MGS 2012: FUN Lecture 4
More about Monads
Henrik Nilsson
University of Nottingham, uk
This Lecture
T.

- Monads in Haskell
- Some standard monads
- Combining effects: monad transformers

Monads in Haskell

In Haskell, the notion of a monad is captured by a Type Class:
class Monad m where
return :: a -> ma

$$
(\gg=):: \mathrm{m} a->(\mathrm{a}->\mathrm{m} \text { b) } \rightarrow \mathrm{mb}
$$

Allows names of the common functions to be overloaded and sharing of derived definitions.

The Maybe Monad in Haskell

instance Monad Maybe where
-- return :: a -> Maybe
return = Just
-- (>>=) :: Maybe a -> (a -> Maybe b)
-- -> Maybe b
Nothing >>= $=$ Nothing
(Just x) >>= $\mathrm{f}=\mathrm{f} \mathrm{x}$

Exercise 1: A State Monad in Haskell

Haskell 2010 does not permit type synonyms to be instances of classes. Hence we have to define a new type:

$$
\begin{aligned}
& \text { newtype } S \text { a }=S \text { (Int }->(a, \text { Int)) } \\
& \text { uns }:: S \text { a -> (Int }->(a, \text { Int)) } \\
& \text { unS }(S f)=f
\end{aligned}
$$

Provide a Monad instance for S.

Exercise 1: Solution

instance Monad S where
return $a=S(\backslash s ~->~(a, ~ s))$

$$
\begin{aligned}
& m \gg=f=S \text { S } \backslash \mathrm{s}-> \\
& \quad \text { let }\left(a, s^{\prime}\right)=\text { uns m s }
\end{aligned}
$$

$$
\text { in uns (f a) } s^{\prime}
$$

Monad-specific Operations (1)

To be useful, monads need to be equipped with additional operations specific to the effects in question. For example:

$$
\begin{aligned}
& \text { fail :: String -> Maybe a } \\
& \text { fail } s=\text { Nothing } \\
& \text { catch : : Maybe a -> Maybe a -> Maybe a } \\
& \text { m1 `catch } m 2= \\
& \text { case m1 of } \\
& \text { Just - -> m1 } \\
& \text { Nothing -> m2 }
\end{aligned}
$$

Monad-specific Operations (2)

Typical operations on a state monad:

$$
\begin{aligned}
& \text { set :: Int -> S () } \\
& \text { set } a=S\left(_{-}->(1, a)\right)
\end{aligned}
$$

get : : S Int

$$
\text { get }=S(\backslash s->(s, s))
$$

Moreover, need to "run" a computation. E.g.
runs :: S a -> a
runs $m=$ fst (uns m)

The do-notation (1)

Haskell provides convenient syntax for programming with monads:
do

$$
\begin{aligned}
& \mathrm{a}<-\exp _{1} \\
& \mathrm{~b}<-\exp _{2} \\
& \text { return } \exp _{3}
\end{aligned}
$$

is syntactic sugar for

$$
\begin{aligned}
& \exp _{1} \gg=\backslash \mathrm{a}-> \\
& \exp _{2} \gg=\backslash \mathrm{b}-> \\
& \text { return } \exp _{3}
\end{aligned}
$$

The do-notation (2)

The Compiler Fragment Revisited (1)

The Compiler Fragment Revisited (3)

Computations can be done solely for effect, ignoring the computed value:
do
$\exp _{1}$
$\exp _{2}$
return $\exp _{3}$
is syntactic sugar for
$\exp _{1} \gg=_{-}$->
$\exp _{2} \gg=$ __ $^{->}$
return $\exp _{3}$

The do-notation (3)

A let-construct is also provided:
do

$$
\begin{aligned}
& \text { let } \mathrm{a}=\exp _{1} \\
& \mathrm{~b}=\exp _{2} \\
& \text { return } \exp _{3}
\end{aligned}
$$

is equivalent to

do
a <- return $\exp _{1}$
b <- return $\exp _{2}$
return $\exp _{3}$

```
Numbering Trees in do-notation
numberTree :: Tree a -> Tree Int
numberTree \(t=\) runs (ntAux \(t\) )
    where
        ntAux :: Tree a \(->\) S (Tree Int)
        ntAux (Leaf _) = do
            n <- get
            set ( \(n+1\) )
            return (Leaf n)
        ntAux (Node t1 t2) \(=\) do
            t1' <- ntAux t1
            t2' <- ntAux t2
            return (Node t1' t2')
```

Given a suitable "Diagnostics" monad D that collects error messages, enterVar can be turned from this:

$$
\begin{aligned}
\text { enterVar : : } & \text { Id }->\text { Int -> Type -> Env } \\
& \text {-> Either Env ErrorMgs }
\end{aligned}
$$

into this:
enterVarD :: Id -> Int -> Type -> Env
-> D Env
(Suffix "D" just to remind us the types have changed.)

The Compiler Fragment Revisited (2)

And then identDefs from

identDefs : :
Int -> Env -> [(Id, Type, Exp ())
-> ([(Id, Type, Exp Attr)],
[ErrorMsg])
into
identDefsD ::
Int -> Env -> [(Id, Type, Exp ())] -> D ([(Id, Type, Exp Attr)], Env)
with the function definition changing from ...

The Compiler Fragment Revisited (2)

identDefs l env [] = ([], env, [])
identDefs l env ((i,t,e) : ds) =
((i,t, e') : ds', env'', ms1++ms2++ms3) where
(e', ms1) = identAux 1 env e (env', ms2) =
case enterVar i l t env of
Left env' -> (env', [])
Right m -> (env, [m]
(ds', env'', ms3) =
identDefs l env' ds
into this:
identDefsD l env [] = return ([], env)
identDefsD 1 env ((i,t,e) : ds) = do

$$
e^{\prime} \quad<- \text { identAuxD } 1 \text { env e }
$$

env' <- enterVarD i 1 t env (ds', env'') <- identDefsD l env' ds return ((i,t, $\left.\mathrm{e}^{\prime}\right)$: ds', env'')

The Compiler Fragment Revisited (4)

Compare with the "core" identified earlier!
identDefs 1 env [] = ([], env)
identDefs l env ($(i, t, e): d s)=$
($\left(i, t, e^{\prime}\right)$: ds', env' $\left.{ }^{\prime}\right)$
where
$e^{\prime} \quad=$ identAux 1 env e
env' $=$ enterVar i 1 t env
(ds', env'') = identDefs 1 env' ds
The monadic version is very close to this "ideal", without sacrificing functionality, clarity, or pureness!

The List Monad

Computation with many possible results

"nondeterminism"

instance Monad [] where

$$
\text { return } a=[a]
$$

$m \gg=f=$ concat (map $f m$)
fail $s=[]$
Example: Result:

$$
x<-[1,2] \quad\left[\left(1, a^{\prime}\right),\left(1, b^{\prime}\right)\right.
$$

$$
\left.y<-\left[{ }^{\prime} a^{\prime}, b^{\prime} b^{\prime}\right] \quad\left(2, a^{\prime}\right),\left(2,,^{\prime} b^{\prime}\right)\right]
$$

return (x, y)

The Reader Monad

Computation in an environment:

$$
\begin{aligned}
& \text { instance Monad }((->) \text { e) where } \\
& \text { return } a=\text { const } a \\
& m \gg=f=\ e->f(m e) e
\end{aligned}
$$

getEnv :: ((->) e) e
getEnv = id

The Haskell IO Monad

In Haskell, IO is handled through the IO monad. IO is abstract! Conceptually:
newtype IO a = IO (World -> (a, World))

Some operations:

$$
\begin{array}{ll}
\text { putChar } & \text { :: Char -> IO () } \\
\text { putStr } & :: \text { String -> IO () } \\
\text { putStrLn } & \text { :: String -> IO () } \\
\text { getChar } & :: \text { IO Char } \\
\text { getLine } & :: \text { IO String } \\
\text { getContents } & : \text { String }
\end{array}
$$

Monad Transformers (1)

What if we need to support more than one type of effect?
For example: State and Error/Partiality?
We could implement a suitable monad from scratch:

$$
\text { newtype SE s } a=\operatorname{SE}(\mathrm{s}->\operatorname{Maybe}(\mathrm{a}, \mathrm{~s}))
$$

However:

- Not always obvious how: e.g., should the combination of state and error have been

$$
\text { newtype SE } s \text { a }=\operatorname{SE}(s \text {-> (Maybe } a, s))
$$

- Duplication of effort: similar patterns related to specific effects are going to be repeated over and over in the various combinations.

Monad Transformers (3)

Monad Transformers can help:

- A monad transformer transforms a monad by adding support for an additional effect.
- A library of monad transformers can be developed, each adding a specific effect (state, error, ...), allowing the programmer to mix and match.
- A form of aspect-oriented programming.

Monad Transformers in Haskell (1)

- A monad transformer maps monads to monads. Represented by a type constructor I of the following kind:

$$
\mathrm{T}::(*->*)->(*->*)
$$

- Additionally, a monad transformer adds computational effects. A mapping lift from computations in the underlying monad to computations in the transformed monad is needed:
lift : : M a -> T M a
- These requirements are captured by the
following (multi-parameter) type class:

$$
\begin{aligned}
\text { class } & \text { (Monad m, Monad (t m)) } \\
& =>\text { MonadTransformer } t \text { m where }
\end{aligned}
$$

lift : : m a -> t m a

Classes for Specific Effects

A monad transformer adds specific effects to any monad. Thus the effect-specific operations needs to be overloaded. For example:

```
class Monad m => E m where
```

 eFail :: m a
    ```
    eFail :: m a
    eHandle :: m a -> m a -> m a
    eHandle :: m a -> m a -> m a
class Monad m => S m s | m -> s where
class Monad m => S m s | m -> s where
    sSet :: s -> m ()
    sSet :: s -> m ()
    sGet :: m s
```

```
    sGet :: m s
```

```


\section*{The Identity Monad}

We are going to construct monads by successive transformations of the identity monad:
\[
\begin{aligned}
& \text { newtype I a = I a } \\
& \text { unI (I a) = a } \\
& \text { instance Monad I where } \\
& \quad \text { return } a=I \text { a } \\
& m \gg=f=f \text { (unI m) } \\
& \text { runI : : I a }>\text { a } \\
& \text { runI = unI }
\end{aligned}
\]

The Error Monad Transformer (1)
newtype ET ma=ET(m (Maybe a))
UNET (ET m) \(=m\)

\section*{Any monad transformed by ET is a monad:}
instance Monad \(m=>\) Monad (ET m) where return \(a=\operatorname{ET}(\) return (Just a))
m >>= f = ET \$ do
ma <- UNET m
case ma of
Nothing -> return Nothing
Just a -> unET (f a) \(\qquad\)

\section*{The Error Monad Transformer (2)}

We need the ability to run transformed monads:
```

runET :: Monad m => ET m a -> m a
runET etm = do
ma <- unET etm
case ma of
Just a -> return a
Nothing -> error "Should not happen"

```

\section*{ET is a monad transformer:}
instance Monad m =>
MonadTransformer ET m where
lift \(m=E T \quad(m \gg=\) la \(->\) return (Just a))


\section*{The Error Monad Transformer (3)}

Any monad transformed by ET is an instance of E :
instance Monad \(m=>\) E (ET m) where eFail = ET (return Nothing)
m1 `eHandle` m2 = ET \$ do
ma <- UnET m1
case ma of
Nothing -> unET m2
Just _ -> return ma

\section*{The Error Monad Transformer (4)}

\section*{The State Monad Transformer (1)}

A state monad transformed by ET is a state monad:
instance \(S\) m s => \(S(E T\) m) \(s\) where
sSet \(\mathrm{s}=\) lift (sSet s
sGet \(=\) lift sGet

\section*{Exercise 2: Running Transf. Monads}

\section*{Let}
ex2 = eFail `eHandle' return 1
1. Suggest a possible type for ex2. (Assume 1 :: Int.)
2. Given your type, use the appropriate combination of "run functions" to run ex2.

\section*{Exercise 2: Solution}

\section*{ex2 :: ET I Int}
ex2 = eFail `eHandle` return 1
ex2result :: Int
ex2result \(=\) runI (runET ex2)
newtype ST s m a = ST (s -> m (a, s)) unST (ST m) = m

\section*{Any monad transformed by ST is a monad:}
instance Monad m => Monad (ST s m) where return \(a=S T\) ( \(\backslash s\)-> return ( \(a, s\) ) )
m >>= f = ST \$ \s -> do
(a, s') <- unST m s
unSt (f a) \(s^{\prime}\)

\section*{The State Monad Transformer (2)}

We need the ability to run transformed monads:
runST : : Monad m => ST s m a -> s -> m a runST stf s0 \(=\) do
(a, _) <- unST stf so
return a

\section*{ST is a monad transformer:}
instance Monad m =>
MonadTransformer (ST s) m where
lift \(m=S T(\backslash s \quad\) m >>= \a \(->\)
\[
\text { return }(a, s))
\]

\section*{The State Monad Transformer (3)}

Any monad transformed by \(S T\) is an instance of \(S\) :
instance Monad m => \(S(S T s m) s\) where sSet s = ST ( \(\backslash_{-}\)-> return ( \()\), s)) sGet \(=\) ST (\s -> return (s, s))
An error monad transformed by ST is an error monad:
instance \(\mathrm{E} m=\mathrm{E}\) ( ST s m ) where eFail = lift eFail
m1 `eHandle` m2 = ST \$ \s -> unSt m1 s 'eHandle' unSt m2 s

\section*{Exercise 3: Effect Ordering}

\section*{Exercise 4: Alternative ST?}

\section*{Consider the code fragment}
\[
\begin{aligned}
& \text { ex3a :: (ST Int (ET I)) Int } \\
& \text { ex3a }=(\text { sSet } 42 \gg \text { eFail) `eHandle` sGet }
\end{aligned}
\]

Note that the exact same code fragment also can be typed as follows:
ex3b :: (ET (ST Int I)) Int
\[
\text { ex3b }=\text { (sSet } 42 \text { >> eFail) 'eHandle' sGet }
\]

\section*{What is}
runI (runet (runSt ex3a 0))
runI (runSt (runET ex3b) 0)

\section*{Exercise 3: Solution (1)}
\[
\begin{aligned}
& \text { runI (runET (runST ex3a 0)) }=0 \\
& \text { runI (runST (runET ex3b) 0) }=42
\end{aligned}
\]

Why? Because:
ST \(s\) (ET I) \(a \cong s->\) (ET I) ( \(a, s\)
\(\cong s->I\) (Maybe (a, s))
\(\cong \mathrm{s}\)-> Maybe (a, s)
ET (ST s I) \(a \cong(S T\) s I) (Maybe a)
\(\cong s\)-> I (Maybe a, s)
\(\cong \mathrm{s} \rightarrow\) (Maybe a, s)


\section*{Exercise 3: Solution (2)}

\section*{Note that}
\[
\operatorname{ET}(S T s \text { I) } a \cong s->\text { (Maybe } a, s)
\]
results in a notion of a shared, global state, while
\[
\text { ST s (ET I) } a \cong s \text {-> Maybe }(a, s)
\]
has a transactional flavour: only if a computation succeeds will any effects from that computation be taken into account
Both are natural and useful; hence there is no "right" or "wrong" ordering.

To think about
Could ST have been defined in some other way e.g.
\[
\text { newtype ST s m a = ST (m (s -> }(a, s)))
\]
or perhaps
newtype \(\operatorname{ST} \mathrm{s} m \mathrm{a}=\mathrm{ST}(\mathrm{s}->(\mathrm{m} a, \mathrm{~s}))\)

\section*{Problems with Monad Transformers}
- With one transformer for each possible effect, we get a lot of combinations: the number grows quadratically; each has to be instantiated explicitly.
- Jaskelioff \((2008,2009)\) has proposed a possible, more extensible alternative.

\section*{Reading (1)}
- Nick Benton, John Hughes, Eugenio Moggi. Monads and Effects. In International Summer School on Applied Semantics 2000, Caminha, Portugal, 2000.
- Sheng Liang, Paul Hudak, Mark Jones. Monad Transformers and Modular Interpreters. In Proceedings of the 22nd ACM Symposium on Principles of Programming Languages (POPL'95), January 1995, San Francisco, California

\section*{Reading (2)}
- Mauro Jaskelioff. Monatron: An Extensible Monad Transformer Library. In Implementation of Functional Languages (IFL'08), 2008.
- Mauro Jaskelioff. Modular Monad Transformers. In European Symposium on Programming (ESOP'09), 2009.
\(\qquad\)```

