MGS 2007: ADV Lecture 3 Arrows and Functional Reactive Programming

Henrik Nilsson

University of Nottingham, UK

Arrows (1)

System descriptions in the form of block diagrams are very common. Blocks have inputs and outputs and can be combined into larger blocks. For example, serial composition:

A *combinator* can be defined that captures this idea:

(>>>) :: B a b -> B b c -> B a c

MGS 2007: ADV Lecture 3 - p.2/46

Arrows (3)

John Hughes' arrow framework:

- Abstract data type interface for function-like types (or "blocks", if you prefer).
- Particularly suitable for types representing process-like computations.
- Related to *monads*, since arrows are computations, but more general.
- Provides a minimal set of "wiring" combinators.

The Arrow class

In Haskell, a *type class* is used to capture these ideas (except for the laws):

class Arrow a where

arr :: (b -> c) -> a b c (>>>) :: a b c -> a c d -> a b d first :: a b c -> a (b,d) (c,d)

What is an arrow? (1)

- A type constructor a of arity two.
- Three operators:
 - lifting:
 - arr :: (b->c) -> a b c
- composition:
- (>>>) :: a b c -> a c d -> a b d
 widening:
- first :: $a b c \rightarrow a (b,d) (c,d)$
- A set of *algebraic laws* that must hold.

Functions are arrows (1)

Functions are a simple example of arrows, with (->) as the arrow type constructor.

Exercise 1: Suggest suitable definitions of

- arr
- (>>>)
- first
- for this case!

(We have not looked at what the laws are yet, but they are "natural".)

Arrows (2)

But systems can be complex:

How many and what combinators do we need to be able to describe arbitrary systems?

ο ο ο Ο ΜGS 2007: ADV Lecture 3 – ρ.6/46

These diagrams convey the general idea:

Functions are arrows (2)

Solution:

• arr = id To see this, recall id :: t -> t arr :: (b->c) -> a b c

Instantiate with

a = (->)t = b->c = (->) b c

Functions are arrows (3)

- f >>> g = \a -> g (f a) **Or**
- f >>> g = g . f **or even**
- (>>>) = flip (.)
- first $f = \langle (b,d) \rightarrow (f b,d)$

Functions are arrows (4)

Arrow instance declaration for functions:

```
instance Arrow (->) where
    arr = id
    (>>>) = flip (.)
    first f = \(b,d) -> (f b,d)
```

The loop combinator (1)

Another important operator is loop: a fixed-point operator used to express recursive arrows or *feedback*:

The loop combinator (2)

Not all arrow instances support loop. It is thus a method of a separate class:

class Arrow a => ArrowLoop a where loop :: a (b, d) (c, d) -> a b c

Remarkably, the four combinators arr, >>>, first, and loop are sufficient to express any conceivable wiring!

Some arrow laws

(f >>> g) >>> h = f >>> (g >>> h)
arr (f >>> g) = arr f >>> arr g
arr id >>> f = f
f = f >>> arr id
first (arr f) = arr (first f)
first (f >>> g) = first f >>> first g

Exercise 2: Draw diagrams illustrating the first and last law!

MGS 2007: ADV Lecture 3 – p. 15/46

Some more arrow combinators (1)

(***) :: Arrow a => a b c -> a d e -> a (b,d) (c,e)

(&&&) :: Arrow a => a b c -> a b d -> a b (c,d)

Some more arrow combinators (2)

As diagrams:

Some more arrow combinators (3)

second :: Arrow a => a b c -> a (d,b) (d,c)
second f = arr swap >>> first f >>> arr swap
swap (x,y) = (y,x)

(***) :: Arrow a =>

a b c -> a d e -> a (b,d) (c,e) f *** g = first f >>> second g

 $(\&\&\&) :: Arrow a => a b c -> a b d -> a b (c,d) \\ f &\&\& g = arr (\x->(x,x)) >>> (f *** g)$

Exercise 3

Describe the following circuit using arrow combinators:

a1, a2, a3 :: A Double Double

Exercise 3: One solution

Exercise 3: Describe the following circuit using arrow combinators:

a1, a2, a3 :: A Double Double

Note on the definition of (***) (2)

Similarly

 $(f *** g) >>> (h *** k) \neq (f >>> h) *** (g >>> k)$

since the order of f and g differs.

However, the following *is* true (an additional law):

first f >>> second (arr g)
= second (arr q) >>> first f

However, for certain *arrow instances* equalites like the ones above do hold.

The arrow do notation (2)

Let us redo exercise 3 using this notation:

circuit_v4 :: A Double Double
circuit_v4 = proc x -> do
 y1 <- al -< x
 y2 <- a2 -< y1
 y3 <- a3 -< x
 returnA -< y2 + y3</pre>

Exercise 3: Another solution

Yet an attempt at exercise 3

Exercise 4: Are circuit_v1, circuit_v2, and circuit_v3 all equivalent?

0 0 0 MGS 2007: ADV Lecture 3 - p.26/46

The arrow do notation (3)

Note on the definition of (***) (1)

Are the following two definitions of (***) equivalent?

• f *** g = first f >>> second g

• f *** g = second g >>> first f

No, in general

 $\texttt{first} f \texttt{>>} \texttt{second} g \neq \texttt{second} g \texttt{>>} \texttt{first} f$

MGS 2007: ADV Lecture 3 – p.21/46

since the **order** of the two possibly effectful computations f and g are different.

The arrow do notation (1)

Ross Paterson's do-notation for arrows supports *pointed* arrow programming. Only *syntactic sugar*.

 $\begin{array}{l} \operatorname{proc} pat \xrightarrow{} \operatorname{do} [\operatorname{rec}] \\ pat_1 \xleftarrow{} sfexp_1 \xleftarrow{} exp_1 \\ pat_2 \xleftarrow{} sfexp_2 \xleftarrow{} exp_2 \\ \cdots \\ pat_n \xleftarrow{} sfexp_n \xleftarrow{} exp_n \\ \operatorname{returnA} \xleftarrow{} exp \end{array}$

Also: let $pat = exp \equiv pat < - \operatorname{arr} \operatorname{id} - < exp$

The arrow do notation (4)

Recursive networks: do-notation:

a1, a2 :: A Double Double a3 :: A (Double,Double) Double

Exercise 5: Describe this using only the arrow combinators.

The arrow do notation (5)

An application: FRP

Functional Reactive Programming (FRP):

- Paradigm for *reactive programming* in a functional setting:
- Input arrives *incrementally* while system is running.
- Output is generated in response to input in an interleaved and *timely* fashion.
- Originated from Functional Reactive Animation (Fran) (Elliott & Hudak).
- Has evolved in a number of directions and into different concrete implementations.

FRP applications

Some domains where FRP has been used:

- Graphical Animation (Fran: Elliott, Hudak)
- Robotics (Frob: Peterson, Hager, Hudak, Elliott, Pembeci, Nilsson)
- Vision (FVision: Peterson, Hudak, Reid, Hager)
- GUIs (Fruit: Courtney)
- Hybrid modeling (Nilsson, Hudak, Peterson)

MGS 2007: ADV Lecture 3 - p.34/46

Arrows and Monads (1)

Arrows generalize monads: for every monad type there is an arrow, the *Kleisli category* for the monad:

newtype Kleisli m a b = K (a \rightarrow m b)

instance Monad m => Arrow (Kleisli m) where arr f = K (\b -> return (f b)) K f >>> K g = K (\b -> f b >>= g)

> 0 0 0 MGS 2007: ADV Lecture 3 - p.29/46

> 0 0 0 MGS 2007: ADV Lecture 3 - p.32/46

MGS 2007: ADV Lecture 3 - p.35/46

Yampa

Yampa:

- The most recent Yale FRP implementation.
- Embedding in Haskell (a Haskell library).
- **Arrows** used as the basic structuring framework.
- Continuous time.
- Discrete-time signals modelled by continuous-time signals and an option type.
- Advanced switching constructs allows for highly dynamic system structure.

Yampa?

Yampa is a river with long calmly flowing sections and abrupt whitewater transitions in between.

A good metaphor for hybrid systems!

Arrows and Monads (2)

But not every arrow is a monad. However, arrows that support an additional apply operation **are** effectively monads:

apply :: Arrow a => a (a b c, b) c

Exercise 6: Verify that

newtype M b = M (A () b)

is a monad if A is an arrow supporting apply; i.e., define return and bind in terms of the arrow operations (and verify that the monad laws hold).

Related languages

FRP related to:

- Synchronous languages, like Esterel, Lucid Synchrone.
- Modeling languages, like Simulink.

Distinguishing features of FRP:

- First class reactive components.
- Allows highly dynamic system structure.
- Supports hybrid (mixed continuous and discrete) systems.

Signal functions

Key concept: functions on signals.

Intuition:

Additionally: causality requirement.

MGS 2007: ADV Lecture 3 - p.30/46

MGS 2007: ADV Lecture 3 – p.33/46

Signal functions and state

Alternative view:

Signal functions can encapsulate state.

state(t) summarizes input history x(t'), $t' \in [0, t]$.

Functions on signals are either:

• **Stateful**: y(t) depends on x(t) and state(t)

MGS 2007: ADV Lecture 3 – p.37/46

• **Stateless**: y(t) depends only on x(t)

Yampa and Arrows

SF is an arrow. Signal function instances of core combinators:

- arr :: (a -> b) -> SF a b
- >>> :: SF a b -> SF b c -> SF a c
- first :: SF a b -> SF (a,c) (b,c)
- loop :: SF (a,c) (b,c) -> SF a b

But apply has no useful meaning. Hence SF is **not** a monad.

Part of a model of the bouncing ball

Free-falling ball:

type Pos = Double type Vel = Double

```
fallingBall ::
    Pos -> Vel -> SF () (Pos, Vel)
fallingBall y0 v0 = proc () -> do
```

```
v <- (v0 +) ^<< integral -< -9.81
y <- (y0 +) ^<< integral -< v
returnA -< (y, v)</pre>
```

Overall game structure

Some further basic signal functions

- identity :: SF a a
 identity = arr id
- constant :: b -> SF a b
 constant b = arr (const b)
- integral :: VectorSpace a s=>SF a a
- time :: SF a Time time = constant 1.0 >>> integral
- (^<<) :: (b->c) -> SF a b -> SF a c f (^<<) sf = sf >>> arr f

MGS 2007: ADV Lecture 3 – p.39/46

MGS 2007: ADV Lecture 3 - p.45/46

Dynamic system structure

Switching allows the structure of the system to evolve over time:

Reading

- John Hughes. Generalising monads to arrows. Science of Computer Programming, 37:67–111, May 2000
- John Hughes. Programming with arrows. In Advanced Functional Programming, 2004. To be published by Springer Verlag.
- Henrik Nilsson, Antony Courtney, and John Peterson. Functional reactive programming, continued. In Proceedings of the 2002 Haskell Workshop, pp. 51–64, October 2002.

Reading (2)

- Paul Hudak, Antony Courtney, Henrik Nilsson, and John Peterson. Arrows, robots, and functional reactive programming. In *Advanced Functional Programming*, 2002. LNCS 2638, pp. 159–187.
- Antony Courtney, Henrik Nilsson, and John Peterson. The Yampa Arcade. In *Proceedings of the 2003 ACM SIGPLAN Haskell Workshop (Haskell'03)*, Uppsala, Sweden, 2003, pp 7–18.