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This Lecture

• Monads in Haskell
• Some standard monads
• Combining effects: monad transformers
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Monads in Haskell

In Haskell, the notion of a monad is captured by
a Type Class:

class Monad m where

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

Allows names of the common functions to be
overloaded and sharing of derived definitions.
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The Maybe Monad in Haskell

instance Monad Maybe where

-- return :: a -> Maybe a

return = Just

-- (>>=) :: Maybe a -> (a -> Maybe b)

-- -> Maybe b

Nothing >>= _ = Nothing

(Just x) >>= f = f x
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Exercise 1: A State Monad in Haskell

Haskell 2010 does not permit type synonyms to
be instances of classes. Hence we have to
define a new type:

newtype S a = S (Int -> (a, Int))

unS :: S a -> (Int -> (a, Int))

unS (S f) = f

Provide a Monad instance for S.
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Exercise 1: Solution

instance Monad S where

return a = S (\s -> (a, s))

m >>= f = S $ \s ->

let (a, s’) = unS m s

in unS (f a) s’
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Monad-specific Operations (1)

To be useful, monads need to be equipped with
additional operations specific to the effects in
question. For example:

fail :: String -> Maybe a

fail s = Nothing

catch :: Maybe a -> Maybe a -> Maybe a

m1 ‘catch‘ m2 =

case m1 of

Just _ -> m1

Nothing -> m2
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Monad-specific Operations (2)

Typical operations on a state monad:

set :: Int -> S ()

set a = S (\_ -> ((), a))

get :: S Int

get = S (\s -> (s, s))

Moreover, need to “run” a computation. E.g.:

runS :: S a -> a

runS m = fst (unS m 0)
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The do-notation (1)

Haskell provides convenient syntax for
programming with monads:

do

a <- exp
1

b <- exp
2

return exp3

is syntactic sugar for

exp
1
>>= \a ->

exp
2
>>= \b ->

return exp
3
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The do-notation (2)

Computations can be done solely for effect,
ignoring the computed value:

do

exp
1

exp
2

return exp3

is syntactic sugar for

exp
1
>>= \_ ->

exp
2
>>= \_ ->

return exp
3

MGS 2012: FUN Lecture 4 – p.10/43

The do-notation (3)

A let-construct is also provided:

do

let a = exp
1

b = exp
2

return exp3

is equivalent to

do

a <- return exp
1

b <- return exp
2

return exp3
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Numbering Trees indo-notation

numberTree :: Tree a -> Tree Int

numberTree t = runS (ntAux t)

where

ntAux :: Tree a -> S (Tree Int)

ntAux (Leaf _) = do

n <- get

set (n + 1)

return (Leaf n)

ntAux (Node t1 t2) = do

t1’ <- ntAux t1

t2’ <- ntAux t2

return (Node t1’ t2’)
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The Compiler Fragment Revisited (1)

Given a suitable “Diagnostics” monad D that
collects error messages, enterVar can be
turned from this:

enterVar :: Id -> Int -> Type -> Env

-> Either Env ErrorMgs

into this:

enterVarD :: Id -> Int -> Type -> Env

-> D Env

(Suffix “D” just to remind us the types have
changed.)
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The Compiler Fragment Revisited (2)

And then identDefs from
identDefs ::

Int -> Env -> [(Id, Type, Exp ())]
-> ([(Id, Type, Exp Attr)],

Env,
[ErrorMsg])

into
identDefsD ::

Int -> Env -> [(Id, Type, Exp ())]
-> D ([(Id, Type, Exp Attr)], Env)

with the function definition changing from . . .
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The Compiler Fragment Revisited (2)

identDefs l env [] = ([], env, [])

identDefs l env ((i,t,e) : ds) =

((i,t,e’) : ds’, env’’, ms1++ms2++ms3)

where

(e’, ms1) = identAux l env e

(env’, ms2) =

case enterVar i l t env of

Left env’ -> (env’, [])

Right m -> (env, [m])

(ds’, env’’, ms3) =

identDefs l env’ ds
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The Compiler Fragment Revisited (3)

into this:

identDefsD l env [] = return ([], env)

identDefsD l env ((i,t,e) : ds) = do

e’ <- identAuxD l env e

env’ <- enterVarD i l t env

(ds’, env’’) <- identDefsD l env’ ds

return ((i,t,e’) : ds’, env’’)
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The Compiler Fragment Revisited (4)

Compare with the “core” identified earlier!

identDefs l env [] = ([], env)

identDefs l env ((i,t,e) : ds) =

((i,t,e’) : ds’, env’’)

where

e’ = identAux l env e

env’ = enterVar i l t env

(ds’, env’’) = identDefs l env’ ds

The monadic version is very close to this “ideal”,
without sacrificing functionality, clarity, or
pureness!
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The List Monad

Computation with many possible results,
“nondeterminism”:

instance Monad [] where

return a = [a]

m >>= f = concat (map f m)

fail s = []

Example:

x <- [1, 2]

y <- [’a’, ’b’]

return (x,y)

Result:

[(1,’a’),(1,’b’),

(2,’a’),(2,’b’)]
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The Reader Monad

Computation in an environment:

instance Monad ((->) e) where

return a = const a

m >>= f = \e -> f (m e) e

getEnv :: ((->) e) e

getEnv = id
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The Haskell IO Monad

In Haskell, IO is handled through the IO monad.
IO is abstract ! Conceptually:

newtype IO a = IO (World -> (a, World))

Some operations:

putChar :: Char -> IO ()

putStr :: String -> IO ()

putStrLn :: String -> IO ()

getChar :: IO Char

getLine :: IO String

getContents :: String
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Monad Transformers (1)

What if we need to support more than one type
of effect?

For example: State and Error/Partiality?

We could implement a suitable monad from
scratch:

newtype SE s a = SE (s -> Maybe (a, s))
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Monad Transformers (2)

However:
• Not always obvious how: e.g., should the

combination of state and error have been
newtype SE s a = SE (s -> (Maybe a, s))

• Duplication of effort: similar patterns related
to specific effects are going to be repeated
over and over in the various combinations.
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Monad Transformers (3)

Monad Transformers can help:
• A monad transformer transforms a monad

by adding support for an additional effect.
• A library of monad transformers can be

developed, each adding a specific effect
(state, error, . . . ), allowing the programmer to
mix and match.

• A form of aspect-oriented programming.
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Monad Transformers in Haskell (1)

• A monad transformer maps monads to
monads. Represented by a type constructor T
of the following kind:
T :: (* -> *) -> (* -> *)

• Additionally, a monad transformer adds
computational effects. A mapping lift from
computations in the underlying monad to
computations in the transformed monad is
needed:
lift :: M a -> T M a
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Monad Transformers in Haskell (2)

• These requirements are captured by the
following (multi-parameter) type class:

class (Monad m, Monad (t m))

=> MonadTransformer t m where

lift :: m a -> t m a
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Classes for Specific Effects

A monad transformer adds specific effects to any
monad. Thus the effect-specific operations
needs to be overloaded. For example:

class Monad m => E m where

eFail :: m a

eHandle :: m a -> m a -> m a

class Monad m => S m s | m -> s where

sSet :: s -> m ()

sGet :: m s
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The Identity Monad

We are going to construct monads by successive
transformations of the identity monad:

newtype I a = I a

unI (I a) = a

instance Monad I where

return a = I a

m >>= f = f (unI m)

runI :: I a -> a

runI = unI
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The Error Monad Transformer (1)
newtype ET m a = ET (m (Maybe a))

unET (ET m) = m

Any monad transformed by ET is a monad:

instance Monad m => Monad (ET m) where

return a = ET (return (Just a))

m >>= f = ET $ do

ma <- unET m

case ma of

Nothing -> return Nothing

Just a -> unET (f a)
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The Error Monad Transformer (2)
We need the ability to run transformed monads:

runET :: Monad m => ET m a -> m a

runET etm = do

ma <- unET etm

case ma of

Just a -> return a

Nothing -> error "Should not happen"

ET is a monad transformer:

instance Monad m =>

MonadTransformer ET m where

lift m = ET (m >>= \a -> return (Just a))
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The Error Monad Transformer (3)

Any monad transformed by ET is an instance of E:

instance Monad m => E (ET m) where

eFail = ET (return Nothing)

m1 ‘eHandle‘ m2 = ET $ do

ma <- unET m1

case ma of

Nothing -> unET m2

Just _ -> return ma

MGS 2012: FUN Lecture 4 – p.30/43

The Error Monad Transformer (4)

A state monad transformed by ET is a state
monad:

instance S m s => S (ET m) s where

sSet s = lift (sSet s)

sGet = lift sGet

MGS 2012: FUN Lecture 4 – p.31/43

Exercise 2: Running Transf. Monads

Let

ex2 = eFail ‘eHandle‘ return 1

1. Suggest a possible type for ex2.
(Assume 1 :: Int.)

2. Given your type, use the appropriate
combination of “run functions” to run ex2.
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Exercise 2: Solution

ex2 :: ET I Int

ex2 = eFail ‘eHandle‘ return 1

ex2result :: Int

ex2result = runI (runET ex2)
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The State Monad Transformer (1)

newtype ST s m a = ST (s -> m (a, s))

unST (ST m) = m

Any monad transformed by ST is a monad:

instance Monad m => Monad (ST s m) where

return a = ST (\s -> return (a, s))

m >>= f = ST $ \s -> do

(a, s’) <- unST m s

unST (f a) s’
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The State Monad Transformer (2)

We need the ability to run transformed monads:

runST :: Monad m => ST s m a -> s -> m a

runST stf s0 = do

(a, _) <- unST stf s0

return a

ST is a monad transformer:

instance Monad m =>

MonadTransformer (ST s) m where

lift m = ST (\s -> m >>= \a ->

return (a, s))
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The State Monad Transformer (3)

Any monad transformed by ST is an instance of S:

instance Monad m => S (ST s m) s where

sSet s = ST (\_ -> return ((), s))

sGet = ST (\s -> return (s, s))

An error monad transformed by ST is an error
monad:

instance E m => E (ST s m) where

eFail = lift eFail

m1 ‘eHandle‘ m2 = ST $ \s ->

unST m1 s ‘eHandle‘ unST m2 s
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Exercise 3: Effect Ordering

Consider the code fragment

ex3a :: (ST Int (ET I)) Int

ex3a = (sSet 42 >> eFail) ‘eHandle‘ sGet

Note that the exact same code fragment also can
be typed as follows:

ex3b :: (ET (ST Int I)) Int

ex3b = (sSet 42 >> eFail) ‘eHandle‘ sGet

What is

runI (runET (runST ex3a 0))

runI (runST (runET ex3b) 0)
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Exercise 3: Solution (1)

runI (runET (runST ex3a 0)) = 0

runI (runST (runET ex3b) 0) = 42

Why? Because:

ST s (ET I) a ∼
= s -> (ET I) (a, s)
∼
= s -> I (Maybe (a, s))
∼
= s -> Maybe (a, s)

ET (ST s I) a ∼
= (ST s I) (Maybe a)
∼
= s -> I (Maybe a, s)
∼
= s -> (Maybe a, s)
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Exercise 3: Solution (2)

Note that

ET (ST s I) a ∼
= s -> (Maybe a, s)

results in a notion of a shared, global state, while

ST s (ET I) a ∼
= s -> Maybe (a, s)

has a transactional flavour: only if a computation
succeeds will any effects from that computation
be taken into account.

Both are natural and useful; hence there is no
“right” or “wrong” ordering.
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Exercise 4: AlternativeST?

To think about.

Could ST have been defined in some other way,
e.g.

newtype ST s m a = ST (m (s -> (a, s)))

or perhaps

newtype ST s m a = ST (s -> (m a, s))
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Problems with Monad Transformers

• With one transformer for each possible effect,
we get a lot of combinations: the number
grows quadratically; each has to be
instantiated explicitly.

• Jaskelioff (2008,2009) has proposed a
possible, more extensible alternative.
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Reading (1)

• Nick Benton, John Hughes, Eugenio Moggi. Monads
and Effects. In International Summer School on
Applied Semantics 2000, Caminha, Portugal, 2000.

• Sheng Liang, Paul Hudak, Mark Jones. Monad
Transformers and Modular Interpreters. In Proceedings
of the 22nd ACM Symposium on Principles of
Programming Languages (POPL’95), January 1995,
San Francisco, California
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Reading (2)

• Mauro Jaskelioff. Monatron: An Extensible Monad
Transformer Library. In Implementation of Functional
Languages (IFL’08), 2008.

• Mauro Jaskelioff. Modular Monad Transformers. In
European Symposium on Programming (ESOP’09),
2009.
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