Henrik Nilsson

University of Nottingham, UK

MGS 2007: ADV Lecture 3 - p.1d5

Arrows (3)

John Hughes' arrow framework:

« Abstract data type interface for function-like
types (or “blocks”, if you prefer).

« Particularly suitable for types representing
process-like computations.

» Related to monads, since arrows are
computations, but more general.

 Provides a minimal set of “wiring”
combinators.

MGS 2007: ADV Lecture 3 - pids

The Ar r owclass

In Haskell, a type class is used to capture these
ideas (except for the laws):

class Arrow a where
arr i (b->c¢) ->abc
(>>>) :: abc->acd->abd
first :: abc->a(b,d (c,d)

MGS 2007: ADV Lecture 3 - p7146

Arrows (1)

System descriptions in the form of block
diagrams are very common. Blocks have inputs
and outputs and can be combined into larger
blocks. For example, serial composition:

o (A i I
A combinator can be defined that captures this
idea:

(>>>) :: Bab->Bbc->Bac

MGS 2007: ADV Lecture 3 - p2d6.

What is an arrow? (1)

« Atype constructor a of arity two.

« Three operators:
- lifting:
arr :: (b->c) ->abec
- composition:
(>>>) :: abc->acd->abd
- widening:
first :: abc->a(b,d (c,d)

» A set of algebraic laws that must hold.

MGS 2007: ADV Lecture 3 - p5ids.

Functions are arrows (1)

Functions are a simple example of arrows, with
(->) as the arrow type constructor.

Exercise 1: Suggest suitable definitions of
carr
o (>>>)
o first

for this case!

(We have not looked at what the laws are yet, but
they are “natural”.)

MGS 2007: ADV Lecture 3 - p8ids.

Arrows (2)

But systems can be complex:

{1

How many and what combinators do we need
to be able to describe arbitrary systems?

MGS 2007: ADV Lecture 3 - p.3d6.

What is an arrow? (2)

These diagrams convey the general idea:

MGS 2007: ADV Lecture 3 - p6ids.

Functions are arrows (2)

Solution:
carr =id
To see this, recall
id:: t ->t
arr :: (b->c) ->abec

Instantiate with

a = (->)
t =b-> = (->) bec

MGS 2007: ADV Lecture 3 - p9id6.

Functions are arrows (3)

«f >>> g =\a->g (f a) or
of > g =g . f or even
< (>>>) =flip (.)

<first f =\ (b,d) -> (f b,d)

ADV Lecture 3~ p10/46

g

The | oop combinator (1)

Another important operator is | oop: a fixed-point
operator used to express recursive arrows or

feedback:
5

| oop f

2007: ADV Lecture 3 p1346

Some more arrow combinators (2)

As diagrams:

|
;
v

-

second f

[&&& g

ADV Lecture 3~ 1646

I |
v
g

Functions are arrows (4)

Ar r owinstance declaration for functions:

i nstance Arrow (->) where

arr =id

(>>>) =flip (.)

first f =\(b,d) -> (f b,d)
I -

The | oop combinator (2)

Not all arrow instances support | oop. It is thus a
method of a separate class:

class Arrow a => ArrowLoop a where
loop :: a (b, d) (c, d ->abc

Remarkably, the four combinators ar r, >>>,
first,and| oop are sufficient to express any
conceivable wiring!

g
2
B

Some more arrow combinators (3)

second :: Arrow a => a b ¢ -> a (d,b) (d,c)
second f = arr swap >>> first £ >>> arr swap
swap (X,y) = (¥,X)
C**) 1 Arrow a =>

abc->ade->a (b,d) (c,e)
f *** g = first ¥ >>> second g

(&&&) :: Arrow a=>abc->abd->ab (c,d)
f &8&& g = arr (\x->(X,x)) >>> (f *** g)

g
g

Some arrow laws

(f >>>g) >>> h = f >>> (g >>> h)
arr (f >>>¢g) = arr f >>> arr g
arr id >>f = f
f =f >>>arr id

first (arr f) = arr (first f)
first (f >>>¢g) = first f >>> first g

Exercise 2: Draw diagrams illustrating the first
and last law!

g
2

Some more arrow combinators (1)

second :: Arrow a =>
abc->a(db) (dc)

(***) :: Arrow a =>
abc->ade->a(bd (c,e)

(&&&) :: Arrow a =>
abc->abd->ab(cd

MGS 2007: ADV Lecture 3 - p.15/45

Exercise 3

Describe the following circuit using arrow
combinators:

—————ﬁ al F————% a2

A Doubl e Doubl e

J

©=

\

al, a2, a3 ::

g
2

Exercise 3: One solution

Exercise 3: Another solution Note on the definition of (***) (1)

Exercise 3: Describe the following circuit using Exercise 3: Describe the following circuit:

arrow combinators:
RN ey BN I

Are the following two definitions of (***)
equivalent?

o f Kk x g
«f *** g = second g >>> first f

first f >>> second g

al, a2, a3 :: A Doubl e Double

al, a2, a3 :: A Doubl e Double)) No, in general
circuit_v2 :: A Doubl e Double
circuit_vl :: A Double Double circuit_v2 = arr (\x -> (X, X)) first f>>>secondg # second g>>>first f
circuit_vl = (al & & arr id) >>> first al])
>>> (a2 *** a3) >>> (a2 *** a3) since the order of the two possibly effectful
>>> arr (uncurry (+)) >>> arr (uncurry (+)) computations f and g are different.

MGS 2007: ADV Lecture 3 - p 19146 MGS 2007: ADV Lecture 3 - p.20/46 MGS 2007: ADV Lecture 3 - p 21145

Note on the definition of (***) (2) Yet an attempt at exercise 3 The arrow do notation (1)
Similarly ——>| al |—>| a2 I\ Ro_ss Paterson’s do-notatipn for arrows supports
(F*5% g)>>> (h*** k) £ (f 55> h) *** (g>>> k) I - pointed arrow programming. Only syntactic

sugar.

since the order of f and g differs. proc pat ->do[rec]

However, the following is true (an additional law): circuit_v3 :: A Double Double pat, <- sfexp, - < exp;
circuit_v3 = (al &&& a3) paty <- sfexps, - < exp,

first f>>>second (arr g) >>> first a2
= second (arr g)>>>first f >>> arr (uncurry (+)) pat, <- sfexp, - < exp,,

E ise4: A . . 1 ci . > returnA-<exp
However, for certain arrow instances equalites xercise 4: Arecircuit_v "f)' reurt_ve,
like the ones above do hold. and ci reui t _v3 all equivalent? Also: l et pat=exp = pat<- arr id-<ezp

MGS 2007: ADV Lecture 3 - p.22/46

MGS 2007: ADV Lecture 3 - p.23/46

MGS 2007: ADV Lecture 3 - p.24/45

The arrow do notation (2) The arrow do notation (3) The arrow do notation (4)

Let us redo exercise 3 using this notation: We can also mix and match: Recursive networks: do-notation:

—— al |—— a2 |-

[}

circuit v4 :: A Double Doubl e circuit_v5 :: A Doubl e Doubl e al, a2 :: A Double Double
circuit:v4=proc % -> do circuit_v5 = proc x -> do a3 :: A (Doubl e, Doubl €) Doubl e
yl <- al -< x y2 <- a2 <<< al -< x Exercise 5: Describe this using only the arrow
y2 <- a2 -< yil y3 <- a3 TS X combinators
y3 <- a3 -< x returnA -< y2 + y3 :

returnA -< y2 + y3

_ o ey

oS Ayt _ oS ApY s Tp T

The arrow do notation (5)

—— a1] a2 |~ N
= a3 |

circuit = proc x -> do
rec
yl <- al -< x
y2 <- a2 -<yl
y3 <- a3 -< (x, y)
let y =y2 +y3
returnA -< vy

MGS 2007: ADV Lecture 3 - p28/46

An application: FRP

Functional Reactive Programming (FRP):
- Paradigm for reactive programming in a
functional setting:
- Input arrives incrementally while system
is running.
- Output is generated in response to input in
an interleaved and timely fashion.

- Originated from Functional Reactive
Animation (Fran) (Elliott & Hudak).

- Has evolved in a number of directions and
into different concrete implementations.

MGS 2007: ADV Lecture 3 - p21/d6

FRP applications

Some domains where FRP has been used:
» Graphical Animation (Fran: Elliott, Hudak)

- Robotics (Frob: Peterson, Hager, Hudak,
Elliott, Pembeci, Nilsson)

« Vision (FVision: Peterson, Hudak, Reid,
Hager)

» GUIs (Fruit: Courtney)
= Hybrid modeling (Nilsson, Hudak, Peterson)

MGS 2007: ADV Lecture 3 - p34/46

Arrows and Monads (1)

Arrows generalize monads: for every monad type
there is an arrow, the Kleisli category for the
monad:

newtype Kleisli ma b =K (a -> m b)
instance Monad m => Arrow (Kleisli m) where

arr T = K (\b -> return (f b))
KFf>>Kg=KQb->7Fb>>=g9)

MGS 2007: ADV Lecture 3 - p.29/46

Yampa

» The most recent Yale FRP implementation.
- Embedding in Haskell (a Haskell library).

- Arrows used as the basic structuring
framework.

- Continuous time.

- Discrete-time signals modelled by
continuous-time signals and an option type.

« Advanced switching constructs allows for
highly dynamic system structure.

MGS 2007: ADV Lecture 3 - p.32/46

Yampa IS a river Wlt‘ ‘ong cal m‘y I owing sections

and abrupt whitewater transitions in between.

= L2

A good metaphor for hybrid systems!

MGS 2007: ADV Lecture 3 - p35/46

Arrows and Monads (2)

But not every arrow is a monad. However, arrows
that support an additional appl y operation are
effectively monads:

apply :: Arrow a => a (abc, b) c
Exercise 6: Verify that

newtype M b =M (A QO b)
is a monad if Ais an arrow supporting appl y;i.e.,

define ret urn and bi nd in terms of the arrow
operations (and verify that the monad laws hold).

MGS 2007: ADV Lecture 3 - p.30/45

Related languages

FRP related to:

» Synchronous languages, like Esterel, Lucid
Synchrone.

» Modeling languages, like Simulink.
Distinguishing features of FRP:

« First class reactive components.

« Allows highly dynamic system structure.

 Supports hybrid (mixed continuous and
discrete) systems.

MGS 2007: ADV Lecture 3 - p.33/45

Signal functions

Key concept: functions on signals.

Intuition:
Signal a = Tinme—a
z :: Signal T1
y .. Signal T2
SF o f = Signal o« —Signal g
f i SFT1 T2

Additionally: causality requirement.

MGS 2007: ADV Lecture 3 - p36/45

Signal functions and state

Yampa and Arrows Some further basic signal functions

Alternative view: SF is an arrow. Signal function instances of core cidentity :: SF a a
combinators: identity = arr id

Signal functions can encapsulate state.

" ; " carr :: (a->hb) ->SFahb econstant :: b ->SFab
x(t y(t —
— e .s>> - SFab->SEFbec->SFaec constant b = arr (const b)
. cint | :: Vector§ =>SF
state(t) summarizes input history z(t'), t' € [0,1]. «first :: SFab->SF (ac) (b,c) |tn eora S _T_C orspace a s=-sr a 4
.. ctime :: a Time
Functions on signals are either: loop :: SF (ac) (bc) ->SFab time = constant 1.0 >>> integral
- Stateful: y(t) depends on z(t) and state(t) Butappl y has no useful meaning. s+ (M<<) :: (b->c) ->SFab->SFac
- Stateless: y(t) depends only on z(t) f ("<<) sf = sf >>>arr f
Example: A bouncing ball Part of a model of the bouncing ball Dynamic system structure
Free-falling ball: Switching allows the structure of the system to
y = yu+/vdt evolve over time:

‘ . type Pos = Double
@ v o= vo+/—9.81 type Vel = Double

m On impact: fallingBall ::

Pos -> Vel -> SF () (Pos, Vel)
fallingBall yO vO = proc () -> do
(fully elastic collision) v <- (VO +) “<< integral -< -9.81

y <- (y0 +) “<< integral -< v
returnA -< (y, Vv)

v = —u(t—)

oS A p e _ oS A p e

Example: S

MGS 2007: ADV Lecture 3 - p0ids

pace Invaders Overall game structure Reading

\CE INVADERS

dpSwitch

* John Hughes. Generalising monads to arrows. Science
of Computer Programming, 37:67-111, May 2000

* John Hughes. Programming with arrows. In Advanced
Functional Programming, 2004. To be published by
Springer Verlag.

killorspawn

Objoutput

* Henrik Nilsson, Antony Courtney, and John Peterson.
Functional reactive programming, continued. In
Proceedings of the 2002 Haskell Workshop, pp. 51-64,
October 2002.

ObjInput

o e p e _ o A e _ oS ARy

Reading (2)

* Paul Hudak, Antony Courtney, Henrik Nilsson, and
John Peterson. Arrows, robots, and functional reactive
programming. In Advanced Functional Programming,
2002. LNCS 2638, pp. 159-187.

* Antony Courtney, Henrik Nilsson, and John Peterson.
The Yampa Arcade. In Proceedings of the 2003 ACM
SIGPLAN Haskell Workshop (Haskell’'03), Uppsala,
Sweden, 2003, pp 7-18.

_ o e p e

	Arrows (1)
	Arrows (2)
	Arrows (3)
	What is an arrow? (1)
	What is an arrow? (2)
	The 	exttt {Arrow} class
	Functions are arrows (1)
	Functions are arrows (2)
	Functions are arrows (3)
	Functions are arrows (4)
	Some arrow laws
	The 	exttt {loop} combinator (1)
	The 	exttt {loop} combinator (2)
	Some more arrow combinators (1)
	Some more arrow combinators (2)
	Some more arrow combinators (3)
	Exercise 3
	Exercise 3: One solution
	Exercise 3: Another solution
	Note on the definition of 	exttt {(***)}
(1)
	Note on the definition of 	exttt {(***)}
(2)
	Yet an attempt at exercise 3
	The arrow 	exttt {do} notation (1)
	The arrow 	exttt {do} notation (2)
	The arrow 	exttt {do} notation (3)
	The arrow 	exttt {do} notation (4)
	The arrow 	exttt {do} notation (5)
	Arrows and Monads (1)
	Arrows and Monads (2)
	An application: FRP
	Yampa
	Related languages
	FRP applications
	Yampa?
	Signal functions
	Signal functions and state
	Yampa and Arrows
	Some further basic signal functions
	Example: A bouncing ball
	Part of a model of the bouncing ball
	Dynamic system structure
	Example: Space Invaders
	Overall game structure
	Reading
	Reading (2)

