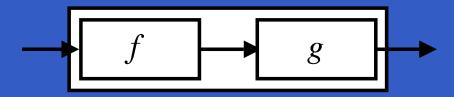
MGS 2007: ADV Lecture 3 Arrows and Functional Reactive Programming

Henrik Nilsson

University of Nottingham, UK

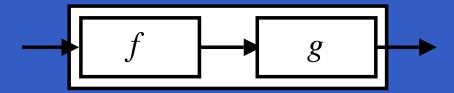
Arrows (1)

System descriptions in the form of block diagrams are very common. Blocks have inputs and outputs and can be combined into larger blocks. For example, serial composition:



Arrows (1)

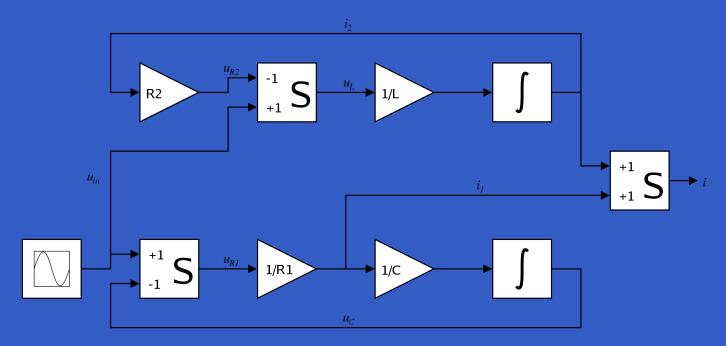
System descriptions in the form of block diagrams are very common. Blocks have inputs and outputs and can be combined into larger blocks. For example, serial composition:



A *combinator* can be defined that captures this idea:

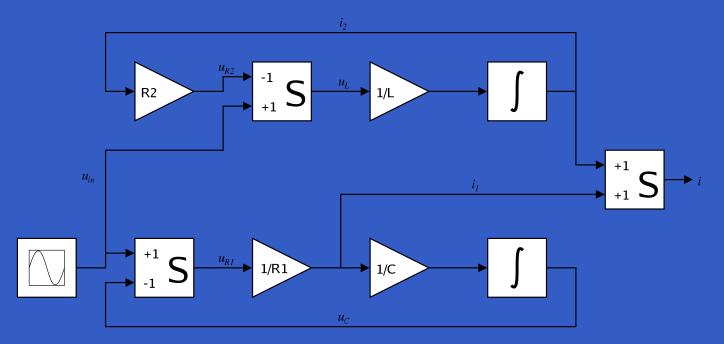
Arrows (2)

But systems can be complex:



Arrows (2)

But systems can be complex:



How many and what combinators do we need to be able to describe arbitrary systems?

John Hughes' arrow framework:

Abstract data type interface for function-like types (or "blocks", if you prefer).

John Hughes' *arrow* framework:

- Abstract data type interface for function-like types (or "blocks", if you prefer).
- Particularly suitable for types representing process-like computations.

John Hughes' arrow framework:

- Abstract data type interface for function-like types (or "blocks", if you prefer).
- Particularly suitable for types representing process-like computations.
- Related to *monads*, since arrows are computations, but more general.

John Hughes' arrow framework:

- Abstract data type interface for function-like types (or "blocks", if you prefer).
- Particularly suitable for types representing process-like computations.
- Related to *monads*, since arrows are computations, but more general.
- Provides a minimal set of "wiring" combinators.

A type constructor a of arity two.

- A *type constructor* a of arity two.
- Three operators:

- A type constructor a of arity two.
- Three operators:
 - lifting:

```
arr :: (b->c) -> a b c
```

- A type constructor a of arity two.
- Three operators:
 - lifting:

```
arr :: (b->c) -> a b c
```

composition:

```
(>>>) :: a b c -> a c d -> a b d
```

- A type constructor a of arity two.
- Three operators:
 - lifting:

```
arr :: (b->c) -> a b c
```

composition:

```
(>>>) :: a b c -> a c d -> a b d
```

widening:

```
first :: a b c -> a (b,d) (c,d)
```

- A type constructor a of arity two.
- Three operators:
 - lifting:

```
arr :: (b->c) -> a b c
```

composition:

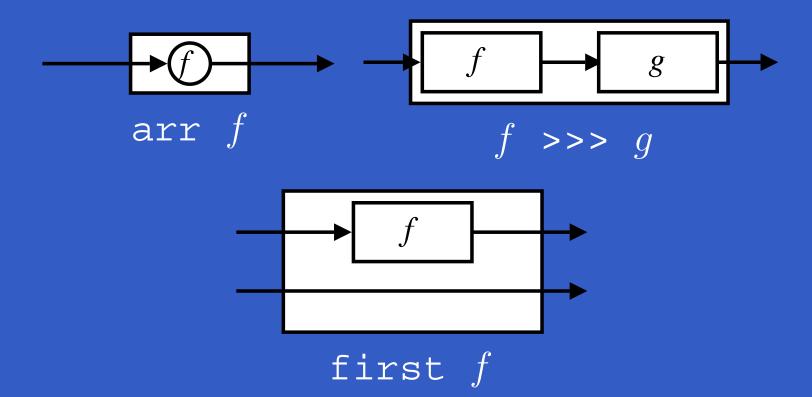
```
(>>>) :: a b c -> a c d -> a b d
```

widening:

```
first :: a b c -> a (b,d) (c,d)
```

A set of *algebraic laws* that must hold.

These diagrams convey the general idea:



The Arrow class

In Haskell, a *type class* is used to capture these ideas (except for the laws):

```
class Arrow a where
    arr :: (b -> c) -> a b c
    (>>>) :: a b c -> a c d -> a b d
    first :: a b c -> a (b,d) (c,d)
```

Functions are a simple example of arrows, with (->) as the arrow type constructor.

Exercise 1: Suggest suitable definitions of

- arr
- (>>>)
- first

for this case!

(We have not looked at what the laws are yet, but they are "natural".)

Solution:

arr = id

Solution:

```
arr = id
To see this, recall
id :: t -> t
arr :: (b->c) -> a b c
```

Solution:

arr = id
To see this, recall

```
id :: t -> t
arr :: (b->c) -> a b c
```

Instantiate with

$$a = (->)$$

 $t = b->c = (->) b c$

• f >>> g =
$$a -> g$$
 (f a)

•
$$f >>> g = \a -> g (f a)$$
 or

•
$$f >>> g = g . f$$

```
f >>> g = \a -> g (f a) or
f >>> g = g . f or even
(>>>) = flip (.)
first f = \((b,d) -> (f b,d))
```

Arrow instance declaration for functions:

```
instance Arrow (->) where
    arr = id
    (>>>) = flip (.)
    first f = \((b,d) -> (f b,d))
```

$$(f >>> g) >>> h = f >>> (g >>> h)$$

$$(f >>> g) >>> h = f >>> (g >>> h)$$

 $arr (f >>> g) = arr f >>> arr g$

```
(f >>> g) >>> h = f >>> (g >>> h)

arr (f >>> g) = arr f >>> arr g

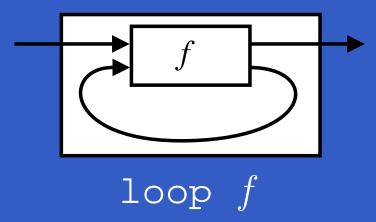
arr id >>> f = f
```

```
(f >>> g) >>> h = f >>> (g >>> h)
arr (f >>> g) = arr f >>> arr g
arr id >>> f = f
f = f >>> arr id
```

Exercise 2: Draw diagrams illustrating the first and last law!

The loop combinator (1)

Another important operator is loop: a fixed-point operator used to express recursive arrows or *feedback*:



The loop combinator (2)

Not all arrow instances support loop. It is thus a method of a separate class:

```
class Arrow a => ArrowLoop a where
  loop :: a (b, d) (c, d) -> a b c
```

Remarkably, the four combinators arr, >>>, first, and loop are sufficient to express any conceivable wiring!

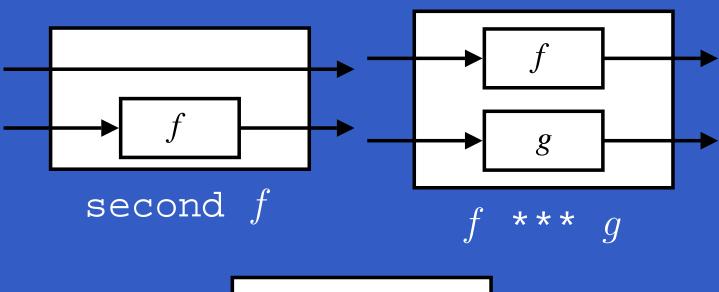
Some more arrow combinators (1)

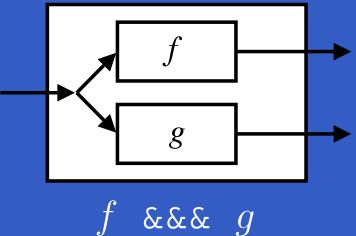
```
second :: Arrow a =>
    a b c -> a (d,b) (d,c)

(***) :: Arrow a =>
    a b c -> a d e -> a (b,d) (c,e)

(&&&) :: Arrow a =>
    a b c -> a b d -> a b (c,d)
```

As diagrams:





```
second :: Arrow a => a b c \overline{\ -\ >} a (d,b) (d,c)
second f = arr swap >>> first f >>> arr swap
swap (x,y) = (y,x)
```

```
second :: Arrow a => a b c -> a (d,b) (d,c)
second f = arr swap >>> first f >>> arr swap
swap (x,y) = (y,x)

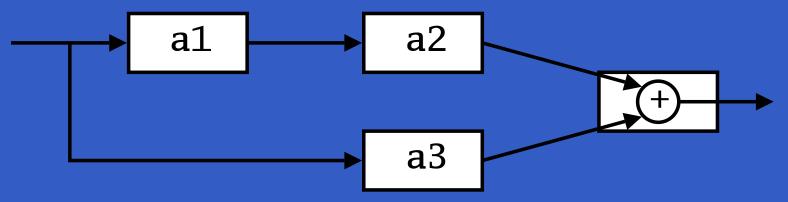
(***) :: Arrow a =>
    a b c -> a d e -> a (b,d) (c,e)

f *** g = first f >>> second g
```

```
second :: Arrow a => a b c -> a (d,b) (d,c)
second f = arr swap >>> first f >>> arr swap
swap (x,y) = (y,x)
(***) :: Arrow a =>
    a b c -> a d e -> a (b,d) (c,e)
f *** q = first f >>> second q
(\&\&\&) :: Arrow a => a b c -> a b d -> a b (c,d)
f \&\&\& g = arr (\x->(x,x)) >>> (f *** q)
```

Exercise 3

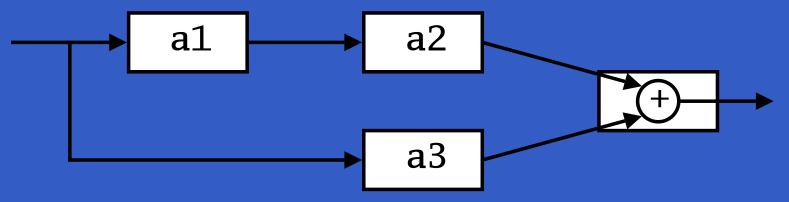
Describe the following circuit using arrow combinators:



a1, a2, a3 :: A Double Double

Exercise 3: One solution

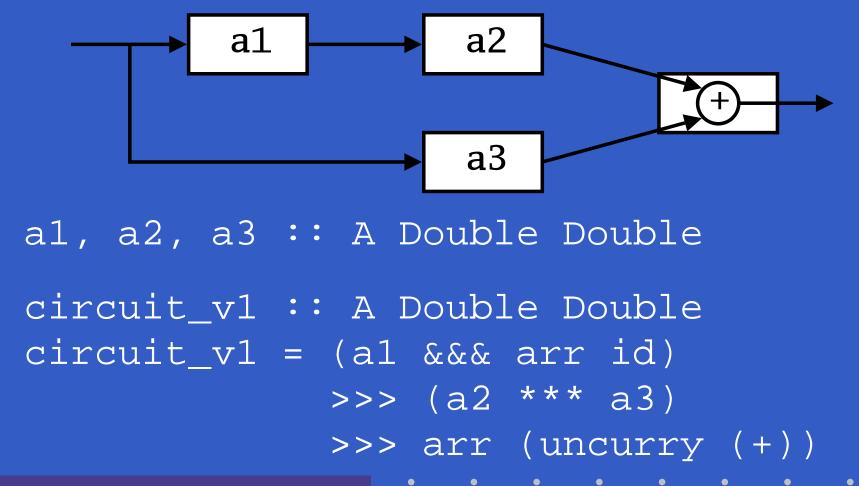
Exercise 3: Describe the following circuit using arrow combinators:



a1, a2, a3 :: A Double Double

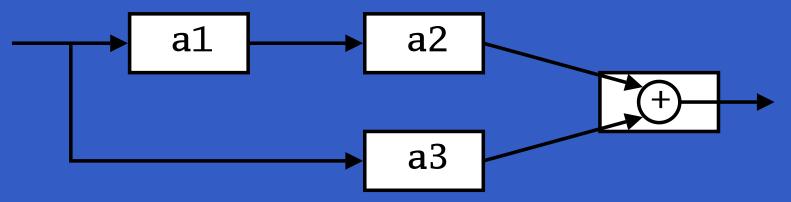
Exercise 3: One solution

Exercise 3: Describe the following circuit using arrow combinators:



Exercise 3: Another solution

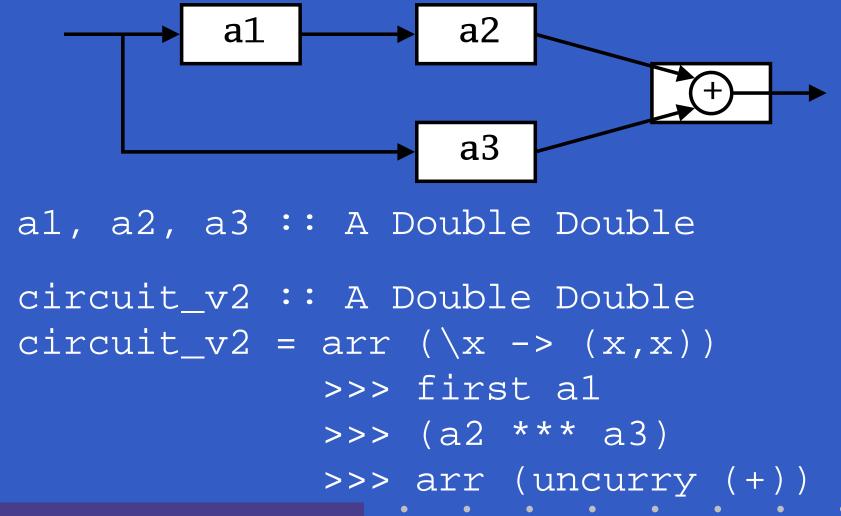
Exercise 3: Describe the following circuit:



a1, a2, a3 :: A Double Double

Exercise 3: Another solution

Exercise 3: Describe the following circuit:



Note on the definition of (***) (1)

Are the following two definitions of (***) equivalent?

```
f *** g = first f >>> second g
```

Note on the definition of (***) (1)

Are the following two definitions of (***) equivalent?

- f *** g = first f >>> second g
- f *** g = second g >>> first f

No, in general

 $\texttt{first} \ f >>> \texttt{second} \ g \ \neq \ \texttt{second} \ g >>> \texttt{first} \ f$

since the *order* of the two possibly effectful computations f and g are different.

Note on the definition of (***) (2)

Similarly

$$(f *** g) >>> (h *** k) \neq (f >>> h) *** (g >>> k)$$

since the order of f and g differs.

Note on the definition of (***)

Similarly

$$(f *** g) >>> (h *** k) \neq (f >>> h) *** (g >>> k)$$

since the order of f and g differs.

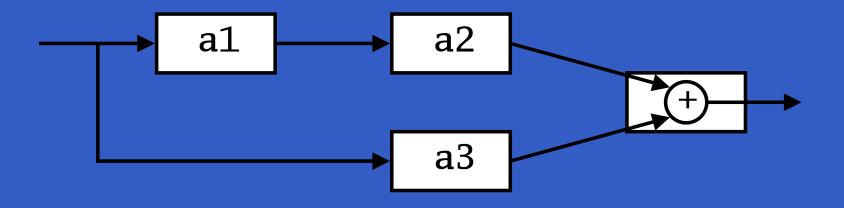
However, the following is true (an additional law):

However, for certain *arrow instances* equalites like the ones above do hold.

Yet an attempt at exercise 3

```
a1 a2 +
```

Yet an attempt at exercise 3



Exercise 4: Are circuit_v1, circuit_v2, and circuit_v3 all equivalent?

The arrow do notation (1)

Ross Paterson's do-notation for arrows supports *pointed* arrow programming. Only *syntactic sugar*.

proc
$$pat$$
 -> do [rec]

 $pat_1 <- sfexp_1 -< exp_1$
 $pat_2 <- sfexp_2 -< exp_2$

...

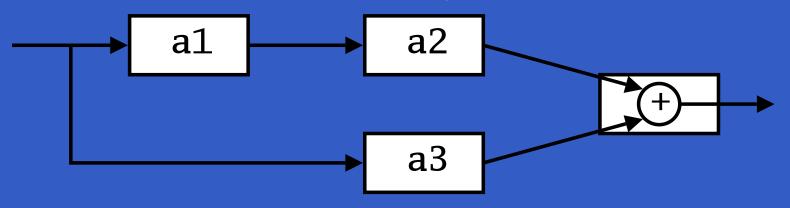
 $pat_n <- sfexp_n -< exp_n$

returnA -< exp

Also: let $pat = exp \equiv pat < - arr id - < exp$

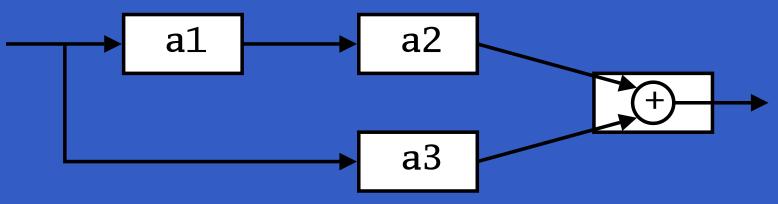
The arrow do notation (2)

Let us redo exercise 3 using this notation:



The arrow do notation (3)

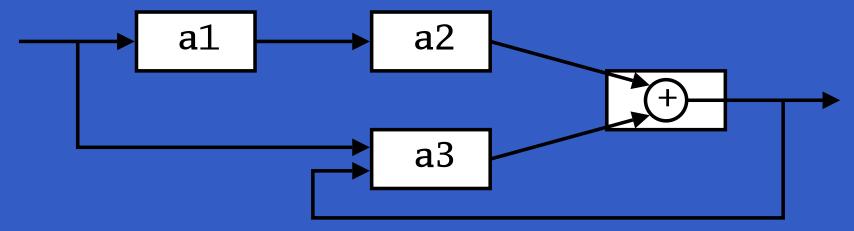
We can also mix and match:



```
circuit_v5 :: A Double Double
circuit_v5 = proc x -> do
    y2 <- a2 <<< a1 -< x
    y3 <- a3 -< x
    returnA -< y2 + y3</pre>
```

The arrow do notation (4)

Recursive networks: do-notation:

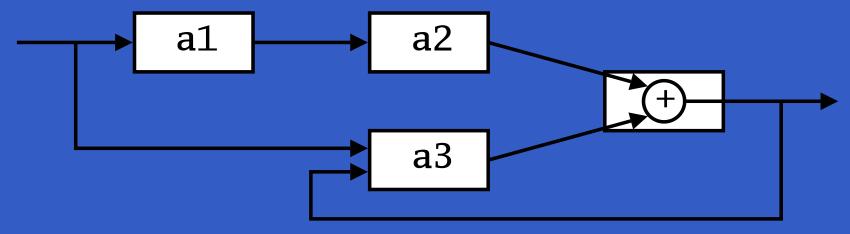


a1, a2 :: A Double Double

a3 :: A (Double, Double) Double

The arrow do notation (4)

Recursive networks: do-notation:

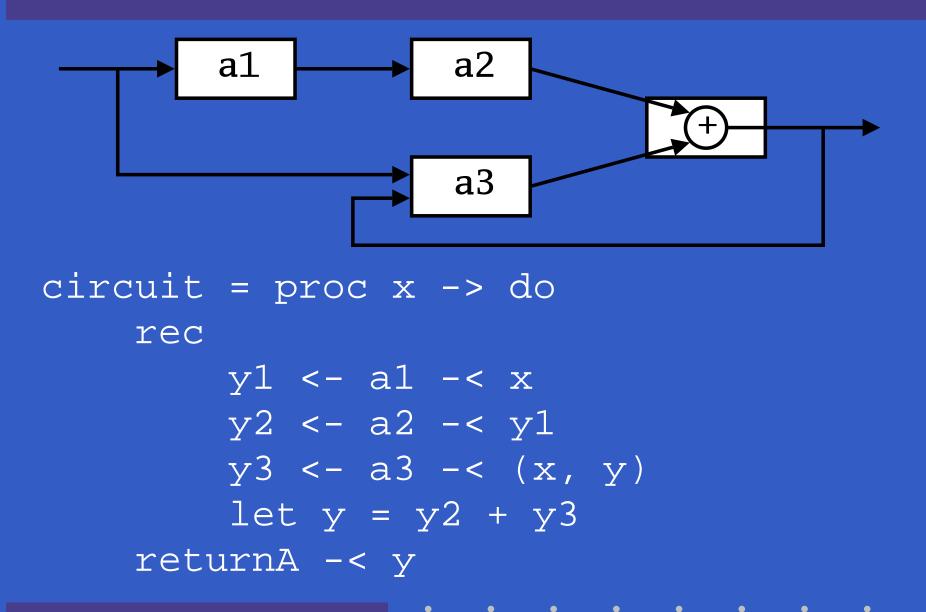


a1, a2 :: A Double Double

a3 :: A (Double, Double) Double

Exercise 5: Describe this using only the arrow combinators.

The arrow do notation (5)



Arrows and Monads (1)

Arrows generalize monads: for every monad type there is an arrow, the *Kleisli category* for the monad:

```
newtype Kleisli m a b = K (a -> m b)
instance Monad m => Arrow (Kleisli m) where
arr f = K (\b -> return (f b))
K f >>> K g = K (\b -> f b >>= g)
```

Arrows and Monads (2)

But not every arrow is a monad. However, arrows that support an additional apply operation *are* effectively monads:

```
apply :: Arrow a => a (a b c, b) c
```

Exercise 6: Verify that

```
newtype M b = M (A () b)
```

is a monad if A is an arrow supporting apply; i.e., define return and bind in terms of the arrow operations (and verify that the monad laws hold).

An application: FRP

Functional Reactive Programming (FRP):

- Paradigm for *reactive programming* in a functional setting:
 - Input arrives incrementally while system is running.
 - Output is generated in response to input in an interleaved and *timely* fashion.

An application: FRP

Functional Reactive Programming (FRP):

- Paradigm for *reactive programming* in a functional setting:
 - Input arrives incrementally while system is running.
 - Output is generated in response to input in an interleaved and *timely* fashion.
- Originated from Functional Reactive Animation (Fran) (Elliott & Hudak).

An application: FRP

Functional Reactive Programming (FRP):

- Paradigm for *reactive programming* in a functional setting:
 - Input arrives incrementally while system is running.
 - Output is generated in response to input in an interleaved and *timely* fashion.
- Originated from Functional Reactive Animation (Fran) (Elliott & Hudak).
- Has evolved in a number of directions and into different concrete implementations.

Yampa:

The most recent Yale FRP implementation.

- The most recent Yale FRP implementation.
- Embedding in Haskell (a Haskell library).

- The most recent Yale FRP implementation.
- Embedding in Haskell (a Haskell library).
- Arrows used as the basic structuring framework.

- The most recent Yale FRP implementation.
- Embedding in Haskell (a Haskell library).
- Arrows used as the basic structuring framework.
- Continuous time.

- The most recent Yale FRP implementation.
- Embedding in Haskell (a Haskell library).
- Arrows used as the basic structuring framework.
- Continuous time.
- Discrete-time signals modelled by continuous-time signals and an option type.

- The most recent Yale FRP implementation.
- Embedding in Haskell (a Haskell library).
- Arrows used as the basic structuring framework.
- Continuous time.
- Discrete-time signals modelled by continuous-time signals and an option type.
- Advanced switching constructs allows for highly dynamic system structure.

Related languages

FRP related to:

- Synchronous languages, like Esterel, Lucid Synchrone.
- Modeling languages, like Simulink.

Related languages

FRP related to:

- Synchronous languages, like Esterel, Lucid Synchrone.
- Modeling languages, like Simulink.

Distinguishing features of FRP:

- First class reactive components.
- Allows highly dynamic system structure.
- Supports hybrid (mixed continuous and discrete) systems.

FRP applications

Some domains where FRP has been used:

- Graphical Animation (Fran: Elliott, Hudak)
- Robotics (Frob: Peterson, Hager, Hudak, Elliott, Pembeci, Nilsson)
- Vision (FVision: Peterson, Hudak, Reid, Hager)
- GUIs (Fruit: Courtney)
- Hybrid modeling (Nilsson, Hudak, Peterson)

Yet
Another
Mostly
Pointless
Acronym

Yet
Another
Mostly
Pointless
Acronym

???

Yet
Another
Mostly
Pointless
Acronym
???

No . . .

Yampa is a river ...

... with long calmly flowing sections ...

... and abrupt whitewater transitions in between.

A good metaphor for hybrid systems!

Signal functions

Key concept: functions on signals.

Signal functions

Key concept: functions on signals.

Intuition:

```
Signal \alpha \approx \text{Time} \rightarrow \alpha x :: \text{Signal T1} y :: \text{Signal T2} \text{SF } \alpha \ \beta \approx \text{Signal } \alpha \rightarrow \text{Signal } \beta f :: \text{SF T1 T2}
```

Signal functions

Key concept: functions on signals.

Intuition:

```
Signal \alpha \approx \text{Time} \rightarrow \alpha x :: \text{Signal T1} y :: \text{Signal T2} \text{SF } \alpha \ \beta \approx \text{Signal } \alpha \rightarrow \text{Signal } \beta f :: \text{SF T1 T2}
```

Additionally: *causality* requirement.

Signal functions and state

Alternative view:

Signal functions and state

Alternative view:

Signal functions can encapsulate state.

$$\begin{array}{c|c} x(t) & f & y(t) \\ \hline [state(t)] & \end{array}$$

state(t) summarizes input history x(t'), $t' \in [0, t]$.

Signal functions and state

Alternative view:

Signal functions can encapsulate state.

$$\begin{array}{c|c} x(t) & f & y(t) \\ \hline [state(t)] & \end{array}$$

state(t) summarizes input history x(t'), $t' \in [0, t]$.

Functions on signals are either:

- Stateful: y(t) depends on x(t) and state(t)
- Stateless: y(t) depends only on x(t)

Yampa and Arrows

SF is an arrow. Signal function instances of core combinators:

```
arr :: (a -> b) -> SF a b

>>> :: SF a b -> SF b c -> SF a c

first :: SF a b -> SF (a,c) (b,c)
```

loop :: SF (a,c) (b,c) -> SF a b

But apply has no useful meaning. Hence SF is not a monad.

```
identity :: SF a a
identity = arr id
```

```
identity :: SF a a
identity = arr id
```

```
constant :: b -> SF a b
constant b = arr (const b)
```

```
identity :: SF a a
identity = arr id

constant :: b -> SF a b
constant b = arr (const b)

integral :: VectorSpace a s=>SF a a
```

```
identity :: SF a a
  identity = arr id

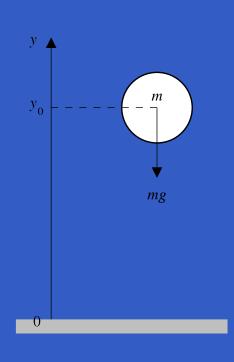
constant :: b -> SF a b
  constant b = arr (const b)

integral :: VectorSpace a s=>SF a a

time :: SF a Time
  time = constant 1.0 >>> integral
```

identity :: SF a a identity = arr id constant :: b -> SF a b constant b = arr (const b) integral :: VectorSpace a s=>SF a a time :: SF a Time time = constant 1.0 >>> integral (^<<) :: (b->c) -> SF a b -> SF a c f (^<<) sf = sf >>> arr f

Example: A bouncing ball



$$y = y_0 + \int v \, dt$$

$$v = v_0 + \int -9.81$$

On impact:

$$v = -v(t-)$$

(fully elastic collision)

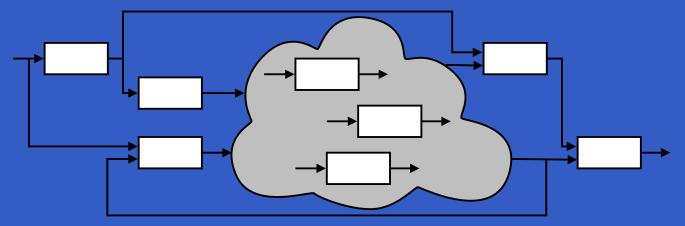
Part of a model of the bouncing ball

Free-falling ball:

```
type Pos = Double
type Vel = Double
fallingBall ::
    Pos -> Vel -> SF () (Pos, Vel)
fallingBall y0 v0 = proc() -> do
    v < - (v0 +) ^{<} integral - < -9.81
    y \leftarrow (y0 +) ^<< integral -< v
    returnA -< (y, v)
```

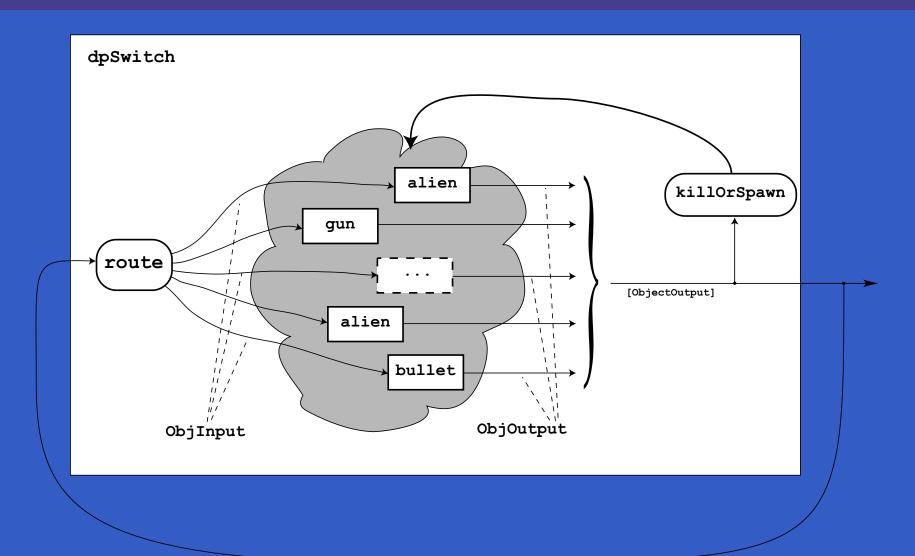
Dynamic system structure

Switching allows the structure of the system to evolve over time:



Example: Space Invaders

Overall game structure



Reading

- John Hughes. Generalising monads to arrows. *Science of Computer Programming*, 37:67–111, May 2000
- John Hughes. Programming with arrows. In *Advanced Functional Programming*, 2004. To be published by Springer Verlag.
- Henrik Nilsson, Antony Courtney, and John Peterson. Functional reactive programming, continued. In *Proceedings of the 2002 Haskell Workshop*, pp. 51–64, October 2002.

Reading (2)

- Paul Hudak, Antony Courtney, Henrik Nilsson, and John Peterson. Arrows, robots, and functional reactive programming. In *Advanced Functional Programming*, 2002. LNCS 2638, pp. 159–187.
- Antony Courtney, Henrik Nilsson, and John Peterson. The Yampa Arcade. In *Proceedings of the 2003 ACM SIGPLAN Haskell Workshop (Haskell'03)*, Uppsala, Sweden, 2003, pp 7–18.