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Monads (1)

“Shall I be pure or impure?” (Wadler, 1992)

• Absence of effects
- makes programs easier to understand and

reason about
- make lazy evaluation viable
- enhances modularity and reuse.

• Effects (state, exceptions, . . . ) can
- yield concise programs
- facilitate modifications
- improve the efficiency.
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Monads (2)
• Monads bridges the gap: allow effectful

programming in a pure setting.
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Monads (2)
• Monads bridges the gap: allow effectful

programming in a pure setting.
• Key idea: Computational types : an object of

type MA denotes a computation of an
object of type A.

• Thus we shall be both pure and impure,
whatever takes our fancy!

• Monads originated in Category Theory.
• Adapted by

- Moggi for structuring denotational semantics
- Wadler for structuring functional programs
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Monads (3)
Monads

• promote disciplined use of effects since the
type reflects which effects can occur;
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Monads (3)
Monads

• promote disciplined use of effects since the
type reflects which effects can occur;

• allow great flexibility in tailoring the effect
structure to precise needs;

• support changes to the effect structure with
minimal impact on the overall program structure;

• allow integration into a pure setting of “real”
effects such as
- I/O
- mutable state.
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First Two Lectures

• Effectful computations: motivating examples
• Monads
• The Haskell do-notation
• Some standard monads
• Monad transformers
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Example: A Simple Evaluator

data Exp = Lit Integer

| Add Exp Exp

| Sub Exp Exp

| Mul Exp Exp

| Div Exp Exp

eval :: Exp -> Integer

eval (Lit n) = n

eval (Add e1 e2) = eval e1 + eval e2

eval (Sub e1 e2) = eval e1 - eval e2

eval (Mul e1 e2) = eval e1 * eval e2

eval (Div e1 e2) = eval e1 ‘div‘ eval e2
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Making the evaluator safe (1)

data Maybe a = Nothing | Just a

safeEval :: Exp -> Maybe Integer

safeEval (Lit n) = Just n

safeEval (Add e1 e2) =

case safeEval e1 of

Nothing -> Nothing

Just n1 ->

case safeEval e2 of

Nothing -> Nothing

Just n2 -> Just (n1 + n2)
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Making the evaluator safe (2)

safeEval (Sub e1 e2) =

case safeEval e1 of

Nothing -> Nothing

Just n1 ->

case safeEval e2 of

Nothing -> Nothing

Just n2 -> Just (n1 - n2)
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Making the evaluator safe (3)

safeEval (Mul e1 e2) =

case safeEval e1 of

Nothing -> Nothing

Just n1 ->

case safeEval e2 of

Nothing -> Nothing

Just n2 -> Just (n1 * n2)
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Making the evaluator safe (4)

safeEval (Div e1 e2) =

case safeEval e1 of

Nothing -> Nothing

Just n1 ->

case safeEval e2 of

Nothing -> Nothing

Just n2 ->

if n2 == 0

then Nothing

else Just (n1 ‘div‘ n2)
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Any common pattern?

Clearly a lot of code duplication!
Can we factor out a common pattern?
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Any common pattern?

Clearly a lot of code duplication!
Can we factor out a common pattern?

We note:
• Sequencing of evaluations (or

computations ).
• If one evaluation fails, fail overall.
• Otherwise, make result available to following

evaluations.
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Example: Numbering trees

data Tree a = Leaf a | Node (Tree a) (Tree a)

numberTree :: Tree a -> Tree Int

numberTree t = fst (ntAux t 0)

where

ntAux :: Tree a -> Int -> (Tree Int,Int)

ntAux (Leaf _) n = (Leaf n, n+1)

ntAux (Node t1 t2) n =

let (t1’, n’) = ntAux t1 n

in let (t2’, n’’) = ntAux t2 n’

in (Node t1’ t2’, n’’)
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Observations

• Repetitive pattern: threading a counter
through a sequence of tree numbering
computations .
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Observations

• Repetitive pattern: threading a counter
through a sequence of tree numbering
computations .

• It is very easy to pass on the wrong version of
the counter!

Can we do better?
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Sequencing evaluations (1)

Sequencing is common to both examples, with
the outcome of a computation affecting
subsequent computations.
evalSeq :: Maybe Integer

-> (Integer -> Maybe Integer)

-> Maybe Integer

evalSeq ma f =

case ma of

Nothing -> Nothing

Just a -> f a
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Sequencing evaluations (2)

safeEval :: Exp -> Maybe Integer

safeEval (Lit n) = Just n

safeEval (Add e1 e2) =

safeEval e1 ‘evalSeq‘ (\n1 ->

safeEval e2 ‘evalSeq‘ (\n2 ->

Just (n1 + n2)))

safeEval (Sub e1 e2) =

safeEval e1 ‘evalSeq‘ (\n1 ->

safeEval e2 ‘evalSeq‘ (\n2 ->

Just (n1 - n2)))
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Sequencing evaluations (3)

safeEval (Mul e1 e2) =

safeEval e1 ‘evalSeq‘ (\n1 ->

safeEval e2 ‘evalSeq‘ (\n2 ->

Just (n1 - n2)))

safeEval (Div e1 e2) =

safeEval e1 ‘evalSeq‘ (\n1 ->

safeEval e2 ‘evalSeq‘ (\n2 ->

if n2 == 0

then Nothing

else Just (n1 ‘div‘ n2)))
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Aside: Scope rules ofλ-abstractions

The scope rules of λ-abstractions are such that
parentheses can be omitted:
safeEval :: Exp -> Maybe Integer

...

safeEval (Add e1 e2) =

safeEval e1 ‘evalSeq‘ \n1 ->

safeEval e2 ‘evalSeq‘ \n2 ->

Just (n1 + n2)

...
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Inlining evalSeq (1)

safeEval (Add e1 e2) =

safeEval e1 ‘evalSeq‘ \n1 ->

safeEval e2 ‘evalSeq‘ \n2 ->

Just (n1 + n2)
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Inlining evalSeq (1)

safeEval (Add e1 e2) =

safeEval e1 ‘evalSeq‘ \n1 ->

safeEval e2 ‘evalSeq‘ \n2 ->

Just (n1 + n2)

=

safeEval (Add e1 e2) =

case (safeEval e1) of

Nothing -> Nothing

Just a -> (\n1 -> safeEval e2 ...) a
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Inlining evalSeq (2)
=

safeEval (Add e1 e2) =

case (safeEval e1) of

Nothing -> Nothing

Just n1 -> safeEval e2 ‘evalSeq‘ (\n2 -> ...)
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Inlining evalSeq (2)
=

safeEval (Add e1 e2) =

case (safeEval e1) of

Nothing -> Nothing

Just n1 -> safeEval e2 ‘evalSeq‘ (\n2 -> ...)

=

safeEval (Add e1 e2) =

case (safeEval e1) of

Nothing -> Nothing

Just n1 -> case safeEval e2 of

Nothing -> Nothing

Just a -> (\n2 -> ...) a
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Inlining evalSeq (3)

=

safeEval (Add e1 e2) =

case (safeEval e1) of

Nothing -> Nothing

Just n1 -> case safeEval e2 of

Nothing -> Nothing

Just n2 -> (Just n1 + n2)

Excercise 1: Verify the other cases.
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Maybe viewed as a computation (1)

• Consider a value of type Maybe a as
denoting a computation of a value of type a
that may fail .
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Maybe viewed as a computation (1)

• Consider a value of type Maybe a as
denoting a computation of a value of type a
that may fail .

• When sequencing possibly failing
computations, a natural choice is to fail
overall once a subcomputation fails.

• I.e. failure is an effect , implicitly affecting
subsequent computations.

• Let’s adopt names reflecting our intentions.
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Maybe viewed as a computation (2)

Successful computation of a value:

mbReturn :: a -> Maybe a

mbReturn = Just

Sequencing of possibly failing computations:

mbSeq :: Maybe a -> (a -> Maybe b) -> Maybe b

mbSeq ma f =

case ma of

Nothing -> Nothing

Just a -> f a
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Maybe viewed as a computation (3)

Failing computation:

mbFail :: Maybe a

mbFail = Nothing
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The safe evaluator revisited

safeEval :: Exp -> Maybe Integer

safeEval (Lit n) = mbReturn n

safeEval (Add e1 e2) =

safeEval e1 ‘mbSeq‘ \n1 ->

safeEval e2 ‘mbSeq‘ \n2 ->

mbReturn (n1 + n2)

...

safeEval (Div e1 e2) =

safeEval e1 ‘mbSeq‘ \n1 ->

safeEval e2 ‘mbSeq‘ \n2 ->

if n2 == 0 then mbFail

else mbReturn (n1 ‘div‘ n2)))
MGS 2007: ADV Lectures 1 & 2 – p.24/72



Stateful Computations (1)

• A stateful computation consumes a state
and returns a result along with a possibly
updated state.
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• The following type synonym captures this
idea:
type S a = Int -> (a, Int)

(Only Int state for the sake of simplicity.)
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Stateful Computations (1)

• A stateful computation consumes a state
and returns a result along with a possibly
updated state.

• The following type synonym captures this
idea:
type S a = Int -> (a, Int)

(Only Int state for the sake of simplicity.)
• A value (function) of type S a can now be

viewed as denoting a stateful computation
computing a value of type a.
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Stateful Computations (2)

• When sequencing stateful computations, the
resulting state should be passed on to the
next computation.
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Stateful Computations (2)

• When sequencing stateful computations, the
resulting state should be passed on to the
next computation.

• I.e. state updating is an effect , implicitly
affecting subsequent computations.
(As we would expect.)
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Stateful Computations (3)

Computation of a value without changing the
state:

sReturn :: a -> S a

sReturn a = ???
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Stateful Computations (3)

Computation of a value without changing the
state:

sReturn :: a -> S a

sReturn a = \n -> (a, n)

Sequencing of stateful computations:

sSeq :: S a -> (a -> S b) -> S b
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Stateful Computations (3)

Computation of a value without changing the
state:

sReturn :: a -> S a

sReturn a = \n -> (a, n)

Sequencing of stateful computations:

sSeq :: S a -> (a -> S b) -> S b

sSeq sa f = \n ->

let (a, n’) = sa n

in f a n’
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Stateful Computations (4)

Reading and incrementing the state:

sInc :: S Int

sInc = \n -> (n, n + 1)
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Numbering trees revisited
data Tree a = Leaf a | Node (Tree a) (Tree a)

numberTree :: Tree a -> Tree Int

numberTree t = fst (ntAux t 0)

where

ntAux :: Tree a -> S (Tree Int)

ntAux (Leaf _) =

sInc ‘sSeq‘ \n -> sReturn (Leaf n)

ntAux (Node t1 t2) =

ntAux t1 ‘sSeq‘ \t1’ ->

ntAux t2 ‘sSeq‘ \t2’ ->

sReturn (Node t1’ t2’)
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Observations

• The “plumbing” has been captured by the
abstractions.
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Observations

• The “plumbing” has been captured by the
abstractions.

• In particular, there is no longer any risk of
“passing on” the wrong version of the state!
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Comparison of the examples

• Both examples characterized by sequencing
of effectful computations.
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of effectful computations.
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introducing:
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Comparison of the examples

• Both examples characterized by sequencing
of effectful computations.

• Both examples could be neatly structured by
introducing:
- A type denoting computations
- A function constructing an effect-free

computation of a value
- A function constructing a computation by

sequencing computations
• In fact, both examples are instances of the

general notion of a MONAD.
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Monads in Functional Programming

A monad is represented by:
• A type constructor

M :: * -> *
M T represents computations of a value of type T.

• A polymorphic function
return :: a -> M a

for lifting a value to a computation.
• A polymorphic function

(>>=) :: M a -> (a -> M b) -> M b

for sequencing computations.
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Exercise 2:join and fmap

Equivalently, the notion of a monad can be
captured through the following functions:

return :: a -> M a
join :: (M (M a)) -> M a
fmap :: (a -> b) -> (M a -> M b)

join “flattens” a computation, fmap “lifts” a
function to map computations to computations.

Define join and fmap in terms of >>= (and
return), and >>= in terms of join and fmap.
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Exercise 2: Solution

join :: M (M a) -> M a

join mm = mm >>= id

fmap :: (a -> b) -> M a -> M b

fmap f m = m >>= \x -> return (f x)

(>>=) :: M a -> (a -> M b) -> M b

m >>= f = join (fmap f m)
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Monad laws

Additionally, the following laws must be satisfied:

return x >>= f = f x

m >>= return = m

(m >>= f) >>= g = m >>= (λx → f x >>= g)

I.e., return is the right and left identity for >>=,
and >>= is associative.
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Exercise 3: The Identity Monad

The Identity Monad can be understood as
representing effect-free computations:

type I a = a

1. Provide suitable definitions of return and
>>=.

2. Verify that the monad laws hold for your
definitions.
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Exercise 3: Solution
return :: a -> I a

return = id

(>>=) :: I a -> (a -> I b) -> I b

m >>= f = f m

-- or: (>>=) = flip ($)

Simple calculations verify the laws, e.g.:

return x >>= f = id x >>= f

= x >>= f

= f x
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Monads in Haskell (1)

In Haskell, the notion of a monad is captured by
a Type Class :

class Monad m where

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

This allows the names of the common functions
to be overloaded, and the sharing of derived
definitions.
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Monads in Haskell (2)

The Haskell monad class has two further
methods with default instances:

(>>) :: m a -> m b -> m b

m >> k = m >>= \_ -> k

fail :: String -> m a

fail s = error s
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The Maybemonad in Haskell

instance Monad Maybe where

-- return :: a -> Maybe a

return = Just

-- (>>=) :: Maybe a -> (a -> Maybe b)

-> Maybe b

Nothing >>= _ = Nothing

(Just x) >>= f = f x
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Exercise 4: A state monad in Haskell

Haskell 98 does not permit type synonyms to be
instances of classes. Hence we have to define a
new type:

newtype S a = S (Int -> (a, Int))

unS :: S a -> (Int -> (a, Int))

unS (S f) = f

Provide a Monad instance for S.
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Exercise 4: Solution

instance Monad S where

return a = S (\s -> (a, s))

m >>= f = S $ \s ->

let (a, s’) = unS m s

in unS (f a) s’
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Monad-specific operations (1)

To be useful, monads need to be equipped with
additional operations specific to the effects in
question. For example:

fail :: String -> Maybe a

fail s = Nothing

catch :: Maybe a -> Maybe a -> Maybe a

m1 ‘catch‘ m2 =

case m1 of

Just _ -> m1

Nothing -> m2
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Monad-specific operations (2)

Typical operations on a state monad:

set :: Int -> S ()

set a = S (\_ -> ((), a))

get :: S Int

get = S (\s -> (s, s))

Moreover, there is often a need to “run” a
computation. E.g.:

runS :: S a -> a

runS m = fst (unS m 0)
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The do-notation (1)

Haskell provides convenient syntax for
programming with monads:

do

a <- exp
1

b <- exp
2

return exp3

is syntactic sugar for

exp
1
>>= \a ->

exp
2
>>= \b ->

return exp
3
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The do-notation (2)

Computations can be done solely for effect,
ignoring the computed value:

do

exp
1

exp
2

return exp3

is syntactic sugar for

exp
1
>>= \_ ->

exp
2
>>= \_ ->

return exp
3
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The do-notation (3)

A let-construct is also provided:

do

let a = exp
1

b = exp
2

return exp3

is equivalent to

do

a <- return exp
1

b <- return exp
2

return exp3
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Numbering trees indo-notation

numberTree :: Tree a -> Tree Int

numberTree t = runS (ntAux t)

where

ntAux :: Tree a -> S (Tree Int)

ntAux (Leaf _) = do

n <- get

set (n + 1)

return (Leaf n)

ntAux (Node t1 t2) = do

t1’ <- ntAux t1

t2’ <- ntAux t2

return (Node t1’ t2’)
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Nondeterminism: The list monad

instance Monad [] where

return a = [a]

m >>= f = concat (map f m)

fail s = []

Example:

do

x <- [1, 2]

y <- [’a’, ’b’]

return (x,y)

Result: [(1,’a’),(1,’b’),(2,’a’),(2,’b’)]
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Environments: The reader monad

instance Monad ((->) e) where

return a = const a

m >>= f = \e -> f (m e) e

getEnv :: ((->) e) e

getEnv = id
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The Haskell IO monad

In Haskell, IO is handled through the IO monad.
IO is abstract ! Conceptually:

newtype IO a = IO (World -> (a, World))

Some operations:

putChar :: Char -> IO ()

putStr :: String -> IO ()

putStrLn :: String -> IO ()

getChar :: IO Char

getLine :: IO String

getContents :: String
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Monad Transformers (1)

What if we need to support more than one type
of effect?
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Monad Transformers (1)

What if we need to support more than one type
of effect?

For example: State and Error/Partiality?

We could implement a suitable monad from
scratch:

newtype SE s a = SE (s -> Maybe (a, s))
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Monad Transformers (2)

However:
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Monad Transformers (2)

However:
• Not always obvious how: e.g., should the

combination of state and error have been
newtype SE s a = SE (s -> (Maybe a, s))
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Monad Transformers (2)

However:
• Not always obvious how: e.g., should the

combination of state and error have been
newtype SE s a = SE (s -> (Maybe a, s))

• Duplication of effort: similar patterns related
to specific effects are going to be repeated
over and over in the various combinations.
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Monad Transformers (3)

Monad Transformers can help:
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Monad Transformers (3)

Monad Transformers can help:
• A monad transformer transforms a monad

by adding support for an additional effect.
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Monad Transformers (3)

Monad Transformers can help:
• A monad transformer transforms a monad

by adding support for an additional effect.
• A library of monad transformers can be

developed, each adding a specific effect
(state, error, . . . ), allowing the programmer to
mix and match.
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Monad Transformers (3)

Monad Transformers can help:
• A monad transformer transforms a monad

by adding support for an additional effect.
• A library of monad transformers can be

developed, each adding a specific effect
(state, error, . . . ), allowing the programmer to
mix and match.

• A form of aspect-oriented programming .
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Monad Transformers in Haskell (1)

• A monad transformer maps monads to
monads. This is represented by a type
constructor of the following kind:
T :: (* -> *) -> (* -> *)
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Monad Transformers in Haskell (1)

• A monad transformer maps monads to
monads. This is represented by a type
constructor of the following kind:
T :: (* -> *) -> (* -> *)

• Additionally, we require monad transformers
to add computational effects. Thus we
require a mapping from computations in the
underlying monad to computations in the
transformed monad:
lift :: M a -> T M a
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Monad Transformers in Haskell (2)

• These requirements are captured by the
following (multi-parameter) type class:

class (Monad m, Monad (t m))

=> MonadTransformer t m where

lift :: m a -> t m a

MGS 2007: ADV Lectures 1 & 2 – p.56/72



Classes for Specific Effects

A monad transformer adds specific effects to any
monad. Thus there can be many monads
supporting the same operations. Introduce
classes to handle the overloading:

class Monad m => E m where

eFail :: m a

eHandle :: m a -> m a -> m a

class Monad m => S m s | m -> s where

sSet :: s -> m ()

sGet :: m s
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The Identity Monad

We are going to construct monads by successive
transformations of the identity monad:

newtype I a = I a

unI (I a) = a

instance Monad I where

return a = I a

m >>= f = f (unI m)

runI :: I a -> a

runI = unI
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The Error Monad Transformer (1)

newtype ET m a = ET (m (Maybe a))

unET (ET m) = m

instance Monad m => Monad (ET m) where

return a = ET (return (Just a))

m >>= f = ET $ do

ma <- unET m

case ma of

Nothing -> return Nothing

Just a -> unET (f a)
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The Error Monad Transformer (2)

We need the ability to run transformed monads:

runET :: Monad m => ET m a -> m a

runET etm = do

ma <- unET etm

case ma of

Just a -> return a

ET is a monad transformer:

instance Monad m => MonadTransformer ET m where

lift m = ET (m >>= \a -> return (Just a))
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The Error Monad Transformer (3)

Any monad transformed by ET is an instance of E:

instance Monad m => E (ET m) where

eFail = ET (return Nothing)

m1 ‘eHandle‘ m2 = ET $ do

ma <- unET m1

case ma of

Nothing -> unET m2

Just _ -> return ma

MGS 2007: ADV Lectures 1 & 2 – p.61/72



The Error Monad Transformer (4)

A state monad transformed by ET is a state
monad:

instance S m s => S (ET m) s where

sSet s = lift (sSet s)

sGet = lift sGet
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Exercise 5: Running transf. monads

Let

ex1 = eFail ‘eHandle‘ return 1

1. Suggest a possible type for ex1.

2. How can ex1 be run, given your type?
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Exercise 5: Solution

ex1 :: ET I Int

ex1 = eFail ‘eHandle‘ return 1

ex1r :: Int

ex1r = runI (runET ex1)
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The State Monad Transformer (1)

newtype ST s m a = ST (s -> m (a, s))

unST (ST m) = m

instance Monad m => Monad (ST s m) where

return a = ST (\s -> return (a, s))

m >>= f = ST $ \s -> do

(a, s’) <- unST m s

unST (f a) s’
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The State Monad Transformer (2)

We need the ability to run transformed monads:

runST :: Monad m => ST s m a -> s -> m a

runST stf s0 = do

(a, _) <- unST stf s0

return a

ST is a monad transformer:

instance Monad m =>

MonadTransformer (ST s) m where

lift m = ST (\s -> m >>= \a ->

return (a, s))
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The State Monad Transformer (3)

Any monad transformed by ST is an instance of S:

instance Monad m => S (ST s m) s where

sSet s = ST (\_ -> return ((), s))

sGet = ST (\s -> return (s, s))

An error monad transformed by ST is an error
monad:

instance E m => E (ST s m) where

eFail = lift eFail

m1 ‘eHandle‘ m2 = ST $ \s ->

unST m1 s ‘eHandle‘ unST m2 s
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Exercise 6: Effect ordering

Consider the code fragment

ex2a :: ST Int (ET I) Int

ex2a= (sSet 3 >> eFail) ‘eHandle‘ sGet

Note that the exact same code fragment also can
be typed as follows:

ex2b :: ET (ST Int I) Int

ex2b = (sSet 42 >> eFail) ‘eHandle‘ sGet

What is

runI (runET (runST ex2a 0))

runI (runST (runET ex2b) 0)
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Exercise 6: Solution

runI (runET (runST ex2a 0)) = 0

runI (runST (runET ex2b) 0) = 3
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Exercise 7: AlternativeST?

To think about.

Could ST have been defined in some other way,
e.g.

newtype ST s m a = ST (m (s -> (a, s)))

or perhaps

newtype ST s m a = ST (s -> (m a, s))
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Reading (1)
• Philip Wadler. The Essence of Functional

Programming. Proceedings of the 19th ACM
Symposium on Principles of Programming Languages
(POPL’92), 1992.

• Nick Benton, John Hughes, Eugenio Moggi. Monads
and Effects. In International Summer School on
Applied Semantics 2000, Caminha, Portugal, 2000.
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Reading (2)
• Sheng Liang, Paul Hudak, Mark Jones. Monad

Transformers and Modular Interpreters. In Proceedings
of the 22nd ACM Symposium on Principles of
Programming Languages (POPL’95), January 1995,
San Francisco, California

• Nomaware. All About Monads.
http://www.nomaware.com/monads
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