
MGS 2007: ADV Lecture 3
Arrows and Functional Reactive Programming

Henrik Nilsson

University of Nottingham, UK

MGS 2007: ADV Lecture 3 – p.1/46

Arrows (1)

System descriptions in the form of block
diagrams are very common. Blocks have inputs
and outputs and can be combined into larger
blocks. For example, serial composition:

A combinator can be defined that captures this
idea:

(>>>) :: B a b -> B b c -> B a c

MGS 2007: ADV Lecture 3 – p.2/46

Arrows (2)

But systems can be complex:

How many and what combinators do we need
to be able to describe arbitrary systems?

MGS 2007: ADV Lecture 3 – p.3/46

Arrows (3)

John Hughes’ arrow framework:
• Abstract data type interface for function-like

types (or “blocks”, if you prefer).
• Particularly suitable for types representing

process-like computations.
• Related to monads, since arrows are

computations, but more general.
• Provides a minimal set of “wiring”

combinators.

MGS 2007: ADV Lecture 3 – p.4/46

What is an arrow? (1)

• A type constructor a of arity two.
• Three operators:

- lifting:
arr :: (b->c) -> a b c

- composition:
(>>>) :: a b c -> a c d -> a b d

- widening:
first :: a b c -> a (b,d) (c,d)

• A set of algebraic laws that must hold.

MGS 2007: ADV Lecture 3 – p.5/46

What is an arrow? (2)

These diagrams convey the general idea:

arr f f >>> g

first f

MGS 2007: ADV Lecture 3 – p.6/46

The Arrow class

In Haskell, a type class is used to capture these
ideas (except for the laws):

class Arrow a where
arr :: (b -> c) -> a b c
(>>>) :: a b c -> a c d -> a b d
first :: a b c -> a (b,d) (c,d)

MGS 2007: ADV Lecture 3 – p.7/46

Functions are arrows (1)

Functions are a simple example of arrows, with
(->) as the arrow type constructor.

Exercise 1: Suggest suitable definitions of
• arr

• (>>>)

• first

for this case!

(We have not looked at what the laws are yet, but
they are “natural”.)

MGS 2007: ADV Lecture 3 – p.8/46

Functions are arrows (2)

Solution:
• arr = id

To see this, recall
id :: t -> t
arr :: (b->c) -> a b c

Instantiate with

a = (->)

t = b->c = (->) b c

MGS 2007: ADV Lecture 3 – p.9/46

Functions are arrows (3)

• f >>> g = \a -> g (f a) or
• f >>> g = g . f or even
• (>>>) = flip (.)

• first f = \(b,d) -> (f b,d)

MGS 2007: ADV Lecture 3 – p.10/46

Functions are arrows (4)

Arrow instance declaration for functions:

instance Arrow (->) where
arr = id
(>>>) = flip (.)
first f = \(b,d) -> (f b,d)

MGS 2007: ADV Lecture 3 – p.11/46

Some arrow laws

(f >>> g) >>> h = f >>> (g >>> h)

arr (f >>> g) = arr f >>> arr g

arr id >>> f = f

f = f >>> arr id

first (arr f) = arr (first f)

first (f >>> g) = first f >>> first g

Exercise 2: Draw diagrams illustrating the first
and last law!

MGS 2007: ADV Lecture 3 – p.12/46

The loop combinator (1)

Another important operator is loop: a fixed-point
operator used to express recursive arrows or
feedback :

loop f

MGS 2007: ADV Lecture 3 – p.13/46

The loop combinator (2)

Not all arrow instances support loop. It is thus a
method of a separate class:

class Arrow a => ArrowLoop a where
loop :: a (b, d) (c, d) -> a b c

Remarkably, the four combinators arr, >>>,
first, and loop are sufficient to express any
conceivable wiring!

MGS 2007: ADV Lecture 3 – p.14/46

Some more arrow combinators (1)

second :: Arrow a =>
a b c -> a (d,b) (d,c)

(***) :: Arrow a =>
a b c -> a d e -> a (b,d) (c,e)

(&&&) :: Arrow a =>
a b c -> a b d -> a b (c,d)

MGS 2007: ADV Lecture 3 – p.15/46

Some more arrow combinators (2)

As diagrams:

second f
f *** g

f &&& g
MGS 2007: ADV Lecture 3 – p.16/46

Some more arrow combinators (3)

second :: Arrow a => a b c -> a (d,b) (d,c)

second f = arr swap >>> first f >>> arr swap

swap (x,y) = (y,x)

(***) :: Arrow a =>

a b c -> a d e -> a (b,d) (c,e)

f *** g = first f >>> second g

(&&&) :: Arrow a => a b c -> a b d -> a b (c,d)

f &&& g = arr (\x->(x,x)) >>> (f *** g)

MGS 2007: ADV Lecture 3 – p.17/46

Exercise 3

Describe the following circuit using arrow
combinators:

a1, a2, a3 :: A Double Double

MGS 2007: ADV Lecture 3 – p.18/46

Exercise 3: One solution

Exercise 3: Describe the following circuit using
arrow combinators:

a1, a2, a3 :: A Double Double

circuit_v1 :: A Double Double
circuit_v1 = (a1 &&& arr id)

>>> (a2 *** a3)
>>> arr (uncurry (+))

MGS 2007: ADV Lecture 3 – p.19/46

Exercise 3: Another solution

Exercise 3: Describe the following circuit:

a1, a2, a3 :: A Double Double

circuit_v2 :: A Double Double
circuit_v2 = arr (\x -> (x,x))

>>> first a1
>>> (a2 *** a3)
>>> arr (uncurry (+))

MGS 2007: ADV Lecture 3 – p.20/46

Note on the definition of (***) (1)

Are the following two definitions of (***)
equivalent?

• f *** g = first f >>> second g

• f *** g = second g >>> first f

No, in general

first f >>> second g 6= second g >>> first f

since the order of the two possibly effectful
computations f and g are different.

MGS 2007: ADV Lecture 3 – p.21/46

Note on the definition of (***) (2)

Similarly

(f *** g) >>> (h *** k) 6= (f >>> h) *** (g >>> k)

since the order of f and g differs.

However, the following is true (an additional law):

first f >>> second (arr g)

= second (arr g) >>> first f

However, for certain arrow instances equalites
like the ones above do hold.

MGS 2007: ADV Lecture 3 – p.22/46

Yet an attempt at exercise 3

circuit_v3 :: A Double Double
circuit_v3 = (a1 &&& a3)

>>> first a2
>>> arr (uncurry (+))

Exercise 4: Are circuit_v1, circuit_v2,
and circuit_v3 all equivalent?

MGS 2007: ADV Lecture 3 – p.23/46

The arrow do notation (1)

Ross Paterson’s do-notation for arrows supports
pointed arrow programming. Only syntactic
sugar.

proc pat -> do [rec]
pat1 <- sfexp1 -< exp1

pat2 <- sfexp2 -< exp2

. . .
pat

n
<- sfexp

n
-< exp

n

returnA -< exp

Also: let pat = exp ≡ pat <- arr id -< exp
MGS 2007: ADV Lecture 3 – p.24/46

The arrow do notation (2)

Let us redo exercise 3 using this notation:

circuit_v4 :: A Double Double
circuit_v4 = proc x -> do

y1 <- a1 -< x
y2 <- a2 -< y1
y3 <- a3 -< x
returnA -< y2 + y3

MGS 2007: ADV Lecture 3 – p.25/46

The arrow do notation (3)

We can also mix and match:

circuit_v5 :: A Double Double
circuit_v5 = proc x -> do

y2 <- a2 <<< a1 -< x
y3 <- a3 -< x
returnA -< y2 + y3

MGS 2007: ADV Lecture 3 – p.26/46

The arrow do notation (4)

Recursive networks: do-notation:

a1, a2 :: A Double Double
a3 :: A (Double,Double) Double

Exercise 5: Describe this using only the arrow
combinators.

MGS 2007: ADV Lecture 3 – p.27/46

The arrow do notation (5)

circuit = proc x -> do
rec

y1 <- a1 -< x
y2 <- a2 -< y1
y3 <- a3 -< (x, y)
let y = y2 + y3

returnA -< y

MGS 2007: ADV Lecture 3 – p.28/46

Arrows and Monads (1)

Arrows generalize monads: for every monad type
there is an arrow, the Kleisli category for the
monad:

newtype Kleisli m a b = K (a -> m b)

instance Monad m => Arrow (Kleisli m) where

arr f = K (\b -> return (f b))

K f >>> K g = K (\b -> f b >>= g)

MGS 2007: ADV Lecture 3 – p.29/46

Arrows and Monads (2)

But not every arrow is a monad. However, arrows
that support an additional apply operation are
effectively monads:

apply :: Arrow a => a (a b c, b) c

Exercise 6: Verify that

newtype M b = M (A () b)

is a monad if A is an arrow supporting apply; i.e.,

define return and bind in terms of the arrow

operations (and verify that the monad laws hold).
MGS 2007: ADV Lecture 3 – p.30/46

An application: FRP

Functional Reactive Programming (FRP):
• Paradigm for reactive programming in a

functional setting:
- Input arrives incrementally while system

is running.
- Output is generated in response to input in

an interleaved and timely fashion.
• Originated from Functional Reactive

Animation (Fran) (Elliott & Hudak).
• Has evolved in a number of directions and

into different concrete implementations.
MGS 2007: ADV Lecture 3 – p.31/46

Yampa

Yampa:
• The most recent Yale FRP implementation.
• Embedding in Haskell (a Haskell library).
• Arrows used as the basic structuring

framework.
• Continuous time.
• Discrete-time signals modelled by

continuous-time signals and an option type.
• Advanced switching constructs allows for

highly dynamic system structure.
MGS 2007: ADV Lecture 3 – p.32/46

Related languages

FRP related to:
• Synchronous languages, like Esterel, Lucid

Synchrone.
• Modeling languages, like Simulink.

Distinguishing features of FRP:
• First class reactive components.
• Allows highly dynamic system structure.
• Supports hybrid (mixed continuous and

discrete) systems.

MGS 2007: ADV Lecture 3 – p.33/46

FRP applications

Some domains where FRP has been used:
• Graphical Animation (Fran: Elliott, Hudak)
• Robotics (Frob: Peterson, Hager, Hudak,

Elliott, Pembeci, Nilsson)
• Vision (FVision: Peterson, Hudak, Reid,

Hager)
• GUIs (Fruit: Courtney)
• Hybrid modeling (Nilsson, Hudak, Peterson)

MGS 2007: ADV Lecture 3 – p.34/46

Yampa?
Yampa is a river with long calmly flowing sections
and abrupt whitewater transitions in between.

A good metaphor for hybrid systems!
MGS 2007: ADV Lecture 3 – p.35/46

Signal functions

Key concept: functions on signals.

Intuition:

Signal α ≈ Time→α

x :: Signal T1
y :: Signal T2
SF α β ≈ Signal α →Signal β

f :: SF T1 T2

Additionally: causality requirement.

MGS 2007: ADV Lecture 3 – p.36/46

Signal functions and state

Alternative view:

Signal functions can encapsulate state.

state(t) summarizes input history x(t′), t′ ∈ [0, t].

Functions on signals are either:
• Stateful : y(t) depends on x(t) and state(t)

• Stateless: y(t) depends only on x(t)

MGS 2007: ADV Lecture 3 – p.37/46

Yampa and Arrows

SF is an arrow. Signal function instances of core
combinators:

• arr :: (a -> b) -> SF a b

• >>> :: SF a b -> SF b c -> SF a c

• first :: SF a b -> SF (a,c) (b,c)

• loop :: SF (a,c) (b,c) -> SF a b

But apply has no useful meaning. Hence SF is
not a monad.

MGS 2007: ADV Lecture 3 – p.38/46

Some further basic signal functions

• identity :: SF a a
identity = arr id

• constant :: b -> SF a b
constant b = arr (const b)

• integral :: VectorSpace a s=>SF a a

• time :: SF a Time
time = constant 1.0 >>> integral

• (^<<) :: (b->c) -> SF a b -> SF a c
f (^<<) sf = sf >>> arr f

MGS 2007: ADV Lecture 3 – p.39/46

Example: A bouncing ball

y = y0 +

∫
v dt

v = v0 +

∫
−9.81

On impact:

v = −v(t−)

(fully elastic collision)

MGS 2007: ADV Lecture 3 – p.40/46

Part of a model of the bouncing ball

Free-falling ball:

type Pos = Double

type Vel = Double

fallingBall ::

Pos -> Vel -> SF () (Pos, Vel)

fallingBall y0 v0 = proc () -> do

v <- (v0 +) ˆ<< integral -< -9.81

y <- (y0 +) ˆ<< integral -< v

returnA -< (y, v)

MGS 2007: ADV Lecture 3 – p.41/46

Dynamic system structure

Switching allows the structure of the system to
evolve over time:

MGS 2007: ADV Lecture 3 – p.42/46

Example: Space Invaders

MGS 2007: ADV Lecture 3 – p.43/46

Overall game structure

gun

alien

bullet

alien

...

killOrSpawn

ObjInput ObjOutput

} [ObjectOutput]

dpSwitch

route

MGS 2007: ADV Lecture 3 – p.44/46

Reading

• John Hughes. Generalising monads to arrows. Science
of Computer Programming, 37:67–111, May 2000

• John Hughes. Programming with arrows. In Advanced
Functional Programming, 2004. To be published by
Springer Verlag.

• Henrik Nilsson, Antony Courtney, and John Peterson.
Functional reactive programming, continued. In
Proceedings of the 2002 Haskell Workshop, pp. 51–64,
October 2002.

MGS 2007: ADV Lecture 3 – p.45/46

Reading (2)

• Paul Hudak, Antony Courtney, Henrik Nilsson, and
John Peterson. Arrows, robots, and functional reactive
programming. In Advanced Functional Programming,
2002. LNCS 2638, pp. 159–187.

• Antony Courtney, Henrik Nilsson, and John Peterson.
The Yampa Arcade. In Proceedings of the 2003 ACM
SIGPLAN Haskell Workshop (Haskell’03), Uppsala,
Sweden, 2003, pp 7–18.

MGS 2007: ADV Lecture 3 – p.46/46

	Arrows (1)
	Arrows (2)
	Arrows (3)
	What is an arrow? (1)
	What is an arrow? (2)
	The 	exttt {Arrow} class
	Functions are arrows (1)
	Functions are arrows (2)
	Functions are arrows (3)
	Functions are arrows (4)
	Some arrow laws
	The 	exttt {loop} combinator (1)
	The 	exttt {loop} combinator (2)
	Some more arrow combinators (1)
	Some more arrow combinators (2)
	Some more arrow combinators (3)
	Exercise 3
	Exercise 3: One solution
	Exercise 3: Another solution
	Note on the definition of 	exttt {(***)}
(1)
	Note on the definition of 	exttt {(***)}
(2)
	Yet an attempt at exercise 3
	The arrow 	exttt {do} notation (1)
	The arrow 	exttt {do} notation (2)
	The arrow 	exttt {do} notation (3)
	The arrow 	exttt {do} notation (4)
	The arrow 	exttt {do} notation (5)
	Arrows and Monads (1)
	Arrows and Monads (2)
	An application: FRP
	Yampa
	Related languages
	FRP applications
	Yampa?
	Signal functions
	Signal functions and state
	Yampa and Arrows
	Some further basic signal functions
	Example: A bouncing ball
	Part of a model of the bouncing ball
	Dynamic system structure
	Example: Space Invaders
	Overall game structure
	Reading
	Reading (2)

