (runET (runST ex2a 0)) = 0
runI (runST (runET ex2b) 0) = 3

```

\section*{Exercise 7: Alternative ST?}

\section*{To think about.}

Could ST have been defined in some other way, e.g.
newtype \(\operatorname{ST} \mathrm{s} m \mathrm{a}=\operatorname{ST}(\mathrm{m}(\mathrm{s}->(\mathrm{a}, \mathrm{s})))\)
or perhaps
\[
\text { newtype } S T \mathrm{~s} m \mathrm{a}=\operatorname{ST}(\mathrm{s} \rightarrow>(\mathrm{m} a, \mathrm{~s}))
\]

\footnotetext{


\section*{Reading (2)}
- Sheng Liang, Paul Hudak, Mark Jones. Monad Transformers and Modular Interpreters. In Proceedings of the 22nd ACM Symposium on Principles of Programming Languages (POPL'95), January 1995, San Francisco, California
- Nomaware. All About Monads.
http://www.nomaware.com/monads
}```

