
MGS 2007: ADV Lectures 1 & 2
Monads and Monad Transformers

Henrik Nilsson

University of Nottingham, UK

MGS 2007: ADV Lectures 1 & 2 – p.1/72

Monads (1)

“Shall I be pure or impure?” (Wadler, 1992)

MGS 2007: ADV Lectures 1 & 2 – p.2/72

Monads (1)

“Shall I be pure or impure?” (Wadler, 1992)

• Absence of effects
- makes programs easier to understand and

reason about
- make lazy evaluation viable
- enhances modularity and reuse.

MGS 2007: ADV Lectures 1 & 2 – p.2/72

Monads (1)

“Shall I be pure or impure?” (Wadler, 1992)

• Absence of effects
- makes programs easier to understand and

reason about
- make lazy evaluation viable
- enhances modularity and reuse.

• Effects (state, exceptions, . . .) can
- yield concise programs
- facilitate modifications
- improve the efficiency.

MGS 2007: ADV Lectures 1 & 2 – p.2/72

Monads (2)
• Monads bridges the gap: allow effectful

programming in a pure setting.

MGS 2007: ADV Lectures 1 & 2 – p.3/72

Monads (2)
• Monads bridges the gap: allow effectful

programming in a pure setting.
• Key idea: Computational types : an object of

type MA denotes a computation of an
object of type A.

MGS 2007: ADV Lectures 1 & 2 – p.3/72

Monads (2)
• Monads bridges the gap: allow effectful

programming in a pure setting.
• Key idea: Computational types : an object of

type MA denotes a computation of an
object of type A.

• Thus we shall be both pure and impure,
whatever takes our fancy!

MGS 2007: ADV Lectures 1 & 2 – p.3/72

Monads (2)
• Monads bridges the gap: allow effectful

programming in a pure setting.
• Key idea: Computational types : an object of

type MA denotes a computation of an
object of type A.

• Thus we shall be both pure and impure,
whatever takes our fancy!

• Monads originated in Category Theory.

MGS 2007: ADV Lectures 1 & 2 – p.3/72

Monads (2)
• Monads bridges the gap: allow effectful

programming in a pure setting.
• Key idea: Computational types : an object of

type MA denotes a computation of an
object of type A.

• Thus we shall be both pure and impure,
whatever takes our fancy!

• Monads originated in Category Theory.
• Adapted by

- Moggi for structuring denotational semantics
- Wadler for structuring functional programs

MGS 2007: ADV Lectures 1 & 2 – p.3/72

Monads (3)
Monads

• promote disciplined use of effects since the
type reflects which effects can occur;

MGS 2007: ADV Lectures 1 & 2 – p.4/72

Monads (3)
Monads

• promote disciplined use of effects since the
type reflects which effects can occur;

• allow great flexibility in tailoring the effect
structure to precise needs;

MGS 2007: ADV Lectures 1 & 2 – p.4/72

Monads (3)
Monads

• promote disciplined use of effects since the
type reflects which effects can occur;

• allow great flexibility in tailoring the effect
structure to precise needs;

• support changes to the effect structure with
minimal impact on the overall program structure;

MGS 2007: ADV Lectures 1 & 2 – p.4/72

Monads (3)
Monads

• promote disciplined use of effects since the
type reflects which effects can occur;

• allow great flexibility in tailoring the effect
structure to precise needs;

• support changes to the effect structure with
minimal impact on the overall program structure;

• allow integration into a pure setting of “real”
effects such as
- I/O
- mutable state.

MGS 2007: ADV Lectures 1 & 2 – p.4/72

First Two Lectures

• Effectful computations: motivating examples
• Monads
• The Haskell do-notation
• Some standard monads
• Monad transformers

MGS 2007: ADV Lectures 1 & 2 – p.5/72

Example: A Simple Evaluator

data Exp = Lit Integer

| Add Exp Exp

| Sub Exp Exp

| Mul Exp Exp

| Div Exp Exp

eval :: Exp -> Integer

eval (Lit n) = n

eval (Add e1 e2) = eval e1 + eval e2

eval (Sub e1 e2) = eval e1 - eval e2

eval (Mul e1 e2) = eval e1 * eval e2

eval (Div e1 e2) = eval e1 ‘div‘ eval e2
MGS 2007: ADV Lectures 1 & 2 – p.6/72

Making the evaluator safe (1)

data Maybe a = Nothing | Just a

safeEval :: Exp -> Maybe Integer

safeEval (Lit n) = Just n

safeEval (Add e1 e2) =

case safeEval e1 of

Nothing -> Nothing

Just n1 ->

case safeEval e2 of

Nothing -> Nothing

Just n2 -> Just (n1 + n2)

MGS 2007: ADV Lectures 1 & 2 – p.7/72

Making the evaluator safe (2)

safeEval (Sub e1 e2) =

case safeEval e1 of

Nothing -> Nothing

Just n1 ->

case safeEval e2 of

Nothing -> Nothing

Just n2 -> Just (n1 - n2)

MGS 2007: ADV Lectures 1 & 2 – p.8/72

Making the evaluator safe (3)

safeEval (Mul e1 e2) =

case safeEval e1 of

Nothing -> Nothing

Just n1 ->

case safeEval e2 of

Nothing -> Nothing

Just n2 -> Just (n1 * n2)

MGS 2007: ADV Lectures 1 & 2 – p.9/72

Making the evaluator safe (4)

safeEval (Div e1 e2) =

case safeEval e1 of

Nothing -> Nothing

Just n1 ->

case safeEval e2 of

Nothing -> Nothing

Just n2 ->

if n2 == 0

then Nothing

else Just (n1 ‘div‘ n2)

MGS 2007: ADV Lectures 1 & 2 – p.10/72

Any common pattern?

Clearly a lot of code duplication!
Can we factor out a common pattern?

MGS 2007: ADV Lectures 1 & 2 – p.11/72

Any common pattern?

Clearly a lot of code duplication!
Can we factor out a common pattern?

We note:
• Sequencing of evaluations (or

computations).

MGS 2007: ADV Lectures 1 & 2 – p.11/72

Any common pattern?

Clearly a lot of code duplication!
Can we factor out a common pattern?

We note:
• Sequencing of evaluations (or

computations).
• If one evaluation fails, fail overall.

MGS 2007: ADV Lectures 1 & 2 – p.11/72

Any common pattern?

Clearly a lot of code duplication!
Can we factor out a common pattern?

We note:
• Sequencing of evaluations (or

computations).
• If one evaluation fails, fail overall.
• Otherwise, make result available to following

evaluations.

MGS 2007: ADV Lectures 1 & 2 – p.11/72

Example: Numbering trees

data Tree a = Leaf a | Node (Tree a) (Tree a)

numberTree :: Tree a -> Tree Int

numberTree t = fst (ntAux t 0)

where

ntAux :: Tree a -> Int -> (Tree Int,Int)

ntAux (Leaf _) n = (Leaf n, n+1)

ntAux (Node t1 t2) n =

let (t1’, n’) = ntAux t1 n

in let (t2’, n’’) = ntAux t2 n’

in (Node t1’ t2’, n’’)

MGS 2007: ADV Lectures 1 & 2 – p.12/72

Observations

• Repetitive pattern: threading a counter
through a sequence of tree numbering
computations .

MGS 2007: ADV Lectures 1 & 2 – p.13/72

Observations

• Repetitive pattern: threading a counter
through a sequence of tree numbering
computations .

• It is very easy to pass on the wrong version of
the counter!

MGS 2007: ADV Lectures 1 & 2 – p.13/72

Observations

• Repetitive pattern: threading a counter
through a sequence of tree numbering
computations .

• It is very easy to pass on the wrong version of
the counter!

Can we do better?

MGS 2007: ADV Lectures 1 & 2 – p.13/72

Sequencing evaluations (1)

Sequencing is common to both examples, with
the outcome of a computation affecting
subsequent computations.
evalSeq :: Maybe Integer

-> (Integer -> Maybe Integer)

-> Maybe Integer

evalSeq ma f =

case ma of

Nothing -> Nothing

Just a -> f a

MGS 2007: ADV Lectures 1 & 2 – p.14/72

Sequencing evaluations (2)

safeEval :: Exp -> Maybe Integer

safeEval (Lit n) = Just n

safeEval (Add e1 e2) =

safeEval e1 ‘evalSeq‘ (\n1 ->

safeEval e2 ‘evalSeq‘ (\n2 ->

Just (n1 + n2)))

safeEval (Sub e1 e2) =

safeEval e1 ‘evalSeq‘ (\n1 ->

safeEval e2 ‘evalSeq‘ (\n2 ->

Just (n1 - n2)))

MGS 2007: ADV Lectures 1 & 2 – p.15/72

Sequencing evaluations (3)

safeEval (Mul e1 e2) =

safeEval e1 ‘evalSeq‘ (\n1 ->

safeEval e2 ‘evalSeq‘ (\n2 ->

Just (n1 - n2)))

safeEval (Div e1 e2) =

safeEval e1 ‘evalSeq‘ (\n1 ->

safeEval e2 ‘evalSeq‘ (\n2 ->

if n2 == 0

then Nothing

else Just (n1 ‘div‘ n2)))

MGS 2007: ADV Lectures 1 & 2 – p.16/72

Aside: Scope rules ofλ-abstractions

The scope rules of λ-abstractions are such that
parentheses can be omitted:
safeEval :: Exp -> Maybe Integer

...

safeEval (Add e1 e2) =

safeEval e1 ‘evalSeq‘ \n1 ->

safeEval e2 ‘evalSeq‘ \n2 ->

Just (n1 + n2)

...

MGS 2007: ADV Lectures 1 & 2 – p.17/72

Inlining evalSeq (1)

safeEval (Add e1 e2) =

safeEval e1 ‘evalSeq‘ \n1 ->

safeEval e2 ‘evalSeq‘ \n2 ->

Just (n1 + n2)

MGS 2007: ADV Lectures 1 & 2 – p.18/72

Inlining evalSeq (1)

safeEval (Add e1 e2) =

safeEval e1 ‘evalSeq‘ \n1 ->

safeEval e2 ‘evalSeq‘ \n2 ->

Just (n1 + n2)

=

safeEval (Add e1 e2) =

case (safeEval e1) of

Nothing -> Nothing

Just a -> (\n1 -> safeEval e2 ...) a

MGS 2007: ADV Lectures 1 & 2 – p.18/72

Inlining evalSeq (2)
=

safeEval (Add e1 e2) =

case (safeEval e1) of

Nothing -> Nothing

Just n1 -> safeEval e2 ‘evalSeq‘ (\n2 -> ...)

MGS 2007: ADV Lectures 1 & 2 – p.19/72

Inlining evalSeq (2)
=

safeEval (Add e1 e2) =

case (safeEval e1) of

Nothing -> Nothing

Just n1 -> safeEval e2 ‘evalSeq‘ (\n2 -> ...)

=

safeEval (Add e1 e2) =

case (safeEval e1) of

Nothing -> Nothing

Just n1 -> case safeEval e2 of

Nothing -> Nothing

Just a -> (\n2 -> ...) a

MGS 2007: ADV Lectures 1 & 2 – p.19/72

Inlining evalSeq (3)

=

safeEval (Add e1 e2) =

case (safeEval e1) of

Nothing -> Nothing

Just n1 -> case safeEval e2 of

Nothing -> Nothing

Just n2 -> (Just n1 + n2)

Excercise 1: Verify the other cases.

MGS 2007: ADV Lectures 1 & 2 – p.20/72

Maybe viewed as a computation (1)

• Consider a value of type Maybe a as
denoting a computation of a value of type a
that may fail .

MGS 2007: ADV Lectures 1 & 2 – p.21/72

Maybe viewed as a computation (1)

• Consider a value of type Maybe a as
denoting a computation of a value of type a
that may fail .

• When sequencing possibly failing
computations, a natural choice is to fail
overall once a subcomputation fails.

MGS 2007: ADV Lectures 1 & 2 – p.21/72

Maybe viewed as a computation (1)

• Consider a value of type Maybe a as
denoting a computation of a value of type a
that may fail .

• When sequencing possibly failing
computations, a natural choice is to fail
overall once a subcomputation fails.

• I.e. failure is an effect , implicitly affecting
subsequent computations.

MGS 2007: ADV Lectures 1 & 2 – p.21/72

Maybe viewed as a computation (1)

• Consider a value of type Maybe a as
denoting a computation of a value of type a
that may fail .

• When sequencing possibly failing
computations, a natural choice is to fail
overall once a subcomputation fails.

• I.e. failure is an effect , implicitly affecting
subsequent computations.

• Let’s adopt names reflecting our intentions.

MGS 2007: ADV Lectures 1 & 2 – p.21/72

Maybe viewed as a computation (2)

Successful computation of a value:

mbReturn :: a -> Maybe a

mbReturn = Just

Sequencing of possibly failing computations:

mbSeq :: Maybe a -> (a -> Maybe b) -> Maybe b

mbSeq ma f =

case ma of

Nothing -> Nothing

Just a -> f a

MGS 2007: ADV Lectures 1 & 2 – p.22/72

Maybe viewed as a computation (3)

Failing computation:

mbFail :: Maybe a

mbFail = Nothing

MGS 2007: ADV Lectures 1 & 2 – p.23/72

The safe evaluator revisited

safeEval :: Exp -> Maybe Integer

safeEval (Lit n) = mbReturn n

safeEval (Add e1 e2) =

safeEval e1 ‘mbSeq‘ \n1 ->

safeEval e2 ‘mbSeq‘ \n2 ->

mbReturn (n1 + n2)

...

safeEval (Div e1 e2) =

safeEval e1 ‘mbSeq‘ \n1 ->

safeEval e2 ‘mbSeq‘ \n2 ->

if n2 == 0 then mbFail

else mbReturn (n1 ‘div‘ n2)))
MGS 2007: ADV Lectures 1 & 2 – p.24/72

Stateful Computations (1)

• A stateful computation consumes a state
and returns a result along with a possibly
updated state.

MGS 2007: ADV Lectures 1 & 2 – p.25/72

Stateful Computations (1)

• A stateful computation consumes a state
and returns a result along with a possibly
updated state.

• The following type synonym captures this
idea:
type S a = Int -> (a, Int)

(Only Int state for the sake of simplicity.)

MGS 2007: ADV Lectures 1 & 2 – p.25/72

Stateful Computations (1)

• A stateful computation consumes a state
and returns a result along with a possibly
updated state.

• The following type synonym captures this
idea:
type S a = Int -> (a, Int)

(Only Int state for the sake of simplicity.)
• A value (function) of type S a can now be

viewed as denoting a stateful computation
computing a value of type a.

MGS 2007: ADV Lectures 1 & 2 – p.25/72

Stateful Computations (2)

• When sequencing stateful computations, the
resulting state should be passed on to the
next computation.

MGS 2007: ADV Lectures 1 & 2 – p.26/72

Stateful Computations (2)

• When sequencing stateful computations, the
resulting state should be passed on to the
next computation.

• I.e. state updating is an effect , implicitly
affecting subsequent computations.
(As we would expect.)

MGS 2007: ADV Lectures 1 & 2 – p.26/72

Stateful Computations (3)

Computation of a value without changing the
state:

sReturn :: a -> S a

sReturn a = ???

MGS 2007: ADV Lectures 1 & 2 – p.27/72

Stateful Computations (3)

Computation of a value without changing the
state:

sReturn :: a -> S a

sReturn a = \n -> (a, n)

MGS 2007: ADV Lectures 1 & 2 – p.27/72

Stateful Computations (3)

Computation of a value without changing the
state:

sReturn :: a -> S a

sReturn a = \n -> (a, n)

Sequencing of stateful computations:

sSeq :: S a -> (a -> S b) -> S b

sSeq sa f = ???

MGS 2007: ADV Lectures 1 & 2 – p.27/72

Stateful Computations (3)

Computation of a value without changing the
state:

sReturn :: a -> S a

sReturn a = \n -> (a, n)

Sequencing of stateful computations:

sSeq :: S a -> (a -> S b) -> S b

sSeq sa f = \n ->

let (a, n’) = sa n

in f a n’

MGS 2007: ADV Lectures 1 & 2 – p.27/72

Stateful Computations (4)

Reading and incrementing the state:

sInc :: S Int

sInc = \n -> (n, n + 1)

MGS 2007: ADV Lectures 1 & 2 – p.28/72

Numbering trees revisited
data Tree a = Leaf a | Node (Tree a) (Tree a)

numberTree :: Tree a -> Tree Int

numberTree t = fst (ntAux t 0)

where

ntAux :: Tree a -> S (Tree Int)

ntAux (Leaf _) =

sInc ‘sSeq‘ \n -> sReturn (Leaf n)

ntAux (Node t1 t2) =

ntAux t1 ‘sSeq‘ \t1’ ->

ntAux t2 ‘sSeq‘ \t2’ ->

sReturn (Node t1’ t2’)
MGS 2007: ADV Lectures 1 & 2 – p.29/72

Observations

• The “plumbing” has been captured by the
abstractions.

MGS 2007: ADV Lectures 1 & 2 – p.30/72

Observations

• The “plumbing” has been captured by the
abstractions.

• In particular, there is no longer any risk of
“passing on” the wrong version of the state!

MGS 2007: ADV Lectures 1 & 2 – p.30/72

Comparison of the examples

• Both examples characterized by sequencing
of effectful computations.

MGS 2007: ADV Lectures 1 & 2 – p.31/72

Comparison of the examples

• Both examples characterized by sequencing
of effectful computations.

• Both examples could be neatly structured by
introducing:

MGS 2007: ADV Lectures 1 & 2 – p.31/72

Comparison of the examples

• Both examples characterized by sequencing
of effectful computations.

• Both examples could be neatly structured by
introducing:
- A type denoting computations

MGS 2007: ADV Lectures 1 & 2 – p.31/72

Comparison of the examples

• Both examples characterized by sequencing
of effectful computations.

• Both examples could be neatly structured by
introducing:
- A type denoting computations
- A function constructing an effect-free

computation of a value

MGS 2007: ADV Lectures 1 & 2 – p.31/72

Comparison of the examples

• Both examples characterized by sequencing
of effectful computations.

• Both examples could be neatly structured by
introducing:
- A type denoting computations
- A function constructing an effect-free

computation of a value
- A function constructing a computation by

sequencing computations

MGS 2007: ADV Lectures 1 & 2 – p.31/72

Comparison of the examples

• Both examples characterized by sequencing
of effectful computations.

• Both examples could be neatly structured by
introducing:
- A type denoting computations
- A function constructing an effect-free

computation of a value
- A function constructing a computation by

sequencing computations
• In fact, both examples are instances of the

general notion of a MONAD.
MGS 2007: ADV Lectures 1 & 2 – p.31/72

Monads in Functional Programming

A monad is represented by:
• A type constructor

M :: * -> *
M T represents computations of a value of type T.

• A polymorphic function
return :: a -> M a

for lifting a value to a computation.
• A polymorphic function

(>>=) :: M a -> (a -> M b) -> M b

for sequencing computations.
MGS 2007: ADV Lectures 1 & 2 – p.32/72

Exercise 2:join and fmap

Equivalently, the notion of a monad can be
captured through the following functions:

return :: a -> M a
join :: (M (M a)) -> M a
fmap :: (a -> b) -> (M a -> M b)

join “flattens” a computation, fmap “lifts” a
function to map computations to computations.

Define join and fmap in terms of >>= (and
return), and >>= in terms of join and fmap.

MGS 2007: ADV Lectures 1 & 2 – p.33/72

Exercise 2: Solution

join :: M (M a) -> M a

join mm = mm >>= id

fmap :: (a -> b) -> M a -> M b

fmap f m = m >>= \x -> return (f x)

(>>=) :: M a -> (a -> M b) -> M b

m >>= f = join (fmap f m)

MGS 2007: ADV Lectures 1 & 2 – p.34/72

Monad laws

Additionally, the following laws must be satisfied:

return x >>= f = f x

m >>= return = m

(m >>= f) >>= g = m >>= (λx → f x >>= g)

I.e., return is the right and left identity for >>=,
and >>= is associative.

MGS 2007: ADV Lectures 1 & 2 – p.35/72

Exercise 3: The Identity Monad

The Identity Monad can be understood as
representing effect-free computations:

type I a = a

1. Provide suitable definitions of return and
>>=.

2. Verify that the monad laws hold for your
definitions.

MGS 2007: ADV Lectures 1 & 2 – p.36/72

Exercise 3: Solution
return :: a -> I a

return = id

(>>=) :: I a -> (a -> I b) -> I b

m >>= f = f m

-- or: (>>=) = flip ($)

Simple calculations verify the laws, e.g.:

return x >>= f = id x >>= f

= x >>= f

= f x

MGS 2007: ADV Lectures 1 & 2 – p.37/72

Monads in Haskell (1)

In Haskell, the notion of a monad is captured by
a Type Class :

class Monad m where

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

This allows the names of the common functions
to be overloaded, and the sharing of derived
definitions.

MGS 2007: ADV Lectures 1 & 2 – p.38/72

Monads in Haskell (2)

The Haskell monad class has two further
methods with default instances:

(>>) :: m a -> m b -> m b

m >> k = m >>= _ -> k

fail :: String -> m a

fail s = error s

MGS 2007: ADV Lectures 1 & 2 – p.39/72

The Maybemonad in Haskell

instance Monad Maybe where

-- return :: a -> Maybe a

return = Just

-- (>>=) :: Maybe a -> (a -> Maybe b)

-> Maybe b

Nothing >>= _ = Nothing

(Just x) >>= f = f x

MGS 2007: ADV Lectures 1 & 2 – p.40/72

Exercise 4: A state monad in Haskell

Haskell 98 does not permit type synonyms to be
instances of classes. Hence we have to define a
new type:

newtype S a = S (Int -> (a, Int))

unS :: S a -> (Int -> (a, Int))

unS (S f) = f

Provide a Monad instance for S.

MGS 2007: ADV Lectures 1 & 2 – p.41/72

Exercise 4: Solution

instance Monad S where

return a = S (\s -> (a, s))

m >>= f = S $ \s ->

let (a, s’) = unS m s

in unS (f a) s’

MGS 2007: ADV Lectures 1 & 2 – p.42/72

Monad-specific operations (1)

To be useful, monads need to be equipped with
additional operations specific to the effects in
question. For example:

fail :: String -> Maybe a

fail s = Nothing

catch :: Maybe a -> Maybe a -> Maybe a

m1 ‘catch‘ m2 =

case m1 of

Just _ -> m1

Nothing -> m2
MGS 2007: ADV Lectures 1 & 2 – p.43/72

Monad-specific operations (2)

Typical operations on a state monad:

set :: Int -> S ()

set a = S (_ -> ((), a))

get :: S Int

get = S (\s -> (s, s))

Moreover, there is often a need to “run” a
computation. E.g.:

runS :: S a -> a

runS m = fst (unS m 0)

MGS 2007: ADV Lectures 1 & 2 – p.44/72

The do-notation (1)

Haskell provides convenient syntax for
programming with monads:

do

a <- exp
1

b <- exp
2

return exp3

is syntactic sugar for

exp
1
>>= \a ->

exp
2
>>= \b ->

return exp
3

MGS 2007: ADV Lectures 1 & 2 – p.45/72

The do-notation (2)

Computations can be done solely for effect,
ignoring the computed value:

do

exp
1

exp
2

return exp3

is syntactic sugar for

exp
1
>>= _ ->

exp
2
>>= _ ->

return exp
3

MGS 2007: ADV Lectures 1 & 2 – p.46/72

The do-notation (3)

A let-construct is also provided:

do

let a = exp
1

b = exp
2

return exp3

is equivalent to

do

a <- return exp
1

b <- return exp
2

return exp3

MGS 2007: ADV Lectures 1 & 2 – p.47/72

Numbering trees indo-notation

numberTree :: Tree a -> Tree Int

numberTree t = runS (ntAux t)

where

ntAux :: Tree a -> S (Tree Int)

ntAux (Leaf _) = do

n <- get

set (n + 1)

return (Leaf n)

ntAux (Node t1 t2) = do

t1’ <- ntAux t1

t2’ <- ntAux t2

return (Node t1’ t2’)
MGS 2007: ADV Lectures 1 & 2 – p.48/72

Nondeterminism: The list monad

instance Monad [] where

return a = [a]

m >>= f = concat (map f m)

fail s = []

Example:

do

x <- [1, 2]

y <- [’a’, ’b’]

return (x,y)

Result: [(1,’a’),(1,’b’),(2,’a’),(2,’b’)]
MGS 2007: ADV Lectures 1 & 2 – p.49/72

Environments: The reader monad

instance Monad ((->) e) where

return a = const a

m >>= f = \e -> f (m e) e

getEnv :: ((->) e) e

getEnv = id

MGS 2007: ADV Lectures 1 & 2 – p.50/72

The Haskell IO monad

In Haskell, IO is handled through the IO monad.
IO is abstract ! Conceptually:

newtype IO a = IO (World -> (a, World))

Some operations:

putChar :: Char -> IO ()

putStr :: String -> IO ()

putStrLn :: String -> IO ()

getChar :: IO Char

getLine :: IO String

getContents :: String

MGS 2007: ADV Lectures 1 & 2 – p.51/72

Monad Transformers (1)

What if we need to support more than one type
of effect?

MGS 2007: ADV Lectures 1 & 2 – p.52/72

Monad Transformers (1)

What if we need to support more than one type
of effect?

For example: State and Error/Partiality?

MGS 2007: ADV Lectures 1 & 2 – p.52/72

Monad Transformers (1)

What if we need to support more than one type
of effect?

For example: State and Error/Partiality?

We could implement a suitable monad from
scratch:

newtype SE s a = SE (s -> Maybe (a, s))

MGS 2007: ADV Lectures 1 & 2 – p.52/72

Monad Transformers (2)

However:

MGS 2007: ADV Lectures 1 & 2 – p.53/72

Monad Transformers (2)

However:
• Not always obvious how: e.g., should the

combination of state and error have been
newtype SE s a = SE (s -> (Maybe a, s))

MGS 2007: ADV Lectures 1 & 2 – p.53/72

Monad Transformers (2)

However:
• Not always obvious how: e.g., should the

combination of state and error have been
newtype SE s a = SE (s -> (Maybe a, s))

• Duplication of effort: similar patterns related
to specific effects are going to be repeated
over and over in the various combinations.

MGS 2007: ADV Lectures 1 & 2 – p.53/72

Monad Transformers (3)

Monad Transformers can help:

MGS 2007: ADV Lectures 1 & 2 – p.54/72

Monad Transformers (3)

Monad Transformers can help:
• A monad transformer transforms a monad

by adding support for an additional effect.

MGS 2007: ADV Lectures 1 & 2 – p.54/72

Monad Transformers (3)

Monad Transformers can help:
• A monad transformer transforms a monad

by adding support for an additional effect.
• A library of monad transformers can be

developed, each adding a specific effect
(state, error, . . .), allowing the programmer to
mix and match.

MGS 2007: ADV Lectures 1 & 2 – p.54/72

Monad Transformers (3)

Monad Transformers can help:
• A monad transformer transforms a monad

by adding support for an additional effect.
• A library of monad transformers can be

developed, each adding a specific effect
(state, error, . . .), allowing the programmer to
mix and match.

• A form of aspect-oriented programming .

MGS 2007: ADV Lectures 1 & 2 – p.54/72

Monad Transformers in Haskell (1)

• A monad transformer maps monads to
monads. This is represented by a type
constructor of the following kind:
T :: (* -> *) -> (* -> *)

MGS 2007: ADV Lectures 1 & 2 – p.55/72

Monad Transformers in Haskell (1)

• A monad transformer maps monads to
monads. This is represented by a type
constructor of the following kind:
T :: (* -> *) -> (* -> *)

• Additionally, we require monad transformers
to add computational effects. Thus we
require a mapping from computations in the
underlying monad to computations in the
transformed monad:
lift :: M a -> T M a

MGS 2007: ADV Lectures 1 & 2 – p.55/72

Monad Transformers in Haskell (2)

• These requirements are captured by the
following (multi-parameter) type class:

class (Monad m, Monad (t m))

=> MonadTransformer t m where

lift :: m a -> t m a

MGS 2007: ADV Lectures 1 & 2 – p.56/72

Classes for Specific Effects

A monad transformer adds specific effects to any
monad. Thus there can be many monads
supporting the same operations. Introduce
classes to handle the overloading:

class Monad m => E m where

eFail :: m a

eHandle :: m a -> m a -> m a

class Monad m => S m s | m -> s where

sSet :: s -> m ()

sGet :: m s
MGS 2007: ADV Lectures 1 & 2 – p.57/72

The Identity Monad

We are going to construct monads by successive
transformations of the identity monad:

newtype I a = I a

unI (I a) = a

instance Monad I where

return a = I a

m >>= f = f (unI m)

runI :: I a -> a

runI = unI
MGS 2007: ADV Lectures 1 & 2 – p.58/72

The Error Monad Transformer (1)

newtype ET m a = ET (m (Maybe a))

unET (ET m) = m

instance Monad m => Monad (ET m) where

return a = ET (return (Just a))

m >>= f = ET $ do

ma <- unET m

case ma of

Nothing -> return Nothing

Just a -> unET (f a)

MGS 2007: ADV Lectures 1 & 2 – p.59/72

The Error Monad Transformer (2)

We need the ability to run transformed monads:

runET :: Monad m => ET m a -> m a

runET etm = do

ma <- unET etm

case ma of

Just a -> return a

ET is a monad transformer:

instance Monad m => MonadTransformer ET m where

lift m = ET (m >>= \a -> return (Just a))

MGS 2007: ADV Lectures 1 & 2 – p.60/72

The Error Monad Transformer (3)

Any monad transformed by ET is an instance of E:

instance Monad m => E (ET m) where

eFail = ET (return Nothing)

m1 ‘eHandle‘ m2 = ET $ do

ma <- unET m1

case ma of

Nothing -> unET m2

Just _ -> return ma

MGS 2007: ADV Lectures 1 & 2 – p.61/72

The Error Monad Transformer (4)

A state monad transformed by ET is a state
monad:

instance S m s => S (ET m) s where

sSet s = lift (sSet s)

sGet = lift sGet

MGS 2007: ADV Lectures 1 & 2 – p.62/72

Exercise 5: Running transf. monads

Let

ex1 = eFail ‘eHandle‘ return 1

1. Suggest a possible type for ex1.

2. How can ex1 be run, given your type?

MGS 2007: ADV Lectures 1 & 2 – p.63/72

Exercise 5: Solution

ex1 :: ET I Int

ex1 = eFail ‘eHandle‘ return 1

ex1r :: Int

ex1r = runI (runET ex1)

MGS 2007: ADV Lectures 1 & 2 – p.64/72

The State Monad Transformer (1)

newtype ST s m a = ST (s -> m (a, s))

unST (ST m) = m

instance Monad m => Monad (ST s m) where

return a = ST (\s -> return (a, s))

m >>= f = ST $ \s -> do

(a, s’) <- unST m s

unST (f a) s’

MGS 2007: ADV Lectures 1 & 2 – p.65/72

The State Monad Transformer (2)

We need the ability to run transformed monads:

runST :: Monad m => ST s m a -> s -> m a

runST stf s0 = do

(a, _) <- unST stf s0

return a

ST is a monad transformer:

instance Monad m =>

MonadTransformer (ST s) m where

lift m = ST (\s -> m >>= \a ->

return (a, s))

MGS 2007: ADV Lectures 1 & 2 – p.66/72

The State Monad Transformer (3)

Any monad transformed by ST is an instance of S:

instance Monad m => S (ST s m) s where

sSet s = ST (_ -> return ((), s))

sGet = ST (\s -> return (s, s))

An error monad transformed by ST is an error
monad:

instance E m => E (ST s m) where

eFail = lift eFail

m1 ‘eHandle‘ m2 = ST $ \s ->

unST m1 s ‘eHandle‘ unST m2 s

MGS 2007: ADV Lectures 1 & 2 – p.67/72

Exercise 6: Effect ordering

Consider the code fragment

ex2a :: ST Int (ET I) Int

ex2a= (sSet 3 >> eFail) ‘eHandle‘ sGet

Note that the exact same code fragment also can
be typed as follows:

ex2b :: ET (ST Int I) Int

ex2b = (sSet 42 >> eFail) ‘eHandle‘ sGet

What is

runI (runET (runST ex2a 0))

runI (runST (runET ex2b) 0)

MGS 2007: ADV Lectures 1 & 2 – p.68/72

Exercise 6: Solution

runI (runET (runST ex2a 0)) = 0

runI (runST (runET ex2b) 0) = 3

MGS 2007: ADV Lectures 1 & 2 – p.69/72

Exercise 7: AlternativeST?

To think about.

Could ST have been defined in some other way,
e.g.

newtype ST s m a = ST (m (s -> (a, s)))

or perhaps

newtype ST s m a = ST (s -> (m a, s))

MGS 2007: ADV Lectures 1 & 2 – p.70/72

Reading (1)
• Philip Wadler. The Essence of Functional

Programming. Proceedings of the 19th ACM
Symposium on Principles of Programming Languages
(POPL’92), 1992.

• Nick Benton, John Hughes, Eugenio Moggi. Monads
and Effects. In International Summer School on
Applied Semantics 2000, Caminha, Portugal, 2000.

MGS 2007: ADV Lectures 1 & 2 – p.71/72

Reading (2)
• Sheng Liang, Paul Hudak, Mark Jones. Monad

Transformers and Modular Interpreters. In Proceedings
of the 22nd ACM Symposium on Principles of
Programming Languages (POPL’95), January 1995,
San Francisco, California

• Nomaware. All About Monads.
http://www.nomaware.com/monads

MGS 2007: ADV Lectures 1 & 2 – p.72/72

	Monads (1)
	Monads (2)
	Monads (3)
	First Two Lectures
	Example: A Simple Evaluator
	Making the evaluator safe (1)
	Making the evaluator safe (2)
	Making the evaluator safe (3)
	Making the evaluator safe (4)
	Any common pattern?
	Example: Numbering trees
	Observations
	Sequencing evaluations (1)
	Sequencing evaluations (2)
	Sequencing evaluations (3)
	Aside: Scope rules of $lambda $-abstractions
	Inlining 	exttt {evalSeq} ; (1)
	Inlining 	exttt {evalSeq} ; (2)
	Inlining 	exttt {evalSeq} ; (3)
		exttt {Maybe} viewed as a computation (1)
		exttt {Maybe} viewed as a computation (2)
		exttt {Maybe} viewed as a computation (3)
	The safe evaluator revisited
	Stateful Computations (1)
	Stateful Computations (2)
	Stateful Computations (3)
	Stateful Computations (4)
	Numbering trees revisited
	Observations
	Comparison of the examples
	Monads in Functional Programming
	Exercise 2: 	exttt {join} and 	exttt {fmap}
	Exercise 2: Solution
	Monad laws
	Exercise 3: The Identity Monad
	Exercise 3: Solution
	Monads in Haskell (1)
	Monads in Haskell (2)
	The 	exttt {Maybe} monad in Haskell
	Exercise 4: A state monad in Haskell
	Exercise 4: Solution
	Monad-specific operations (1)
	Monad-specific operations (2)
	The 	exttt {do}-notation (1)
	The 	exttt {do}-notation (2)
	The 	exttt {do}-notation (3)
	Numbering trees in 	exttt {do}-notation
	Nondeterminism: The list monad
	Environments: The reader monad
	The Haskell IO monad
	Monad Transformers (1)
	Monad Transformers (2)
	Monad Transformers (3)
	Monad Transformers in Haskell (1)
	Monad Transformers in Haskell (2)
	Classes for Specific Effects
	The Identity Monad
	The Error Monad Transformer (1)
	The Error Monad Transformer (2)
	The Error Monad Transformer (3)
	The Error Monad Transformer (4)
	Exercise 5: Running transf. monads
	Exercise 5: Solution
	The State Monad Transformer (1)
	The State Monad Transformer (2)
	The State Monad Transformer (3)
	Exercise 6: Effect ordering
	Exercise 6: Solution
	Exercise 7: Alternative 	exttt {ST}?
	Reading (1)
	Reading (2)

