
A functional calculus of physiological evidence
Thomas A Nielsen1,2, Henrik Nilsson2, Tom Matheson1

1Department of Biology, Leicester University 2School of Computer Science, University of Nottingham

Introduction

There is increased recognition of the need for machine-readable
experiment definitions. A universal notation would facilitate the sharing
and replication of results and clear up apparent inconsistencies between
studies. Whether experiments are carried out by machines or humans,
they can essentially be seen as programs that can manipulate and
observe the real world. There are currently two fundamental approaches
to defining such programs:

I Configuration files
. easy to write by hand or with a GUI
. can be flexible, e.g. XML formats
. but ultimately have a limited scope
. little or no facility for abstraction

I complex experiments are infeasible
I Imperative programming language
. much more flexible
. more difficult to:

I reason about the experiment or
ultimate source of observations

I read and write

NumRepetitions = 5

Velocity = 40

ViewingAngle = 25

Interval = 120

FOR I = 1 TO 5

WAIT(60)

X=X+1

SPIKES=SIMULATE(X)

NEXT I

I Can we do better with a declarative (“what, not how”) language?

Lambda calculus and functional programming

I Calculating exclusively with purely mathematical functions.
I Functions are first class entities, which means they can be stored in

variables, passed as values to other functions and composed.
I Expressions in the (pure) lambda calculus have no side effects. In

particular, there is no variable mutation, state or input/output.
I The lambda calculus forms the basis for almost all interactive proof

assistants (Coq, Isabelle, HOL, Agda, ACL2 etc.) used to mechanically
verify mathematical proofs.

I There are several high-performance implementations (Haskell, ML,
Clean).

I Types
R Real numbers 3.141252...
Z Integers 3
Bool Booleans True , False
() Unit type (No information) ()
[α] List of type α [1,2,3]
α×β Pair of α and β (5,())
α→ β Function from α to β λx → x > 5

I One of the most difficult problems in purely functional programming
languages is interacting with the real world. Functional reactive
programming is a solution to this problem.

Funding

I BBSRC (TM), EPSRC (HN) and HFSP (TAN)

Functional Reactive Programming

I Signal: for any type α, Signal α = Time → α
I Event: for any type α, Event α = [Time ×α]
I Duration: for any type α, Duration α = [Time ×Time ×α]

Quantity Type
Membrane Voltage Signal R
Animal location Signal (R×R)
Spike Event ()
Spike waveforms Event (Signal R)
EPSC Amplitude Event R
Drug present Duration ()
Visual stimulus Signal Shape

BAYSIG

I A new programming language we have built for neuroscience research
I Syntax and semantics similar to Haskell; the compiler is written in Haskell
I First-class signals
. {: e :} Signal that has value e at every timepoint
. 〈: s :〉 Value of signal s at the current timepoint

smap :: (α→ β)→ Signal α→ Signal β
smap f s = {: f 〈: s :〉 :}

I First-class event streams
. pred ?? sig An event that occurs whenever the predicate pred on

signal sig ’s value becomes true.

crosses :: R→ Signal R→ Event ()
crosses xth sig = tag () ((λx → x > xth) ?? sig)

I Switch between different signals based on event occurrences

Vm = switch
, endrefrac ; let D v = cellOde v in v

spike ; {: vrest :}
I Signals and events can be defined by mutual recursion

spike = crosses (−0.05) Vm
endrefrac = later 0.002 spike

I Bind source to variable
signalIn <∗ source parameter

I Send variable to sink
signalOut ∗> source parameter

I Remember a value in a database for future analysis
x ! = . . .

Looming detection in the desert Locust

0
50

100
150
200
250

0 1 2 3 4 5 6

Spike Frequency

I BAYSIG experiment and analysis definition

ecVoltage! <∗ ADC (0, 20000, 6)
distance = {: v ∗ 〈: seconds :〉 − 5 :}
loomingSquare =
{: colour (0, 0, 0)

(translate (0, 0, 〈: distance :〉) (cube l)) :}
loomingSquare ∗> screen ()
spikes! = crosses vth ecVoltage
histogram! =
{: length (filter (between〈: delay seconds :〉

〈: seconds :〉 ◦ fst) spikes) :}

Hierarchical Bayesian Modelling

I Statistical parameter estimation and hypothesis testing

τ0

(µ, σ)τ

baseline τ

(µ, σ)τ0

[t0, t1...]

trial

ratetrial

ratesubject

(µ, σ)baselineσtrial(µ, σ)ratesubject

subject

I Bayes’ theorem, hierarchically
p(θpop|D) ∝ p(D|θtrial)p(θtrial|θsubject)p(θsubject|θpop)p(θpop)

I Likelihood function
p(spikes|r(t)) = e−

∫
r(t)dt

∏
map (r ◦ fst) spikes

I Defined in terms of nested durations
Animal

Trial
Velocity

running ‘within ‘ distinct velocity ‘within ‘ animal

Conclusions

I Ontology based on lambda calculus and higher-order types
I We can directly express experiments and hierarchical models

Created with LATEXbeamerposter http://www-i6.informatik.rwth-aachen.de/~dreuw/latexbeamerposter.php

http://www-i6.informatik.rwth-aachen.de/~dreuw/latexbeamerposter.php

