Henrik Nilsson

University of Nottingham, UK

Imperative vs. Declarative (1)

- Imperative Languages :
- Implicit state.

- Computation essentially a sequence of
side-effecting actions.

- Examples: Procedural and OO languages
» Declarative Languages (Lloyd 1994):

- No implicit state.

- A program can be regarded as a theory.

- Computation can be seen as deduction
from this theory.

- Examples: Logic and Functional Languages.

MGS 2012 FUN Lecture 1 - p2/47

Imperative vs. Declarative (2)

Another perspective:
« Algorithm = Logic + Control
- Declarative programming emphasises the
logic (“what”) rather than the control (“how”).
- Strategy needed for providing the “how":
- Resolution (logic programming languages)
- Lazy evaluation (some functional and logic
programming languages)
- (Lazy) narrowing: (functional logic
programming languages)

MGS 2012 FUN Lecture 1 - p3/47

MGS 2012 FUN Lecture 1 - p.1/47

No Control?

Declarative languages for practical use tend to
be only weakly declarative ; i.e., not totally free
of control aspects. For example:

- Equations in functional languages are
directed.

 Order of patterns often matters for pattern
matching.

» Constructs for taking control over the order of
evaluation. (E.g. cut in Prolog, seq in
Haskell.)

MGS 2012: FUN Lecture 1 - p4/a7

Relinquishing Control

Theme of this lecture: relinquishing control by
exploiting lazy evaluation

« Evaluation orders
- Strict vs. Non-strict semantics
- Lazy evaluation
 Applications of lazy evaluation:
- Programming with infinite structures
- Circular programming
- Dynamic programming
- Attribute grammars

MGS 2012: FUN Lecture 1 - p/47

Evaluation Orders (1)

Consider:

sqr X = X * X
dbl x = x + X
main = sqr (dbl (2 + 3))
Roughly, any expression that can be evaluated or

reduced by using the equations as rewrite rules
is called a reducible expression or redex.

Assuming arithmetic, the redexes of the body of
mainare: 2+3

dbl (2 + 3)

sqr (dbl (2 + 3))

MGS 2012: FUN Lecture 1 - p&/a7

Evaluation Orders (2)

Thus, in general, many possible reduction orders.
Innermost, leftmost redex first is called
Applicative Order Reduction (AOR). Recall:
sqr X = X * X
dbl x = x + X
main = sqr (dbl (2 + 3))
Starting from mai n:
main = sqr (dbl (2 + 3)) = sqr (dbl 5)
= sgr (5 +5) = sqgr 10 = 10 * 10 = 100

Call-By-Value (CBV) = AOR except no evaluation
under) (inside function bodies).

MGS 2012: FUN Lecture 1~ p7147

Evaluation Orders (3)

Outermost, leftmost redex first is called Normal
Order Reduction (NOR):

main = sqr (dbl (2 + 3))

= dbl (2 + 3) * dbl (2 + 3)

= ((2+3) + (2 +3)) = dbl (2 + 3)

=

=

(5 + (2 +3)) = dbl (2 + 3)
(5 +5) =~ dbl (2 +3) = 10 » dbl (2 + 3)
= ... = 10 » 10 = 100

(Applications of arithmetic operations only con-
sidered redexes once arguments are numbers.)
Call-By-Name (CBN) = NOR except no evaluation
under .

MGS 2012: FUN Lecture 1 - pa/47

Why NOR or CBN? (1)

NOR and CBN seem rather inefficient. Any use?
- Best possible termination properties.
A pure functional languages is just the
A-calculus in disguise. Two central theorems:
- Church-Rosser Theorem I:
No term has more than one normal form.
- Church-Rosser Theorem I
If a term has a normal form, then it can
be found through NOR.

MGS 2012: FUN Lecture 1~ p9/a7

Why NOR or CBN? (2)

- More expressive power; e.g.:
- “Infinite” data structures
- Circular programming
- Custom control constructs (great for EDSLS)

- More declarative code as control aspects
(order of evaluation) left implicit.

MGS 2012 FUN Lecture 11047

Why NOR or CBN? (3)

- More reuse. E.g. consider:
any :: (a -> Bool) -> [a] -> Bool
any p = or . map p
Under AOR/CBYV, we would have to inline all
functions to avoid doing too much work:
any :: (a -> Bool) -> [a] -> Bool
any p [] = False
any p (y:ys) =y || any p ps
(Assume (| |) has “short-circuit” semantics.)
No reuse.
(See references for in-depth discussion.)

MGS 2012 FUN Lecture 1 - p13/47

Exercise 1

Consider:

f x 1

g X g X

main=1f (g 0)
Attempt to evaluate nai n using both AOR and
NOR. Which order is the more efficient in this
case? (Count the number of reduction steps to
normal form.)

MGS 2012 FUN Lecture 1 p.121a7

Strict vs. Non-strict Semantics (1)

« 1, or “bottom”, the undefined value ,
representing errors and non-termination .

« A function f is strict iff:
fl=1
For example, + is strict in both its arguments:

(0/0)+1 =L+1 =1
1+(0/0) = 1+L1L=1

MGS 2012: FUN Lecture 1 - p13/47

Strict vs. Non-strict Semantics (2)

Again, consider:
fx=1
g x=gx
What is the value of f (0/0)? Orof f (g 0)?

«AOR: f (0/0) = 1, f (g0 = L
Conceptually, f 1 = 1;i.e., f is strict.

*NOR: f (0/0) = 1, f (g0 =1
Conceptually, f 1 = 1;i.e., f is non-strict.

Thus, NOR results in non-strict semantics.

_ oI RNt

Lazy Evaluation (1)

Lazy evaluation or Call-by-Need is a technique
for implementing CBN more efficiently:

» Aredex is evaluated only if needed .

- Sharing employed to avoid duplicating
redexes.

» Once evaluated, a redex is updated with the
result to avoid evaluating it more than once.

As a result, under lazy evaluation, any one redex
is evaluated at most once .

MGS 2012: FUN Lecture 1 - p15/47

Lazy Evaluation (2)

Recall: sqr (dbl (2 + 3))

Wox-x e x @)

nmsrc];(dbl (2+3)) :»[(‘T‘(*mo)
=
@

= 100

MGS 2012: FUN Lecture 1 - p16/47

Exercise 2

Evaluate mai n using AOR, NOR, and lazy
evaluation:

f xXyz = x=*2
g X = f (x * xX) (x * 2) X
mai n =g (1 +2)

(Only consider an application of an arithmetic
operator a redex once the arguments are
numbers.)

How many reduction steps in each case?
Answer: 7, 8, 6 respectively

MGS 2012: FUN Lecture 1 - p17147

Infinite Data Structures (1)

take 0 xs
take n []
take n (x:xs)

[E—y—

[
[
X take (n-1) xs
fromn =n : from(n+l)

nats = fromO

mai n take 5 nats

MGS 2012: FUN Lecture 1 - p18i47

Infinite Data Structures (2)

mai n ='take =%0:take 4

brn 0 0: ((Eom D

:>50:1::>7... =0:1:2:3: 4

A

Circular Data Structures (2)

take 0 xs
t ake
take n (Xx:xs)

[]
[]
X

=}
—
—

[T T

take (n-1) xs

ones = 1 : ones

mai n take 5 ones

_ - .

Circular Data Structures (2)

Exercise 3

Given the following tree type

data Tree = Enpty
| Node Tree Int Tree

define:

= An infinite tree where every node is labelled
by 1.

« An infinite tree where every node is labelled
by its depth from the rote node.

z
2
2

Exercise 3: Solution

treeOnes = Node treeOnes 1 treeOnes
treeFromn = Node (treeFrom (n + 1))
n
(treeFrom (n + 1))

treeDepths = treeFrom O

Circular Programming (1)

A type of hon-empty trees:
data Tree = Leaf Int | Node Tree Tree

Suppose we would like to write a function that
replaces each leaf integer in a given tree with the
smallest integer in that tree.

How many passes over the tree are needed?
Onel

Circular Programming (2)

Write a function that replaces all leaf integers by
a given integer, and returns the new tree along
with the smallest integer of the given tree:

frr :: Int -> Tree -> (Tree, Int)
frr m(Leaf i) = (Leaf m i)
fmr m(Node tl tr) =
(Node tI* tr’, minm nr)
wher e
(tr', nl)
(tr’, n7)

frr mtl
famr mtr

Circular Programming (3)

For a given tree t , the desired tree is now
obtained as the solution to the equation:

(t’, m =fnm mt
Thus:

findM nReplace t =t’
wher e
(t’, m =fm mt
Intuitively, this works because f nt can compute
its result without needing to know the value of m

g

Circular Programming (4)

Operational view:

(min (nmin 3 1) 2)

A Simple Spreadsheet Evaluator

a b c a b c
1]c3 +c2 1137
2|a3 * b2 |2|a2 + b2 = 214|216
3 7 a2 + a3 3|7 21
s r

r = array (bounds s)

[((i,j), eval r (s!(i.j)))

| (i,j) <- indices s]
The evaluated sheet is again simply the solution
to the stated equation. No need to worry about
evaluation order. Any caveats?

Breadth-first Numbering (1)

Consider the problem of numbering a possibly
infinitely deep tree in breadth-first order:

>H

2 3
/\
4 56 7
AN |
8 9 10
NN
11 12 13 14

Breadth-first Numbering (2)

The following algorithm is due to G. Jones and J.
Gibbons (1992), but the presentation differs.

Consider the following tree type:

data Tree a = Enpty
| Node (Tree a) a (Tree a)

Define:
width ¢t ¢ The width of a tree ¢ at level i
(O origin).
label t i j The jth label at level i of a
tree ¢ (0 origin).

MGS 2012 FUN Lecture 1-p30147

MGS 2012 FUN Lecture 1 p28/47

Breadth-first Numbering (3)

The following system of equations defines
breadth-first numbering:

label t 00 = 1 (1)
label t (i +1) 0 = label ¢ 0+ width¢¢ (2)
label ti (j+1) = labeltij+1 (3)

Note that label ¢ ¢ 0 is defined for all levels i (as
long as the widths of all tree levels are finite).

Breadth-first Numbering (4)

The code that follows sets up the defining system
of equations:

» Streams (infinite lists) of labels are used as a
mediating data structure to allow equations
to be set up between adjacent nodes within
levels and between the last node at one level
and the first node at the next.

- ldea: the tree numbering function for a subtree
takes a stream of labels for the first node at
each level, and returns a stream of labels for
the node after the last node at each level.

MGS 2012: FUN Lecture 1 - p3247

Breadth-first Numbering (5)

- As there manifestly are no cyclic dependences
among the equations, we can entrust the
details of solving them to the lazy evaluation
machinery in the safe knowledge that a
solution will be found.

MGS 2012: FUN Lecture 1~ p33a7

MGS 2012: FUN Lecture 1~ p31a7

n
n+1 tn-+2] n+3
n+34 B \
] —] \
.
I

Breadth-first Numbering (6)

bfn :: Tree a -> Tree Integer Eqgns (1) & (2)

bfnt =1t’
wher e
, t7)) = bfnAux ((1 : t

bf nAux :: [Integer] -> Tree a n(3)

E

-> ([Integer], Tree Integer)J

bf nAux ns Enpty = (ns, Enpty
bf nAux ((n : ns)) (Node tI _tr) = (((n + 1) : ns'")

Node tI' n tr’)

—
>
o
—-
>
J

—

)

wher e
(ns’ tl’) = bfnAux ns tl
(ns’ tr’) = bfnAux ns’ tr

_ o e

MGS 2012: FUN Lecture 1 - p36/47

Dynamic Programming The Triangulation Problem (3) The Triangulation Problem (6)

- Let S;, denote the subproblem of size s These equations can be transliterated straight

Dynamic Programming : starting at vertex v; of finding the minimum into Haskell
- Create a table of all subproblems that ever triangulation of the polygon v;, vij1, ..., Viys—1 triCost :: Pol ygon -> Coubl e
will have to be solved (counting modulo the humber of vertices). triCost p = cost!(0,n) where
. . o cost = array ((0,0), (n-1,n))
- Fill in table without regard to whether the + Subproblems of size less than 4 are trivial. (L (s,
. . . mnimum[cost! (i, k+l)
solution to that particular subproblem will be - Solving S;, is done by solving S; .+, and + cost! ((i+k) ‘mod n, s-k)
+ di i i+k) ‘ mod*
needed. Sivks—k forallk, 1 <k <s—2 L ii ,‘3 I((i(iL) ?mS?’ n)n)
H H 1 i+s-1) ‘nod
- Combine solutions to form overall solution. - The obvious recursive formulation results in ke sy Sy e
Lazy Evaluation is a perfect match as saves us 3*~* (non-trivial) calls. Lo e M
from having to worry about finding a suitable - But for n > 4 vertices there are only n(n — 3) ‘o J L)<. o2, s < (0.3 1)
1 .. n = sn ounds +
evaluation order. non-trivial subproblems!

MGS 2012 FUN Lecture 1 - p 40147 MGS 2012: FUN Leclure 1 - p43a7

MGS 2012 FUN Lecture 1~ p37147

The Triangulation Problem (1) The Triangulation Problem (4) Attribute Grammars (1)

Lazy evaluation is also very useful for evaluation
of Attribute Grammars :

« The attribution function is defined recursively
over the tree:

- takes inherited attributes as extra
arguments;

- returns a tuple of all synthesised attributes.

Select a set of chords that divides a convex
polygon into triangles such that:

= no two chords cross each other
- the sum of their length is minimal.

We will only consider computing the minimal
length.

See Aho, Hopcroft, Ullman (1983) for details. - As long as there exists some possible

attribution order, lazy evaluation will take care
of the attribute evaluation.

MGS 2012: FUN Lecture 1 - padia7

oS e gt _ oI et

The Triangulation Problem (2) The Triangulation Problem (5) Attribute Grammars (2)

- Let C;; denote the minimal triangulation cost . . .
of S.. » The earlier ex_amples on (_3|rcular Programming
¢ and Breadth-first Numbering can be seen as
* Let D(v,,v,) denote the length of a chord instances of this idea.
between v, and v, (length is O for non-chords;
i.e. adjacent v, and v,).

* Fors > 4:

O~ mi Ciks1+ Ciyks—k
s = min

kefls=2) | +D(vi, Visr) + D(Vig, Vigs—1)
e Fors <4, S;s=0.

oS T _ oS s

MGS 2012: FUN Lecture 1 - p4sia7

Reading (1)

= John W. Lloyd. Practical advantages of
declarative programming. In Joint Conference
on Declarative Programming,
GULP-PRODE'94, 1994.

= John Hughes. Why Functional Programming
Matters. The Computer Journal,
32(2):98-197, April 1989.

» Lennart Augustsson. More Points for Lazy
Evaluation. 2 May 2011.
http://augustss. bl ogspot. co. uk/ 2011/
05/ nor e- poi nts-for-1lazy-eval uati on-in. htni

_ oS FN e p st

Reading (2)

« Geraint Jones and Jeremy Gibbons.
Linear-time breadth-first tree algorithms: An
exercise in the arithmetic of folds and zips.
Technical Report TR-31-92, Oxford University
Computing Laboratory, 1992.

= Alfred Aho, John Hopcroft, Jeffrey Uliman.
Data Structures and Algorithms.
Addison-Wesley, 1983.

« Thomas Johnsson. Attribute Grammars as a
Functional Programming Paradigm. In
Functional Programming Languages and

Comﬁuter Architecture, FPCA'87, 1987

	Imperative vs. Declarative (1)
	Imperative vs. Declarative (2)
	No Control?
	Relinquishing Control
	Evaluation Orders (1)
	Evaluation Orders (2)
	Evaluation Orders (3)
	Why NOR or CBN? (1)
	Why NOR or CBN? (2)
	Why NOR or CBN? (3)
	Exercise 1
	Strict vs. Non-strict Semantics (1)
	Strict vs. Non-strict Semantics (2)
	Lazy Evaluation (1)
	Lazy Evaluation (2)
	Exercise 2
	Infinite Data Structures (1)
	Infinite Data Structures (2)
	Circular Data Structures (2)
	Circular Data Structures (2)
	Exercise 3
	Exercise 3: Solution
	Circular Programming (1)
	Circular Programming (2)
	Circular Programming (3)
	Circular Programming (4)
	A Simple Spreadsheet Evaluator
	Breadth-first Numbering (1)
	Breadth-first Numbering (2)
	Breadth-first Numbering (3)
	Breadth-first Numbering (4)
	Breadth-first Numbering (5)
	Breadth-first Numbering (6)
	Breadth-first Numbering (7)
	Breadth-first Numbering (8)
	Dynamic Programming
	The Triangulation Problem (1)
	The Triangulation Problem (2)
	The Triangulation Problem (3)
	The Triangulation Problem (4)
	The Triangulation Problem (5)
	The Triangulation Problem (6)
	Attribute Grammars (1)
	Attribute Grammars (2)
	Reading (1)
	Reading (2)

