Henrik Nilsson

University of Nottingham, UK

Arrows (2)

But systems can be complex:

ﬂ>_l I B 54.{ >

NJ

]

-

How many and what combinators do we need
to be able to describe arbitrary systems?

MGS 2007: ADV Lecture 3 — p.3/46

Arrows (1)

System descriptions in the form of block
diagrams are very common. Blocks have inputs
and outputs and can be combined into larger
blocks. For example, serial composition:

S g >

A combinator can be defined that captures this
idea:

(>>>) :: Bab->Bbc->Bac

g

Arrows (3)

John Hughes’ arrow framework:

+ Abstract data type interface for function-like
types (or “blocks”, if you prefer).

« Particularly suitable for types representing
process-like computations.

+ Related to monads, since arrows are
computations, but more general.

 Provides a minimal set of “wiring”
combinators.

_ ves R RO STt

What is an arrow? (1) What is an arrow? (2)

« A type constructor a of arity two. These diagrams convey the general idea:

« Three operators:
~ lifting: —OT— / 8
arr :: (b->c) ->abc arr f f>>> g
- composition:
(>>>) :: abc->acd->abd
- widening:
first :: abc->a(b,d (c,d)

« A set of algebraic laws that must hold.

_ oS ROt 3ot

The Ar r owclass Functions are arrows (1)

v

v
~
v

v

In Haskell, a type class is used to capture these Functions are a simple example of arrows, with
ideas (except for the laws): (->) as the arrow type constructor.
cl ass Arrow a where Exercise 1: Suggest suitable definitions of
arr o (b->c) ->abec carr
(>>>) :: abc->acd->abd
first :: abc->a(bd) (c d < (>>>)
o« first

for this case!

(We have not looked at what the laws are yet, but
they are “natural”.)

_ rossa ot s Te e _ ves s ROt STt

Functions are arrows (2)

Functions are arrows (3)

Solution: «f >>g =\a ->g (f a) or
carr =id ef >qg=¢9g . f or even
To see this, recall c(>>>) = flip (.)

id ot ->t

arr :: (b->¢) ->abc «first f =\(b,d) -> (f b,d)

Instantiate with

a = (-
t = b->c = (->) bc

_ oS ROt s ot _ ves T RO s e

Functions are arrows (4) Some arrow laws

Ar r owinstance declaration for functions:

_ (f >>>g) >> h = f >>> (g >>> h)
I nstance A”O‘N_é'>) wher e arr (f >>>g) = arr f >> arr g
arr =1 .
(>>>) =flip (.) arr id >>f = f |
first f =\ (b,d) -> (f b,d) fo=1f >>arr id

first (arr f) = arr (first f)
first (f >>9g) = first f >>> first ¢

Exercise 2: Draw diagrams illustrating the first
and last law!

_ Moo ROt o _

The | oop combinator (1) The | oop combinator (2)

Another important operator is | oop: a fixed-point Not all arrow instances support | oop. It is thus a
operator used to express recursive arrows or method of a separate class:
feedback:
- R class Arrow a => ArrowLoop a where
< " loop :: a (b, d) (c, d ->abc
Q—) Remarkably, the four combinators ar r , >>>,
| oop f first,and| oop are sufficient to express any

conceivable wiring!

2
2

Some more arrow combinators (1) Some more arrow combinators (2)
second :: Arrow a => As diagrams:

abc->a(db (drc) R o 7 >
(***) :: Arrow a => < > o ¢ >

abc->ade->a(b,d (c,e) second J e
(&&&) :: Arrow a =>

abc->abd->ab(cd f >

_*<:
g »>
[&&& g

g

Some more arrow combinators (3) Exercise 3

second :: Arrow a => a b ¢ -> a (d,b) (d,c) Describe the following circuit using arrow

second T = arr swap >>> Tirst T >>> arr swap combinators:

swap (X,y) = (¥,X) » al o a2

**) :-: Arrow a => T
abc->ade ->a (b,d) (c,e) o] a3

f *** g = first T >>> second ¢

al, a2, a3 :: A Doubl e Doubl e

(&&&) :: Arrow a =>a b c ->abd->ab (c,d)
f &&& g = arr (\x->(x,x)) >>> (F *** g)

Exercise 3: One solution Exercise 3: Another solution
Exercise 3: Describe the following circuit using Exercise 3: Describe the following circuit:
arrow combinators: J a1 J a0

» al » a2 g g T
> > \ + —>
VN » a3 —
o a3 —

al, a2, a3 :: A Doubl e Doubl e
al, a2, a3 :: A Doubl e Doubl e

circuit_v2 :: A Doubl e Double

circuit_vl :: A Doubl e Double circuit_v2 = arr (\x -> (x,x))
circuit vl = (al &&& arr id) >>> first al

>>> (a2 *** a3l) >>> (a2 *** a3)

>>> arr (uncurry (+)) >>> arr (uncurry (+))

_ Moo RO e _ ves T RO a0

Note on the definition of (***) (2)

Note on the definition of (***) (1)

Are the following two definitions of (** *) Similarly

i ?
eqL"Va.Ient. (f*** g) >SS (h*** k) % (f >SS h)*** (g >SS k)
o f xxx g
«f *** g = second g >>> first f

first f >>> second g since the order of f and g differs.

However, the following is true (an additional law):

No, in general .
first f>>>second (arr g)

first f>>>secondg # secondg>>>first f = second (arr g)>>>first f

since the order of the two possibly effectful

: : However, for certain arrow instances equalites
computations f and g are different.

like the ones above do hold.

Yet an attempt at exercise 3 The arrow do notation (1)
» al » a2 ~——_ Ross Paterson’s do-notation for arrows supports
——> pointed arrow programming. Only syntactic
J a3 11— sugar.
proc pat ->do[rec]

circuit_v3 :: A Doubl e Double pat, <- sfexp, - < exp,
circuit_v3 = (al &&& a3) paty <- sfexp, - < exp,

>>> first a2

>>> arr (uncurry (+)) pat, <- sfexp, - < exp,

. returnA-<
Exercise 4: Arecircuit _vl,circuit _v2, P

and ci r cui t _v3 all equivalent? Also: | et pat=exp = pat<- arr id-<emp

The arrow do notation (2)

Let us redo exercise 3 using this notation:

> al > a2 \

» a3 —

circuit_v4 :: A Doubl e Double
circuit_v4 = proc x -> do

yl <- al -< x

y2 <- a2 -<yl

y3 <- a3 -< x

returnA -< y2 + y3

g

The arrow do notation (4)

Recursive networks: do-notation:

> al > a2 \

» a3 —
|_>

al, a2 :: A Doubl e Double
a3 :: A (Doubl e, Doubl e) Doubl e

Exercise 5: Describe this using only the arrow
combinators.

g

The arrow do notation (3)

We can also mix and match:
» al » a2 ~—_

:aB/

circuit_v5 :: A Doubl e Double
circuit_vb5 = proc x -> do
y2 <- a2 <<< al -< x
y3 <- a3 -< X
returnA -< y2 + y3

The arrow do notation (5)

» al :aZ\

=
circuit = proc x -> do
rec

yl <- al -< x

y2 <- a2 -<yl

y3 <- a3 -< (x, y)

let y =y2 + y3
returnA -<vy

Arrows and Monads (1)

Arrows generalize monads: for every monad type
there is an arrow, the Kleisli category for the
monad:

newtype Kleisli ma b = K (a -=> m b)

instance Monad m => Arrow (Kleisli m) where
arr f = K (\b -> return (F b))
Kf>>Kg=KQQb ->*Ffb >>=9)

Arrows and Monads (2)

But not every arrow is a monad. However, arrows
that support an additional appl y operation are
effectively monads:

apply :: Arrow a => a (ab c, b) c
Exercise 6: Verify that
newtype M b =M (A O b)

Is a monad if Ais an arrow supporting appl y; i.e.,
define ret urn and bi nd in terms of the arrow
operations (and verify that the monad laws hold).

_ Moo RO e

An application: FRP

©

Yampa

Functional Reactive Programming (FRP):

« Paradigm for reactive programming in a
functional setting:

- Input arrives incrementally while system
IS running.

- Output is generated in response to input in
an interleaved and timely fashion.

« Originated from Functional Reactive
Animation (Fran) (Elliott & Hudak).

» Has evolved in a number of directions and
into different concrete implementations.

MGS 2007: ADV Lecture 3 — p.31/46

» The most recent Yale FRP implementation.
« Embedding in Haskell (a Haskell library).

« Arrows used as the basic structuring
framework.

+ Continuous time.

« Discrete-time signals modelled by
continuous-time signals and an option type.

« Advanced switching constructs allows for
highly dynamic system structure.

MGS 2007: ADV Lecture 3 — p.32/46

Related languages

FRP related to:

» Synchronous languages, like Esterel, Lucid
Synchrone.

« Modeling languages, like Simulink.
Distinguishing features of FRP:

« First class reactive components.

« Allows highly dynamic system structure.

« Supports hybrid (mixed continuous and
discrete) systems.

_ Hos T RO e

Yampa Is a river wn! ‘ong ca‘m‘y llowmg sections

and abrupt whitewater transitions in between.

h i

A good metaphor for hybrid systems!

MGS 2007: ADV Lecture 3 — p.35/46

FRP applications

Some domains where FRP has been used:
« Graphical Animation (Fran: Elliott, Hudak)

* Robotics (Frob: Peterson, Hager, Hudak,
Elliott, Pembeci, Nilsson)

« Vision (FVision: Peterson, Hudak, Reid,
Hager)

* GUIs (Fruit: Courtney)
» Hybrid modeling (Nilsson, Hudak, Peterson)

_ ves T RO s mp e

Signal functions

Key concept: functions on signals.

X)

Intuition:

Signal a =~ Time—a«a

x :: Signal T1

y 1. Signal T2

SF a 6 ~ Signal a —Signal g
f o SFT1 T2

Additionally: causality requirement.

MGS 2007: ADV Lecture 3 — p.36/46

Signal functions and state

Alternative view:

Signal functions can encapsulate state.

x (1) f y (1)
[state (t)]

state(t) summarizes input history z(t'), t' € [0, ¢].
Functions on signals are either:

- Stateful: y(t) depends on z(t) and state(t)

- Stateless: y(t) depends only on x(t)

_ Hos T RO s

Some further basic signal functions

identity :: SF a a
Identity = arr id

econstant :: b ->SFab

constant b = arr (const b)
cintegral :: VectorSpace a s=>SF a a
stime :: SF a Tine

time = constant 1.0 >>> integral
e("<<) :: (b->c) ->SFab->SFac

f ("<<) sf = sf >>> arr f

_ Moo RO Th e

Yampa and Arrows

SF is an arrow. Signal function instances of core
combinators:

carr :: (a->b) ->SFab
«>>>:: SFab->SFbc->SFac
«first :: SFab->SF (a,c) (b,c)
*loop :: SF (a,c) (b,c) ->SFab
But appl y has no useful meaning.

_ ves R RO s mp e

Example: A bouncing ball

) y = yo+/vdt
Wl @ v = v0+/—9.81
mg On impact:
v o= —u(t—)

(fully elastic collision)

Part of a model of the bouncing ball

Free-falling ball:

type Pos = Double
type Vel = Double

fallingBall ::
Pos -> Vel -> SF (O (Pos, Vel)
fallingBall yO vO = proc () -> do
v <- (VO +) “<< integral -< -9.81
y <- (y0 +) “<< integral -< v
returnA -< (y, V)

Example: Space Invaders

A CE LN [E=TE

MGS 2007: ADV Lecture 3 — p.43/46

Dynamic system structure

Switching allows the structure of the system to

evolve over time:

S

Overall game structure

dpSwitch

killOrSpawn

= =

|
|
\
\‘,
|
'
alien e
|
i \
" \
", \
"y bullet —
i/ R
i N
1 \ W

O
N
Objoutput

"
I
ObjInput

MGS 2007: ADV Lecture 3 — p.44/46

Reading (2

¢ John Hughes. Generalising monads to arrows. Science ¢ Paul Hudak, Antony Courtney, Henrik Nilsson, and
of Computer Programming, 37:67-111, May 2000 John Peterson. Arrows, robots, and functional reactive
« John Hughes. Programming with arrows. In Advanced programming. In Advanced Functional Programming,
Functional Programming, 2004. To be published by 2002. LNCS 2638, pp. 159-187.
Springer Verlag. * Antony Courtney, Henrik Nilsson, and John Peterson.
* Henrik Nilsson, Antony Courtney, and John Peterson. The Yampa Arcade. In Proceedings of the 2003 ACM
Functional reactive programming, continued. In SIGPLAN Haskell Workshop (Haskell'03), Uppsala,
Proceedings of the 2002 Haskell Workshop, pp. 51-64, Sweden, 2003, pp 7-18.
October 2002.

_ Moo RO st _ ves T RO s e

	Arrows (1)
	Arrows (2)
	Arrows (3)
	What is an arrow? (1)
	What is an arrow? (2)
	The 	exttt {Arrow} class
	Functions are arrows (1)
	Functions are arrows (2)
	Functions are arrows (3)
	Functions are arrows (4)
	Some arrow laws
	The 	exttt {loop} combinator (1)
	The 	exttt {loop} combinator (2)
	Some more arrow combinators (1)
	Some more arrow combinators (2)
	Some more arrow combinators (3)
	Exercise 3
	Exercise 3: One solution
	Exercise 3: Another solution
	Note on the definition of 	exttt {(***)}
(1)
	Note on the definition of 	exttt {(***)}
(2)
	Yet an attempt at exercise 3
	The arrow 	exttt {do} notation (1)
	The arrow 	exttt {do} notation (2)
	The arrow 	exttt {do} notation (3)
	The arrow 	exttt {do} notation (4)
	The arrow 	exttt {do} notation (5)
	Arrows and Monads (1)
	Arrows and Monads (2)
	An application: FRP
	Yampa
	Related languages
	FRP applications
	Yampa?
	Signal functions
	Signal functions and state
	Yampa and Arrows
	Some further basic signal functions
	Example: A bouncing ball
	Part of a model of the bouncing ball
	Dynamic system structure
	Example: Space Invaders
	Overall game structure
	Reading
	Reading (2)

