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Imperative vs. Declarative (1)

- Imperative Languages :
- Implicit state.

- Computation essentially a sequence of
side-effecting actions.

- Examples: Procedural and OO languages
» Declarative Languages (Lloyd 1994):

- No implicit state.

- A program can be regarded as a theory.

- Computation can be seen as deduction
from this theory.

- Examples: Logic and Functional Languages.
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Imperative vs. Declarative (2)

Another perspective:
« Algorithm = Logic + Control
- Declarative programming emphasises the
logic (“what”) rather than the control (“how”).
- Strategy needed for providing the “how":
- Resolution (logic programming languages)
- Lazy evaluation (some functional and logic
programming languages)
- (Lazy) narrowing: (functional logic
programming languages)
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No Control?

Declarative languages for practical use tend to
be only weakly declarative ; i.e., not totally free
of control aspects. For example:

- Equations in functional languages are
directed.

 Order of patterns often matters for pattern
matching.

» Constructs for taking control over the order of
evaluation. (E.g. cut in Prolog, seq in
Haskell.)
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Relinquishing Control

Theme of this lecture: relinquishing control by
exploiting lazy evaluation

« Evaluation orders
- Strict vs. Non-strict semantics
- Lazy evaluation
 Applications of lazy evaluation:
- Programming with infinite structures
- Circular programming
- Dynamic programming
- Attribute grammars
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Evaluation Orders (1)

Consider:

sqr X = X * X
dbl x = x + X
main = sqr (dbl (2 + 3))
Roughly, any expression that can be evaluated or

reduced by using the equations as rewrite rules
is called a reducible expression or redex.

Assuming arithmetic, the redexes of the body of
mainare: 2+3

dbl (2 + 3)

sqr (dbl (2 + 3))
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Evaluation Orders (2)

Thus, in general, many possible reduction orders.
Innermost, leftmost redex first is called
Applicative Order Reduction  (AOR). Recall:
sqr X = X * X
dbl x = x + X
main = sqr (dbl (2 + 3))
Starting from mai n:
main = sqr (dbl (2 + 3)) = sqr (dbl 5)
= sgr (5 +5) = sqgr 10 = 10 * 10 = 100

Call-By-Value (CBV) = AOR except no evaluation
under ) (inside function bodies).
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Evaluation Orders (3)

Outermost, leftmost redex first is called Normal
Order Reduction (NOR):

main = sqr (dbl (2 + 3))

= dbl (2 + 3) * dbl (2 + 3)

= ((2+3) + (2 +3)) = dbl (2 + 3)

=

=

(5 + (2 +3)) = dbl (2 + 3)
(5 +5) =~ dbl (2 +3) = 10 » dbl (2 + 3)
= ... = 10 » 10 = 100

(Applications of arithmetic operations only con-
sidered redexes once arguments are numbers.)
Call-By-Name (CBN) = NOR except no evaluation
under .
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Why NOR or CBN? (1)

NOR and CBN seem rather inefficient. Any use?
- Best possible termination properties.
A pure functional languages is just the
A-calculus in disguise. Two central theorems:
- Church-Rosser Theorem I:
No term has more than one normal form.
- Church-Rosser Theorem I
If a term has a normal form, then it can
be found through NOR.
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Why NOR or CBN? (2)

- More expressive power; e.g.:
- “Infinite” data structures
- Circular programming
- Custom control constructs (great for EDSLS)

- More declarative code as control aspects
(order of evaluation) left implicit.
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Why NOR or CBN? (3)

- More reuse. E.g. consider:
any :: (a -> Bool) -> [a] -> Bool
any p = or . map p
Under AOR/CBYV, we would have to inline all
functions to avoid doing too much work:
any :: (a -> Bool) -> [a] -> Bool
any p [] = False
any p (y:ys) =y || any p ps
(Assume (| | ) has “short-circuit” semantics.)
No reuse.
(See references for in-depth discussion.)
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Exercise 1

Consider:

f x 1

g X g X

main=1f (g 0)
Attempt to evaluate nai n using both AOR and
NOR. Which order is the more efficient in this
case? (Count the number of reduction steps to
normal form.)
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Strict vs. Non-strict Semantics (1)

« 1, or “bottom”, the undefined value ,
representing errors and non-termination .

« A function f is strict iff:
fl=1
For example, + is strict in both its arguments:

(0/0)+1 =L+1 =1
1+(0/0) = 1+L1L=1
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Strict vs. Non-strict Semantics (2)

Again, consider:
fx=1
g x=gx
What is the value of f (0/0)? Orof f (g 0)?

«AOR: f (0/0) = 1, f (g0 = L
Conceptually, f 1 = 1;i.e., f is strict.

*NOR: f (0/0) = 1, f (g0 =1
Conceptually, f 1 = 1;i.e., f is non-strict.

Thus, NOR results in non-strict semantics.
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Lazy Evaluation (1)

Lazy evaluation or Call-by-Need is a technique
for implementing CBN more efficiently:

» Aredex is evaluated only if needed .

- Sharing employed to avoid duplicating
redexes.

» Once evaluated, a redex is updated with the
result to avoid evaluating it more than once.

As a result, under lazy evaluation, any one redex
is evaluated at most once .
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Lazy Evaluation (2)

Recall: sqr (dbl (2 + 3))

Wox-x e x @)

nmsrc];(dbl (2+3)) :»[(‘T‘(*mo)
=
@

= 100
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Exercise 2

Evaluate mai n using AOR, NOR, and lazy
evaluation:

f xXyz = x=*2
g X = f (x * xX) (x * 2) X
mai n =g (1 +2)

(Only consider an application of an arithmetic
operator a redex once the arguments are
numbers.)

How many reduction steps in each case?
Answer: 7, 8, 6 respectively
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Infinite Data Structures (1)

take 0 xs
take n []
take n (x:xs)

[E—y—

[
[
X take (n-1) xs
fromn =n : from(n+l)

nats = fromO

mai n take 5 nats
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Infinite Data Structures (2)

mai n ='take =%0:take 4

brn 0 0: ((Eom D

:>50:1::>7... =0:1:2:3: 4

A

Circular Data Structures (2)

take 0 xs
t ake
take n (Xx:xs)

[]
[]
X

=}
—
—

[T T

take (n-1) xs

ones = 1 : ones

mai n take 5 ones

_ - .

Circular Data Structures (2)

Exercise 3

Given the following tree type

data Tree = Enpty
| Node Tree Int Tree

define:

= An infinite tree where every node is labelled
by 1.

« An infinite tree where every node is labelled
by its depth from the rote node.

z
2
2

Exercise 3: Solution

treeOnes = Node treeOnes 1 treeOnes
treeFromn = Node (treeFrom (n + 1))
n
(treeFrom (n + 1))

treeDepths = treeFrom O

Circular Programming (1)

A type of hon-empty trees:
data Tree = Leaf Int | Node Tree Tree

Suppose we would like to write a function that
replaces each leaf integer in a given tree with the
smallest integer in that tree.

How many passes over the tree are needed?
Onel

Circular Programming (2)

Write a function that replaces all leaf integers by
a given integer, and returns the new tree along
with the smallest integer of the given tree:

frr :: Int -> Tree -> (Tree, Int)
frr m(Leaf i) = (Leaf m i)
fmr m(Node tl tr) =
(Node tI* tr’, minm nr)
wher e
(tr', nl)
(tr’, n7)

frr mtl
famr mtr

Circular Programming (3)

For a given tree t , the desired tree is now
obtained as the solution to the equation:

(t’, m =fnm mt
Thus:

findM nReplace t =t’
wher e
(t’, m =fm mt
Intuitively, this works because f nt can compute
its result without needing to know the value of m

g

Circular Programming (4)

Operational view:

(min (nmin 3 1) 2)




A Simple Spreadsheet Evaluator

a b c a b c
1]c3 +c2 1137
2|a3 * b2 |2|a2 + b2 = 214|216
3 7 a2 + a3 3|7 21
s r

r = array (bounds s)

[ ((i,j), eval r (s!(i.j)))

| (i,j) <- indices s ]
The evaluated sheet is again simply the solution
to the stated equation. No need to worry about
evaluation order. Any caveats?

Breadth-first Numbering (1)

Consider the problem of numbering a possibly
infinitely deep tree in breadth-first order:

>H

2 3
/\
4 56 7
AN |
8 9 10
NN
11 12 13 14

Breadth-first Numbering (2)

The following algorithm is due to G. Jones and J.
Gibbons (1992), but the presentation differs.

Consider the following tree type:

data Tree a = Enpty
| Node (Tree a) a (Tree a)

Define:
width ¢t ¢ The width of a tree ¢ at level i
(O origin).
label t i j The jth label at level i of a
tree ¢ (0 origin).
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Breadth-first Numbering (3)

The following system of equations defines
breadth-first numbering:

label t 00 = 1 (1)
label t (i +1) 0 = label ¢ 0+ width¢¢ (2)
label ti (j+1) = labeltij+1 (3)

Note that label ¢ ¢ 0 is defined for all levels i (as
long as the widths of all tree levels are finite).

Breadth-first Numbering (4)

The code that follows sets up the defining system
of equations:

» Streams (infinite lists) of labels are used as a
mediating data structure to allow equations
to be set up between adjacent nodes within
levels and between the last node at one level
and the first node at the next.

- ldea: the tree numbering function for a subtree
takes a stream of labels for the first node at
each level, and returns a stream of labels for
the node after the last node at each level.

MGS 2012: FUN Lecture 1 - p3247

Breadth-first Numbering (5)

- As there manifestly are no cyclic dependences
among the equations, we can entrust the
details of solving them to the lazy evaluation
machinery in the safe knowledge that a
solution will be found.
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n
n+1 tn-+2] n+3
n+34 B \
] —] \
.
I

Breadth-first Numbering (6)

bfn :: Tree a -> Tree Integer  Eqgns (1) & (2)

bfnt =1t’
wher e
, t7)) = bfnAux ((1 : t

bf nAux :: [Integer] -> Tree a n(3)

E

-> ([Integer], Tree Integer)J

bf nAux ns Enpty = (ns, Enpty
bf nAux ((n : ns)) (Node tI _tr) = (((n + 1) : ns'")

Node tI' n tr’)

—
>
o
—-
>
J

—

)

wher e
(ns’ tl’) = bfnAux ns tl
(ns’ tr’) = bfnAux ns’ tr

_ o e
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Dynamic Programming The Triangulation Problem (3) The Triangulation Problem (6)

- Let S;, denote the subproblem of size s These equations can be transliterated straight

Dynamic Programming : starting at vertex v; of finding the minimum into Haskell
- Create a table of all subproblems that ever triangulation of the polygon v;, vij1, ..., Viys—1 triCost :: Pol ygon -> Coubl e
will have to be solved (counting modulo the humber of vertices). triCost p = cost!(0,n) where
. . o cost = array ((0,0), (n-1,n))
- Fill in table without regard to whether the + Subproblems of size less than 4 are trivial. (L (s,
. . . mnimum[ cost! (i, k+l)
solution to that particular subproblem will be - Solving S;, is done by solving S; .+, and + cost! ((i+k) ‘mod n, s-k)
+ di i i+k) ‘ mod*
needed. Sivks—k forallk, 1 <k <s—2 L ii ,‘3 I((i(iL) ?mS?’ n)n)
H H 1 . . . . i+s-1) ‘nod
- Combine solutions to form overall solution. - The obvious recursive formulation results in ke sy Sy e
Lazy Evaluation is a perfect match as saves us 3*~* (non-trivial) calls. Lo e M
from having to worry about finding a suitable - But for n > 4 vertices there are only n(n — 3) ‘o J L)<. o2, s < (0.3 1)
1 .. n = sn ounds +
evaluation order. non-trivial subproblems!
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The Triangulation Problem (1) The Triangulation Problem (4) Attribute Grammars (1)

Lazy evaluation is also very useful for evaluation
of Attribute Grammars :

« The attribution function is defined recursively
over the tree:

- takes inherited attributes as extra
arguments;

- returns a tuple of all synthesised attributes.

Select a set of chords that divides a convex
polygon into triangles such that:

= no two chords cross each other
- the sum of their length is minimal.

We will only consider computing the minimal
length.

See Aho, Hopcroft, Ullman (1983) for details. - As long as there exists some possible

attribution order, lazy evaluation will take care
of the attribute evaluation.
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The Triangulation Problem (2) The Triangulation Problem (5) Attribute Grammars (2)

- Let C;; denote the minimal triangulation cost . . .
of S.. » The earlier ex_amples on (_3|rcular Programming
¢ and Breadth-first Numbering can be seen as
* Let D(v,,v,) denote the length of a chord instances of this idea.
between v, and v, (length is O for non-chords;
i.e. adjacent v, and v,).

* Fors > 4:

O~ mi Ciks1+ Ciyks—k
s = min

kefls=2) | +D(vi, Visr) + D(Vig, Vigs—1)
e Fors <4, S;s=0.

oS T _ oS s
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Reading (1)

= John W. Lloyd. Practical advantages of
declarative programming. In Joint Conference
on Declarative Programming,
GULP-PRODE'94, 1994.

= John Hughes. Why Functional Programming
Matters. The Computer Journal,
32(2):98-197, April 1989.

» Lennart Augustsson. More Points for Lazy
Evaluation. 2 May 2011.
http://augustss. bl ogspot. co. uk/ 2011/
05/ nor e- poi nts-for-1lazy-eval uati on-in. htni
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Reading (2)

« Geraint Jones and Jeremy Gibbons.
Linear-time breadth-first tree algorithms: An
exercise in the arithmetic of folds and zips.
Technical Report TR-31-92, Oxford University
Computing Laboratory, 1992.

= Alfred Aho, John Hopcroft, Jeffrey Uliman.
Data Structures and Algorithms.
Addison-Wesley, 1983.

« Thomas Johnsson. Attribute Grammars as a
Functional Programming Paradigm. In
Functional Programming Languages and

Comﬁuter Architecture, FPCA'87, 1987
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