MGS 2007: ADV Lecture 3

Arrows and Functional Reactive Programming

Henrik Nilsson

University of Nottingham, UK

But systems can be complex:

How many and what combinators do we need to be able to describe arbitrary systems?

Arrows (1)

System descriptions in the form of block diagrams are very common. Blocks have inputs and outputs and can be combined into larger blocks. For example, serial composition:

A combinator can be defined that captures this idea:

$$
(\ggg) \quad:: \mathrm{B} \text { a } \mathrm{b} \rightarrow>\mathrm{B} \text { b } \mathrm{c} \rightarrow>\mathrm{B} \text { a } \mathrm{C}
$$

John Hughes' arrow framework:

- Abstract data type interface for function-like types (or "blocks", if you prefer).
- Particularly suitable for types representing process-like computations.
- Related to monads, since arrows are computations, but more general.
- Provides a minimal set of "wiring" combinators.

What is an arrow? (1)

- A type constructor a of arity two.
- Three operators:
- lifting:
arr :: (b->c) -> a b c
- composition:
(>>>) : : a b c -> a c d -> a b d
- widening:
first :: a b c -> a (b,d) (c,d)
- A set of algebraic laws that must hold.

The Arrow class

In Haskell, a type class is used to capture these ideas (except for the laws):

```
class Arrow a where
    arr :: (b -> c) -> a b c
    (>>>) :: a b c -> a c d -> a b d
    first :: a b c -> a (b,d) (c,d)
```


What is an arrow? (2)

These diagrams convey the general idea:

Functions are arrows (1)

Functions are a simple example of arrows, with (->) as the arrow type constructor.

Exercise 1: Suggest suitable definitions of

- arr
- (>>>)
- first
for this case!
(We have not looked at what the laws are yet, but they are "natural".)

Functions are arrows (2)

Solution:

- arr = id

To see this, recall

```
id :: t -> t
arr :: (b->c) -> a b c
```

Instantiate with

$$
\begin{aligned}
& \mathrm{a}=(->) \\
& \mathrm{t}=\mathrm{b}->\mathrm{c}=(->) \quad \mathrm{b} \quad \mathrm{c}
\end{aligned}
$$

Functions are arrows (4)

Arrow instance declaration for functions:

```
instance Arrow (->) where
    arr = id
    (>>>) = flip (.)
    first f = \(b,d) -> (f b,d)
```


Functions are arrows (3)

- f >>> $\mathrm{g}=$ la -> g (f a) or
- $\mathrm{f} \ggg \mathrm{g}=\mathrm{g}$. f or even
- (>>>) = flip (.)
- first $\mathrm{f}=$ (b, d) $->(\mathrm{f} \mathrm{b}, \mathrm{d})$


```
(f >>> g) >>> h = f >>> (g >>> h)
    arr (f >>> g) = arr f >>> arr g
        arr id >>> f = f
            f = f >>> arr id
    first (arr f) = arr (first f)
first (f >>> g) = first f >>> first g
```

Exercise 2: Draw diagrams illustrating the first and last law!

The loop combinator (1)

Another important operator is loop: a fixed-point operator used to express recursive arrows or feedback:

loop f

The loop combinator (2)

Not all arrow instances support loop. It is thus a method of a separate class:

```
class Arrow a => ArrowLoop a where
    loop :: a (b, d) (c, d) -> a b c
```

Remarkably, the four combinators arr, >>>, first, and loop are sufficient to express any conceivable wiring!

Some more arrow combinators (1)

```
```

second :: Arrow a =>

```
```

second :: Arrow a =>
a b c -> a (d,b) (d,c)
a b c -> a (d,b) (d,c)
(***) :: Arrow a =>
(***) :: Arrow a =>
a b c -> a d e -> a (b,d) (c,e)
a b c -> a d e -> a (b,d) (c,e)
(\&\&\&) :: Arrow a =>
(\&\&\&) :: Arrow a =>
a b c -> a b d -> a b (c,d)

```
```

 a b c -> a b d -> a b (c,d)
    ```
```


Some more arrow combinators (3)

```
second :: Arrow a => a b c -> a (d,b) (d,c)
second f = arr swap >>> first f >>> arr swap
swap (x,y) = (y,x)
(***) :: Arrow a =>
    a b c -> a d e -> a (b,d) (c,e)
f *** g = first f >>> second g
(&&&) :: Arrow a => a b c -> a b d -> a b (c,d)
f &&& g = arr (\x-> (x,x)) >>> (f *** g)
```


Exercise 3

Describe the following circuit using arrow combinators:

a1, a2, a3 :: A Double Double

Exercise 3: Describe the following circuit:

Note on the definition of (***) (1)

Are the following two definitions of (***) equivalent?

```
- f *** g = first f >>> second g
- f *** g = second g >>> first f
```

No, in general

```
first f >>> second g f= second g >>> first }
```

since the order of the two possibly effectful computations f and g are different.

Yet an attempt at exercise 3


```
circuit_v3 :: A Double Double
circuit_v3 = (a1 &&& a3)
    >>> first a2
    >>> arr (uncurry (+))
```

Exercise 4: Are circuit_v1, circuit_v2, and circuit_v3 all equivalent?

Note on the definition of (***) (2)

Similarly

$$
(f * * * g) \ggg(h * * * k) \neq(f \ggg h) * * *(g \ggg k)
$$

since the order of f and g differs.
However, the following is true (an additional law):

$$
\begin{aligned}
& \text { first } f \ggg \text { second }(\operatorname{arr} g) \\
& =\text { second }(\operatorname{arr} g) \ggg \text { first } f
\end{aligned}
$$

However, for certain arrow instances equalites like the ones above do hold.

The arrow do notation (1)

Ross Paterson's do-notation for arrows supports pointed arrow programming. Only syntactic sugar.

$$
\begin{aligned}
& \text { proc } \text { pat }->\text { do }[\text { rec }] \\
& \text { pat }_{1}<- \text { sfexp }_{1}-<\exp _{1} \\
& \text { pat }_{2}<-\operatorname{sfexp}_{2}-<\exp _{2} \\
& \ldots \\
& \text { pat }_{n}<-\operatorname{sfexp}_{n}-<\exp _{n} \\
& \text { returnA }-<\exp
\end{aligned}
$$

Also: let $p a t=\exp \equiv p a t<-\operatorname{arr}$ id $-<\exp$

The arrow do notation (2)

Let us redo exercise 3 using this notation:


```
circuit_v4 :: A Double Double
circuit_v4 = proc x -> do
    y1 <- a1 -< x
    y2 <- a2 -< y1
    y3 <- a3 -< x
    returnA -< y2 + y3
```


The arrow do notation (4)

Recursive networks: do-notation:

a1, a2 :: A Double Double
a3 :: A (Double,Double) Double
Exercise 5: Describe this using only the arrow combinators.

The arrow do notation (3)

We can also mix and match:


```
circuit_v5 :: A Double Double
circuit_v5 = proc x -> do
    y2 <- a2 <<< a1 -< x
    y3 <- a3 -< x
    returnA -< y2 + y3
```


The arrow do notation (5)

Arrows and Monads (1)

Arrows generalize monads: for every monad type there is an arrow, the Kleisli category for the monad:

```
newtype Kleisli m a b = K (a -> m b)
instance Monad m => Arrow (Kleisli m) where
    arr f = K (\b -> return (f b))
    K f >>> K g = K (\b -> f b >>= g)
```


An application: FRP

Functional Reactive Programming (FRP):

- Paradigm for reactive programming in a functional setting:
- Input arrives incrementally while system is running.
- Output is generated in response to input in an interleaved and timely fashion.
- Originated from Functional Reactive Animation (Fran) (Elliott \& Hudak).
- Has evolved in a number of directions and into different concrete implementations.

Arrows and Monads (2)

But not every arrow is a monad. However, arrows that support an additional apply operation are effectively monads:

```
apply :: Arrow a => a (a b c, b) c
```

Exercise 6: Verify that

```
newtype M b = M (A () b)
```

is a monad if A is an arrow supporting apply; i.e., define return and bind in terms of the arrow operations (and verify that the monad laws hold).

Yampa

Yampa:

- The most recent Yale FRP implementation.
- Embedding in Haskell (a Haskell library).
- Arrows used as the basic structuring framework.
- Continuous time.
- Discrete-time signals modelled by continuous-time signals and an option type.
- Advanced switching constructs allows for highly dynamic system structure.

Related languages

FRP related to:

- Synchronous languages, like Esterel, Lucid Synchrone.
- Modeling languages, like Simulink.

Distinguishing features of FRP:

- First class reactive components.
- Allows highly dynamic system structure.
- Supports hybrid (mixed continuous and discrete) systems.

Yampa?

Yampa is a river with long calmly flowing sections and abrupt whitewater transitions in between.

A good metaphor for hybrid systems!

FRP applications

Some domains where FRP has been used:

- Graphical Animation (Fran: Elliott, Hudak)
- Robotics (Frob: Peterson, Hager, Hudak, Elliott, Pembeci, Nilsson)
- Vision (FVision: Peterson, Hudak, Reid, Hager)
- GUIs (Fruit: Courtney)
- Hybrid modeling (Nilsson, Hudak, Peterson)

Key concept: functions on signals.

Intuition:

```
Signal \alpha \approx Time }->
x :: Signal T1
y :: Signal T2
SF \alpha \beta \approx Signal \alpha ->Signal }
f :: SF T1 T2
```

Additionally: causality requirement.

Signal functions and state

Alternative view:

Signal functions can encapsulate state.

state (t) summarizes input history $x\left(t^{\prime}\right), t^{\prime} \in[0, t]$.
Functions on signals are either:

- Stateful: $y(t)$ depends on $x(t)$ and state (t)
- Stateless: $y(t)$ depends only on $x(t)$

```
MGS 2007: ADV Lecture 3-0.3744
```


Some further basic signal functions

```
```

- identity :: SF a a

```
```

- identity :: SF a a

```
```

- identity :: SF a a
identity = arr id
identity = arr id
identity = arr id
- constant : : b -> SF a b
- constant : : b -> SF a b
- constant : : b -> SF a b
constant b = arr (const b)
constant b = arr (const b)
constant b = arr (const b)
- integral :: VectorSpace a s=>SF a a
- integral :: VectorSpace a s=>SF a a
- integral :: VectorSpace a s=>SF a a
- time :: SF a Time
- time :: SF a Time
- time :: SF a Time
time = constant 1.0 >>> integral
time = constant 1.0 >>> integral
time = constant 1.0 >>> integral
- (^<<) :: (b->c) -> SF a b -> SF a c
- (^<<) :: (b->c) -> SF a b -> SF a c
- (^<<) :: (b->c) -> SF a b -> SF a c
f (^<<) sf= Sf >>> arr f

```
```

 f (^<<) sf= Sf >>> arr f
    ```
```

 f (^<<) sf= Sf >>> arr f
    ```
```


Yampa and Arrows

SF is an arrow. Signal function instances of core combinators:

```
- arr :: (a -> b) -> SF a b
- >>> :: SF a b -> SF b c -> SF a c
- first :: SF a b -> SF (a,c) (b, c)
- loop :: SF (a,c) (b,c) -> SF a b
```

But apply has no useful meaning. Hence SF is not a monad.

$$
\begin{aligned}
& y=y_{0}+\int v \mathrm{~d} t \\
& v=v_{0}+\int-9.81
\end{aligned}
$$

On impact:

$$
v=-v(t-)
$$

(fully elastic collision)

Part of a model of the bouncing ball

Free-falling ball:

```
type Pos = Double
type Vel = Double
fallingBall ::
    Pos -> Vel -> SF () (Pos, Vel)
fallingBall y0 v0 = proc () -> do
    v <- (v0 +) ^<< integral -< -9.81
    y <- (y0 +) ^<< integral -< v
    returnA -< (y, v)
```


Overall game structure

Reading

- John Hughes. Generalising monads to arrows. Science of Computer Programming, 37:67-111, May 2000
- John Hughes. Programming with arrows. In Advanced Functional Programming, 2004. To be published by Springer Verlag.
- Henrik Nilsson, Antony Courtney, and John Peterson.

Functional reactive programming, continued. In
Proceedings of the 2002 Haskell Workshop, pp. 51-64, October 2002.

Reading (2)

- Paul Hudak, Antony Courtney, Henrik Nilsson, and John Peterson. Arrows, robots, and functional reactive programming. In Advanced Functional Programming, 2002. LNCS 2638, pp. 159-187.
- Antony Courtney, Henrik Nilsson, and John Peterson. The Yampa Arcade. In Proceedings of the 2003 ACM SIGPLAN Haskell Workshop (Haskell’03), Uppsala, Sweden, 2003, pp 7-18.

