
121

The Evaluation Dependence Tree as a Basis for

Lazy Functional Debugging *

HENRIK NILSSON henni@ida.liu.se

Linköping University, Department of Computer and Information Science, S-581 83 Linköping,

Sweden

JAN SPARUD sparud@cs.chalmers.se

Chalmers University of Technology, Department of Computing Science, S-412 96 Göteborg, Swe-

den

Editor: M Ducassé

Abstract. Lazy functional languages are declarative and allow the programmer to write programs
where operational issues such as the evaluation order are left implicit. This should be reflected in
the design of debuggers for such languages to avoid burdening the programmer with operational
details, e.g. concerning the actual evaluation order. Conventional debugging techniques tend to
focus too much on operational aspects to be suitable in this context. A record of the execution
that only captures the declarative aspects of the execution, leaving out operational details, would
be a viable basis for debugging lazy functional programs. Various declarative debugging tools
could then be developed on top of such records. In this paper we propose a structure which
we call the Evaluation Dependence Tree (EDT) for this purpose, and we describe two different
construction methods. Performance problems are discussed along with possible solutions.

Keywords: Declarative languages, lazy functional languages, debugging, debugger implementa-
tion

1. Introduction

The key advantage of declarative programming languages is that they allow the
control component of a program, i.e. the exact evaluation order, to be left unspec-
ified. This often allows a very succinct yet clear program formulation, focusing on
the ‘what’ of the problem at hand rather than on a detailed description of exactly
how to solve it. However, this also means that the language implementation must
supply the missing control component, which makes it problematic to debug declar-
ative programs using conventional debugging tools. The reason is that conventional
debugging tools are based on observing execution events as they occur. This re-
quires the programmer to fully understand what is going on operationally, which is
exactly what a declarative programmer usually prefers not to be concerned with.
Declarative programming calls for declarative debugging techniques which focus on
the declarative aspects of the program and allow debugging to take place at the
same conceptual level as programming.

* This work has been supported by the Swedish Board for Industrial and Technical Development
(NUTEK).

122 NILSSON AND SPARUD

One class of declarative languages are the lazy functional ones, such as Haskell
[4]. They are characterized by demand driven evaluation: no expression is evaluated
unless its result is needed to compute part of the output, and then it is evaluated
at most once (hence lazy). ‘Lazy debugging’ is difficult for precisely the reasons
discussed above [11], and there are currently no realistic, general purpose debuggers
available for this type of language. This confines lazy functional programmers to
basic debugging techniques, such as bottom-up testing of individual functions.

Due to the high-level nature of lazy functional languages, and the fact that most
modern lazy languages feature static, polymorphic type systems, the lack of general
debugging tools is less of a problem than what it otherwise would have been. The
type system prevents many mistakes and automatic memory management elimi-
nates another common source of errors. Nevertheless, sooner or later mistakes are
made, and a good debugger is then a valuable and time saving aid.

Several declarative debugging techniques which could be used in a lazy context
have been suggested, e.g. Shapiro’s algorithmic debugging [13], or Ducassé’s trace
analysis techniques [1]. Both types of debuggers perform debugging on an execution
record, or trace, of the target program (the program being debugged), and the
usefulness of the debugger is very much dependent on the structure of this record.
A straightforward construction of a lazy execution record results in a structure
which is too operational, making declarative debugging difficult [9].

Our proposed solution to this problem is to construct the execution record in such
a way that the demand driven aspect of lazy functional languages is effectively
hidden. We call this particular kind of execution record Evaluation Dependence

Tree (EDT), and in the following we will formally define what an EDT is and
explain why EDTs constitute a suitable foundation for debugging lazy functional
languages. Our EDT is an improvement over previously suggested trace structures
in that it explicitly includes information necessary to display functional values.
Names of functions and free variables are part of the EDT, for instance, and partial
applications have an explicit representation. Similar approaches have been used for
other languages where the declarative semantics is far removed from what happens
operationally, e.g. deductive database systems [15].

We also describe two different ways of constructing EDTs. The first is based
on source code transformations and a small library of simple support routines.
It should thus be portable without too much effort. The second approach is to
change the underlying language implementation. While the implementation effort
is substantially larger in this case, the approach offers better performance.

The rest of this paper is organized as follows. Section 2 gives a short introduction
to Haskell. The basic problems of lazy functional debugging are covered in section 3,
and section 4 then defines the EDT and shows how it addresses these problems.
Section 5 considers the problems of EDT construction. Two different strategies are
explained and compared. Some architectural issues are addressed in section 6 and
then related work is reviewed in section 7. Finally conclusions are given.

123

2. Haskell Syntax and Features

The following points on Haskell syntax and language features might be helpful
for readers who are not familiar with Haskell or any similar functional language.
It covers most of the constructs that are used in the remainder of this article. A
thorough introduction to Haskell may be found in Hudak & Fasel [3] and a definition
of the language in Hudak et al. [4].

Function application is denoted by juxtaposition, so f (1+1) 2 means the func-
tion f applied to the arguments (1+1) and 2. Function application has higher
precedence than infix operator application, which is why the first argument to f is
enclosed in parentheses. Also, application is left associative, so f (1+1) 2 is really
interpreted as (f (1+1)) 2. Conceptually, f is first applied to the argument (1+1)
which results in a new function (expecting one argument less than f). This function
is then applied to 2. Handling application of functions of more than one argument
in this manner is known as currying.

Function definition follows the juxtaposition pattern, so the function f above
might be defined as f x y = x * y. In general, a function may be defined by
a series of equations, where patterns and guards are employed to decide which
equation applies when the function is applied to some specific arguments. As an
example, here is a definition of the factorial function:

fac 0 = 1

fac n | n > 0 = n * fac (n - 1)

The first equation states that 0! = 1. The pattern 0 constrains the equation to be
applicable only when fac is applied to 0. The second equation states that n! =
n · (n − 1)!. The pattern n is a variable pattern. A variable matches anything and
is then bound to the matched argument. In this case, however, the guard n > 0

constrains the equation to be applicable only when the argument is greater than
0. Should the patterns happen to be overlapping so that more than one equation
apply, the semantics of Haskell states that the first (textually) of these equations
should be picked.

So called lambda-abstractions are used to introduce functions without first giving
them names. In Haskell, \ is used to denote λ. Lambda abstractions have the general
form \x -> exp, where x is the formal argument and exp is the body of the function.
For example, \x -> 2*x is a function that when applied to a number yields that
number multiplied by two, and the expression (\x -> x*x) 3 evaluates to 9.

Tuples are written enclosed in parentheses and lists enclosed in square brackets.
Thus (1,’a’,3) is a three-tuple and [1,2,3] is a list of three elements. The latter is
just syntactic sugar for 1:2:3:[], where : is the (right associative) list construction
operator (pronounced ‘cons’) and [] is the empty list. Note that the elements of a
tuple can be of mixed types, whereas the elements in a list must be of a single type.

Pattern matching also works for tuples and lists. The first of the two functions be-
low extracts the first component of a pair (two-tuple) whereas the second computes
the length of a list.

124 NILSSON AND SPARUD

fst (a,_) = a

length [] = 0

length (x:xs) = 1 + length xs

Note the use of the wild-card pattern in the definition of fst. The wild-card is
like a variable pattern in that it matches anything, but unlike a variable it will not
be bound to the matched argument which thus cannot be referred to in the body
of the function. In the definition of length, the pattern [] matches only the empty
list, whereas the pattern (x:xs) matches any non-empty list, binding x to the first
element of that list (the head of the list) and xs to the remainder of the list (its
tail). Since x is not used in the right-hand side, it could equally well be replaced
with a wild-card.

Sometimes it is convenient to name a pattern for use on the right-hand side. This
can be achieved using an as-pattern. The following function duplicates the first
element in a non-empty list:

f (x:xs) = x:x:xs

Using an as-pattern, it could be defined as follows:

f s@(x:_) = x:s

Haskell has a polymorphic type system. Since the functions fst and length defined
above do not make any assumptions regarding the types of the elements in the pair
and list, respectively, they are polymorphic, meaning that fst can be applied to
pairs of elements of any types, and that length can be applied to lists of elements
of any type.

Type declarations are introduced by ::. Function types are written using ->. As-
suming that the function g expects two integers and returns a character, the type
of g is written Int->Int->Char and the fact that g has this type expressed as g ::

Int->Int->Char. The type constructor -> is right associative, matching the left
associative function application. Thus the type of g is really Int->(Int->Char),
meaning that when g is applied to an integer we get a function from integer to
character back. The types for tuples and lists have a special syntax that is reminis-
cent of values of that type, e.g. the type of the tuple (1,’a’,3) is (Int,Char,Int)
and the type of the list [1,2,3] is [Int]. Type declarations are optional and will
automatically be inferred if omitted.

Implicitly universally quantified type variables are used to specify polymorphic
types. Thus fst :: (a,b)->a means that for all types a and b, fst is a function
that maps a pair of elements of types a and b to values of the type a. Further,
length :: [a]->Int means that for all types a, length is a function that maps
lists of elements of type a to integers.

New types are created by data declarations. There is also a facility for defining
type synonyms. Here are some examples:

125

data Colour = Red | Green | Blue

type Point = (Float,Float)

data Object = Rectangle Point Point | Circle Point Float

data NewList a = Null | Cons a (NewList a)

Colour is a simple enumeration type with three values. Point is a type synonym,
i.e. just a shorthand notation for a tuple of two floating point numbers. Point is
then used in definition of the data type Object. An Object is either a Rectangle

consisting of two points (the coordinates of opposite corners) or a Circle consisting
of a point and a floating point number (the origin and the radius). The final example
illustrates a recursive type definition, isomorphic to the built-in list type. Thus, a
NewList with elements of type a is either Null (the empty list) or a Cons-cell
consisting of an element of the type a (the head of the list) and a NewList with
elements of type a (the tail of the list).
Red, Green, Blue, Rectangle, Circle, Null and Cons are called constructors

and work as functions (or constants) for constructing values of the corresponding
type. Thus we have Red :: Colour and Cons :: a->NewList a->NewList a for
instance. Constructors also work as tags, distinguishing various kinds of objects
from one another within a type, and can be used to take objects apart by pattern
matching. For example, a function to compute the area of an Object and a function
to compute the length of a NewList may be defined as below:

area (Rectangle (x1,y1) (x2,y2)) = abs ((x2-x1) * (y2-y1))

area (Circle _ r) = pi * r * r

newLength Null = 0

newLength (Cons _ xs) = 1 + newLength xs

3. Lazy Functional Debugging

In this section, we will look at how the demand driven nature (call-by-need seman-
tics) of lazy functional languages makes debugging at an operational level difficult.
To fully appreciate the problem, it is useful to first have some intuition regard-
ing what ‘declarative’ means in a lazy functional context, and in which sense the
evaluation order is left unspecified.

Figure 1 illustrates the evaluation of a simple spreadsheet. The spreadsheet itself
is represented as an array s of cells, where each cell may contain an expression or be
left empty. To compute the result array r, the expressions in s must be evaluated.
But since they contain references to the values of other expressions, this must be
done in an order determined by the dependences between the expressions.

In a language with call-by-value semantics, such as an imperative one, the evalu-
ator would have to specify a suitable order explicitly. Such an order could be found
by first analysing the dependences between the expressions. Alternatively, an order
which is always suitable, such as performing all computations iteratively until the
results stabilize, could be used.

126 NILSSON AND SPARUD

⇒

s r

a b c

1

2

3

37

14

7

2 16

21

2 a2+b2

a2+a3

a b c

1 c3+c2

a3*b22

73

Figure 1. Spreadsheet example. The sheet to the right is the result of evaluating the one to the
left. Note how the dependences between the expressions in the cells impose an evaluation order.

In a lazy functional language, in this example Haskell, the evaluator can be speci-
fied declaratively by simply stating the the relationship between s and r, as follows:

r = array (bounds s) [(i,j) := eval r (s!(i,j))

| (i,j) <- indices s]

The code above says that r is an array with the same dimensions as s (the (bounds
s) bit), where the value at index (i,j) is given by evaluating the expression at
the corresponding index in s. Evaluation of a single expression is done using the
auxiliary function eval that takes r as an environment where the values for the
references may be looked up. Since, under a lazy evaluation scheme, nothing is com-
puted unless needed, the necessary computations will be carried out in dependence
order yielding a fully evaluated r, as long as there are no circular dependences.

This example illustrates that what the user writes can be quite far removed from
what happens operationally, with obvious consequences concerning the suitability
of operational debugging methods.

Now, let us look at how lazy evaluation works at a more detailed level, and
what problems it can cause from a debugging perspective. Consider the following
functional program:

foo x y = (fie (x+y), fie (x/0))

fie x = 2*x

main = fst (foo 1 2)

In a lazy functional language, the computation will proceed as follows. When the
value of main is demanded in order to print the result of the program, fst will be
applied to (foo 1 2). Since fst extracts the first component of a pair, the result
of (foo 1 2) is needed. However, foo does not know which components of the
pair will be needed later, so it simply returns (fie (1+2), fie (1/0)), i.e. a pair
of two unevaluated elements. Now, fst may extract the first component from the
returned pair, so the result of fst (foo 1 2) is fie (1+2). Since the result still
is not a value, fie is invoked, in turn causing + and * to be invoked, yielding the
final result 6. The whole process is depicted as a tree in figure 2.

127

foo 1 2 � (fie (1+2),fie (1/0))

fie (1+2) � 6

1+2 � 3 2*3 � 6

main � 6

fst (foo 1 2) � fie (1+2)

Figure 2. Execution tree depicting lazy evaluation. The nodes correspond to evaluation of function
applications, recording the arguments and the result. The parent–child relationship indicates that
the parent caused the evaluation of its children.

There are two things to note here. First, the fact that arguments to functions and
results from functions can be expressions, that may or may not be evaluated later.
In real programs, such expressions are often very large, and it can be difficult to see
what they stand for. Contrast this with the situation in a language with call-by-
value semantics, where the arguments and result are always evaluated before calling
the function and returning from it, respectively. Second, the structure of the source
code is not reflected in the structure of the computation in any obvious manner.
For example, by looking at the source code, one might arguably expect foo to call
fie, but from the example above it is clear that this does not happen.

These two facts about lazy evaluation combine to make it very difficult to inter-
pret the state of the computation or to make sense out of the order of execution
events (such as function invocations), both which are fundamental techniques when
debugging programs written in imperative languages.

To give another illustration of the problem, suppose that main in the program
above had been defined as snd (foo 1 2). Since snd is a function that returns
the second component of a pair, we would get an execution error because the value
of 1/0 is now needed. However, the error will not occur during the invocation of
foo, the function in which the bug is located, but rather during the invocation of
fie, which happened to be the first function that needed the value of 1/0. Thus, in
comparison to languages with call-by-value semantics, it is more difficult to relate
an execution error to the construct in the source code that causes it.

4. The Evaluation Dependence Tree

The insight that lazy functional languages require special tools and techniques for
debugging is not new. Some of the earliest work in the area known to us is Hall &
O’Donnell [2], [11], where they identify the difficult-to-predict evaluation order as a

128 NILSSON AND SPARUD

key problem of debugging lazy functional programs using conventional techniques,
and propose a number of possible solutions. A review of related work can be found in
section 7, but it is interesting to note here that most work in the area suggests using
tracing in some form to deal with the problem. Kamin [5] even argues that tracing
might well be inevitable in the context of debugging lazy functional programs.

Our approach is also based on tracing. We argue that the key to successful de-
bugging in a lazy context is the construction of a declarative, tree structured trace,
reflecting the structure of the source code rather than the order in which the various
computations really took place, and in which values are seen in their most evaluated
form. We will refer to this kind of trace as an Evaluation Dependence Tree (EDT)
from now on.

The EDT is essentially a proof tree, where each node is a conclusion of the form
‘given the equations in the program, it was possible to prove term x equal to term
y’. In a functional language, x will be a function application (or a constant) and
proving equality means rewriting (or reducing) x to y by using the equations in a
directed manner as rewrite rules. Debugging is then just a matter of looking for
erroneous conclusions and following the chain of reasoning down the tree until the
mistake can be identified.

In this section we will define what an EDT is and show how it can be used as a
basis for declarative debugging. It should be pointed out that we focus on the key
ideas: exactly what a real EDT would look like may depend on the features of the
language in question as well as various implementation choices.

4.1. A Small Functional Language

In order to present the ideas in a formal as well as concrete manner, we will start
by introducing a simple functional language containing only the most essential
features. We do this by giving a denotational semantics in direct style for the
language, taking the meaning of a program to be the output of the program when
it is executed. (For simplicity, we make the assumption that there is no input to the
program. Otherwise its meaning would be a function mapping input to output.) In
the next section we introduce the EDT and define it (for this particular language) by
modifying the semantics so that the meaning of a program is the EDT corresponding
to the execution in addition to the normal result. To avoid introducing yet another
notation for the semantics specifications, we use Haskell as the meta-language.
Haskell closely resembles the meta-language of traditional denotational semantics.

The language defined below is a small functional language with normal-order
semantics. This is actually not quite the same as laziness, since under a lazy eval-
uation scheme, any particular expression is evaluated at most once, and there is
no such guarantee here. However, this is really an operational issue, as laziness is
just a way of implementing a language with normal-order semantics efficiently. To
keep the semantics simple it focuses on what a program computes rather than how
the computation would proceed in a realistic implementation. There is a price to
pay for this simplicity, however, as will become clear when the EDT semantics is

129

defined, since a completely formal characterization of the EDT cannot be given
unless the lazy aspects are taken into account.

4.1.1. The Syntactic Domain

First we need a domain for the abstract syntax of programs in the language:

data Exp = LitInt Int -- Literal integer

| Prim String -- Primitive

| Var String -- Variable

| App Exp Exp -- Application

| Letrec [Def] Exp -- Recursive definition

data Def = VarDef String Exp -- x = exp

| FunDef String [String] Exp -- f x1 ... xn = exp

The intention is that a program is a single expression whose value is the result
of executing the program. The Letrec-expression allows the definition of functions
and variables that are in scope in the entire Letrec-expression, permitting recursive
definitions. Expression can also be one of the built in constants (primitives), such
as arithmetic functions, boolean functions or functions operating on lists. Such
primitives will be introduced as needed.

If we invent some concrete syntax for this language, the example from section 3
can be written as follows:

letrec

foo x y = mkpair (fie (x+y)) (fie (x/0))

fie x = 2 * x

in

fst (foo 1 2)

If this is encoded into the abstract syntax defined above, we get:

Letrec

[FunDef "foo" ["x", "y"]

(App (App (Prim "mkpair")

(App (Var "fie")

(App (App (Prim "+") (Var "x"))

(Var "y"))))

(App (Var "fie")

(App (App (Prim "/") (Var "x")) (LitInt 0)))),

FunDef "fie" ["x"]

(App (App (Prim "*") (LitInt 2)) (Var "x"))]

(App (Prim "fst")

(App (App (Var "foo") (LitInt 1)) (LitInt 2)))

130 NILSSON AND SPARUD

Note that infix operator application such as (x+y) has been translated into prefix
function application. Furthermore, a function whose arity, i.e. number of arguments,
is greater than 1, is applied to its arguments one by one. This is known as partial
application or currying. The idea is simple: an application of a function of arity n

to a single argument yields a function of arity n−1 that behaves as the old one with
the first formal argument fixed to the argument to which it was applied. Thus, in the
example above, (Prim "*") is a function of arity 2 (arithmetic multiplication) and
(App (Prim "*") (LitInt 2)) is a function of arity 1 that multiplies whatever it
is applied to by 2.

4.1.2. The Semantic Domain

Then a semantic domain is needed, i.e. objects that capture the meaning of syntactic
objects in the language:

data Val = Int Int -- Integer

| Constr String [Val] -- Constructed value

| Fun String Int ([Val] -> Val) -- Function

| PApp Val [Val] -- Partial application

| Thunk (() -> Val) -- Suspended evaluation

The Constr-constructor is used to represent constructed data objects such as tu-
ples, list-cells, or booleans. As an example, the pair (1,2) could be represented as
(Constr "Pair" [Int 1, Int 2]) and the list [42] as (Constr ":" [Int 42,

Constr "[]" []]) depending on exactly which names we choose for the construc-
tors.

Built-in and user-defined functions are represented by functions in the meta-
language. The semantic value of a function of arity n is a function that expects a
list of n semantic values as its only argument and returns a semantic value. It is
necessary to explicitly keep track of the arity of the represented function, and thus
there is an integer-valued field with this purpose. An unusual feature is that the
name of the function (a string) is also present in the semantic representation. This
is necessary since, for debugging purposes, it must be possible to provide a sensible
textual representation for all semantic values, including functional ones.

Partial applications represent functions that have been applied to some but not all
of their arguments. As was explained above, a partial application is also a function.
Its arity is given by the arity of the partially applied function less the length of
the list of the accumulated arguments. The reason for having a separate, explicit,
representation for functions that really are partial applications of built-in or user-
defined functions, is again that it must be possible to display such values in a
recognizable form during debugging.

A thunk, finally, is a suspended computation, represented by a function that when
applied to unit, (), performs the suspended computation. Strictly speaking, the
introduction of thunks is superfluous since the normal-order semantics of the meta-
language carries over to the defined language anyway. However, making the thunks

131

explicit serves to emphasize that some expressions are not evaluated immediately,
which is important in the following.

A few utility functions for semantic values will also be needed:

arity (Int _) = 0

arity (Constr _ _) = 0

arity (Fun _ n _) = n

arity (PApp f as) = arity f - length as

arity (Thunk _) = 0

-- First argument is assumed to have arity > 1

mkPApp f@(Fun _ _ _) a = PApp f [a]

mkPApp (PApp f as) a = PApp f (as ++ [a])

-- First argument is assumed to have arity = 1

apply (Fun _ _ f) a = f [a]

apply (PApp (Fun _ _ f) as) a = f (as ++ [a])

force (Thunk t) = t ()

force v = v

The function arity computes the arity of a semantic value. The function mkPApp

applies a function or partial application of arity greater than 1 to one argument,
which results in a partial application. The function apply applies a function or
partial application of arity 1 to a single argument which results in the computation
of a value. The function force forces the evaluation of a thunk.

4.1.3. The Valuation Functions

Next, environments keeping track of variable bindings are needed. We choose to
represent environments as lists of pairs of a variable name (a string) and a semantic
value:

type Env = [(String,Val)]

emptyEnv = []

updEnv :: Env -> [(String,Val)] -> Env

updEnv env new = new ++ env

lookup :: Env -> String -> Val

lookup [] x = error ("Variable " ++ x ++ " not bound.")

lookup ((x’, v) : env) x | x == x’ = v

| otherwise = lookup env x

132 NILSSON AND SPARUD

Finally we can give the valuation functions, which map syntactic objects to their
meaning:

eval :: Exp -> Env -> Val

eval (LitInt n) env = Int n

eval (Prim p) env = primVal p

eval (Var v) env = force (lookup env v)

eval (App e1 e2) env = if arity f > 1 then

mkPApp f a

else

apply f a

where

f = eval e1 env

a = Thunk (\() -> eval e2 env)

eval (Letrec ds e) env = eval e env’

where

env’ = updEnv env

(elaborate ds env’)

elaborate :: [Def] -> Env -> [(String,Val)]

elaborate [] env = []

elaborate (VarDef x e : ds) env =

(x, Thunk (\() -> eval e env)) : elaborate ds env

elaborate (FunDef f xs e : ds) env =

(f, Fun f (length xs)

(\as -> eval e (updEnv env (zip xs as)))) :

elaborate ds env

The function primVal is left unspecified. It simply maps the names of the built-in
constants and functions to the corresponding semantic values.

The result of applying eval to an expression will in general not be a value in
normal form (NF), i.e. a value that cannot be further evaluated, but a value in
weak head normal form (WHNF). WHNF means that no further evaluation, or
reduction, is possible at the top-level, but it does not preclude the possibility that
there are reducible expressions (redexes), modelled by thunks, in inner positions.
For example, if an expression computes a pair, the object returned from eval would
be something like Constr "Pair" [Thunk <f>, Thunk <g>] where <f> and <g>

represent functions that will compute the first and second components of the pair
(again in WHNF) when applied to (). Note that partial applications are in WHNF.

Evaluation to WHNF rather than NF is a crucial ingredient in the demand driven
evaluation strategy as it postpones evaluation as long as possible. On the other
hand this means that demand must be created at the top level, there must be some
printing mechanism that forces the evaluation of thunks as needed for printing
purposes. Since we are going to reason informally about demand in the following
anyway, we omit the specification of the printing mechanism here.

133

1+2 � 3

2*3 � 6

main � 6

fie 3 � 6

foo 1 2 � (6,?) fst (6,?) � 6

Figure 3. EDT for the example in section 3. Note that the structure of the EDT reflects the
structure of the source code, but that only nodes corresponding to function applications that
actually were evaluated are present. Also note that some values were never evaluated. These are
shown as ?.

Keeping the discussion on WHNF in mind, most of the definition of eval is
straightforward. When a variable is evaluated, force must be used to ensure that
the returned value is in WHNF. Function application is handled by applying a
function to its arguments one by one, accumulating the arguments by creating
partial applications, until all arguments are present. Note how the function is always
evaluated to WHNF wheras the evaluation of the argument is postponed by creation
of a thunk.

The function elaborate elaborates a sequence of definitions in an environment
and returns a list of bindings, i.e. pair of a variable name and a semantic value.
The returned bindings are used to update the old environment when evaluating a
Letrec-expression, yielding a new environment in which the body of the Letrec is
evaluated. But note that the elaboration of the definitions also occurs in the new
environment so as to allow the definitions to be (mutually) recursive.

4.2. Definition of the EDT

An EDT is a tree-structured trace whose structure is given by the structure of the
source code, rather than by the structure of the actual execution. A node in the
EDT corresponds to a function application, recording arguments and result, and
the children of a node are those applications on which the application depends.
Declaratively, a node shows that the system was able to prove one term, the ap-
plication, equal to another, the result. We define a function application to depend
on another if the latter is an instance of an application that syntactically occurs in
the body of the former, and that eventually became evaluated. Here, application is
understood to mean application to all arguments. There are no nodes corresponding
to partial applications.

134 NILSSON AND SPARUD

As an example, consider figure 3 which shows the EDT for the example in sec-
tion 3. Note that the application foo 1 2 only depends on one application of fie,
since only the value of the first component of the pair was needed, even though two
applications of fie syntactically occur in the body of foo.

Furthermore, arguments and results should occur evaluated as far as possible in
the EDT. This is both because we think it is easier to understand the behaviour
of the target if arguments and results are shown as basic values rather than as
expressions representing the same values, and a consequence of the syntactically
oriented definition of dependence above. It is important to realize that some values
may never become fully evaluated during the execution, and that such values cannot
be further evaluated afterwards, during the debugging, without risking causing
errors or non-terminating computations that do not normally occur.

Consider the EDT in figure 3 again. The second component of the pair returned
from foo 1 2, which also occurs as the argument to fst, is shown as ?, indicating
an unevaluated value, i.e. something that was not evaluated during the normal ex-
ecution. By looking at the source code, we see that this ? represents the suspended
computation fie (1/0), and from the definition of fie it is clear that any attempt
to evaluate this further would cause an execution error. Should an evaluation at-
tempt cause a non-terminating computation it would in general be impossible for
the debugger to regain control, save by means of some heuristic such as a time out.

Now we will define the EDT more formally by modifying the semantics for the
small functional language introduced earlier so that the meaning of a program
becomes a pair of the normal result and an EDT. The main intention is to show how
closely the structure of the EDT resembles the syntactic structure of the program
and what kind of information must be obtainable from an implementation in order
to construct the EDT. However, as explained above, another important aspect of
the EDT is that it only contains nodes corresponding to applications that actually
became evaluated. What is evaluated and what is not is dictated by demand, and in
order to capture this, as well as the notion of showing values in their most evaluated
form, a much more operationally oriented semantics than what was given earlier
would be needed.

We will thus content ourselves by stating these aspects informally, noting that in
a real setting the necessary information can easily be obtained from the language
implementation (see section 5.1). What we will do is to assume that everything is
demanded everywhere, which in general is going to result in an infinite EDT. We
then assume the existence of a function, aware of the actual demand structure, that
is able to prune the tree into the correct shape. The actions of this hypothetical
function are also stated informally in the semantics.

4.2.1. The New Semantic Domain

First, the semantic domain must be changed slightly. Functions now return a pair
of a value and a list of EDTs. Furthermore, to make it possible to display functional
values, it is not sufficient to just know the name of the function. Bindings of any free

135

variables must also be recorded. The type of the first field of the Fun-constructor
is therefore changed to accomodate this.

Thunks are needed to model values that were never needed, but since a debug-
ger is never going to look inside a thunk (it must not cause further evaluation),
the Thunk-constructor can be made nullary. A value Bottom is also introduced to
capture run-time errors and non-termination. Note that neither Thunk nor Bottom
are formally introduced by the semantics below. In a real implementation, however,
corresponding objects are present once the execution has finished, and Thunk and
Bottom serve to remind us of this fact. 1

data Val = Int Int

| Constr String [Val]

| Fun EDTInfo Int ([Val] -> (Val, [EDT]))

| PApp Val [Val]

| Thunk

| Bottom

type EDTInfo = (String, [(String, Val)])

To understand why it is necessary to keep track of the free variables, consider the
following program fragment:

foo x = letrec

fie y = x * y

in

fie 3

What is the correct value of fie 3? That depends on the value of x which is free in
the body of fie. Thus, to be able to tell whether a function application returned
the correct result or not, the user must be informed about any free variable bindings
as in

fie 3 where x = 10 ⇒ 30

4.2.2. The EDT Domain

Then a domain for the actual EDT is needed. A node in the EDT records which
function was applied, its arguments, the result and the EDTs on which the node
depends. If the applied function has free variables, it is necessary to keep track of the
corresponding bindings. This can be achieved in a straigtforward way by regarding
them as extra arguments to the function. The representation of a function (the
type Function) is a three tuple consisting of the name of the function, its arity
and the names of the free variables. By putting the extra arguments first on the
argument list, a pretty printer will be able to distinguish the free variables from

136 NILSSON AND SPARUD

the real arguments by referring to the length of the list of free variable names and
to present an application to the user in a form that is akin to the source code.

A new value domain EDTValue that abstracts away from the run-time representa-
tion of values is also introduced. Since there is no longer any point in distinguishing
between functions and partially applied functions, these are merged into a single
function representation (EVClosure) using the same mechanism for keeping track
of free variables as was employed for an EDT node.

data EDT = EDTNode Function [EDTValue] EDTValue [EDT]

data EDTValue = EVInt Int

| EVConstr Constructor [EDTValue]

| EVClosure Function [EDTValue]

| EVUneval

| EVBottom

type Constructor = String

type Function = (String, Int, [String])

The function vToEV converts a run-time value to an EDT value and its definition
should clarify the relationship between the two kinds of value. The auxiliary function
mkFunction extracts name, arity and the names of any free variables from a function
or partially applied function, whereas freeVarVals extracts the values bound to
any free variables and converts them to EDT values.

vToEV :: Val -> EDTValue

vToEV (Int i) = EVInt i

vToEV (Constr cn vs) = EVConstr cn (map vToEV vs)

vToEV f@(Fun _ _ _) = EVClosure (mkFunction f) (freeVarVals f)

vToEV f@(PApp _ as) = EVClosure (mkFunction f) (freeVarVals f ++

map vToEV as)

vToEV Thunk = EVUneval

vToEV Bottom = EVBottom

mkFunction :: Val -> Function

mkFunction (Fun (fn, fvbs) n _) = (fn, n, (map fst fvbs))

mkFunction (PApp f _) = mkFunction f

freeVarVals (Fun (fn, fvbs) _ _) = map (vToEV.snd) fvbs

freeVarVals (PApp f _) = freeVarVals f

4.2.3. The New Valuation Functions

The new valuation functions can now be given. Starting with eval, the first thing
to note is that the return type has been changed: in addition to a value, a list of

137

EDTs, one EDT for each redex in the expression being evaluated, is returned. The
order between the EDTs in the list is not crucial, but has been chosen to reflect
innermost first, left to right reduction.

eval :: Exp -> Env -> (Val, [EDT])

eval (LitInt n) env = (Int n, [])

eval (Prim p) env = (primVal p, [])

eval (Var v) env = ((lookup env v), [])

eval (App e1 e2) env =

if arity f > 1 then

(mkPApp f a, edts1 ++ edts2)

else

(r, edts1 ++ edts2 ++ edt)

where

(f, edts1) = eval e1 env

(a, edts2) = eval e2 env -- If e2 will be evalauated.

-- (a, edts2) = (Thunk, []) -- Otherwise.

(r, edt) = apply f a

eval (Letrec ds e) env = (r, edts1 ++ edts2)

where

(bs, edts1) = elaborate ds env’

env’ = updEnv env bs

(r, edts2) = eval e env’

The first three cases are straightforward: there are no redexes and the list of EDTs
is thus empty. In the case for App, the list of EDTs is formed by concatenating the
EDT lists obtained by evaluating the function and the argument expressions. If it
turns out that this application is really a redex, i.e. not a partial application, the
EDT obtained by applying the function is also appended to the list. There are no
EDT nodes corresponding to partial applications. In the Letrec-case, the EDT list
is formed by concatenating the list obtained by elaborating the declarations and
the list obtained by evaluating the expression.

Informally it is also shown that if an argument to a function, in a real implemen-
tation, was never needed, then that value will remain as a thunk and there will be
no corresponding EDT nodes. To put it differently, this is where the hypothetical
pruning function would come in and cut away unneeded parts of the tree.

The function elaborate is also changed so that it returns a list of EDTs corre-
sponding to redexes in the right-hand sides of variable definitions in addition to the
list of bindings. (Redexes in a body of a defined function are not evaluated until
the function is applied.)

elaborate :: [Def] -> Env -> ([(String,Val)], [EDT])

elaborate [] env = ([], [])

elaborate (VarDef x e : ds) env =

((x,r):bs, edts1 ++ edts2) -- If variable x is ever used.

138 NILSSON AND SPARUD

-- ((x,Thunk):bs, edts2) -- Otherwise.

where

(r, edts1) = eval e env

(bs, edts2) = elaborate ds env

elaborate (fd@(FunDef f xs e) : ds) env =

((f, Fun (f, fvbs) arity sf):bs, edts)

where

(bs, edts) = elaborate ds env

arity = length xs

fvns = freeVars fd

fvvs = map (lookup env) fvns

fvbs = zip fvns fvvs

sf as = (r, [EDTNode (f, arity, fvns)

(map vToEV (fvvs ++ as))

(vToEV r)

edts])

where

(r, edts) = eval e (updEnv env (zip xs as))

In the case of a variable definition, the list of EDTs is formed by appending the list
obtained by evaluating the right-hand side of the definition to the list obtained by
elaborating the remaining definitions. Informally, we are also reminded that if the
defined variable is never used, it will remain unevaluated and there will not be any
EDTs from redexes on the right-hand side.

For a function definition, no redexes in the function body are evaluated at this
stage. On the other hand, a function that when applied returns a result and an
EDT corresponding to the application must be constructed. Furthermore, any free
variable bindings must also be made explicit and bundled with the actual function
using the Fun-constructor.

The names of the free variables, fvns, are found by applying the auxiliary function
freeVars to the function definition fd. The definition of freeVars is straightfor-
ward and omitted. The values of the free variables are then looked up in the en-
vironment and collected in the list fvvs, and a list of bindings (name–value pairs)
formed by ‘zipping’ fvns and fvvs.

In practice, some of the free variables are of little interest since it might be clear
from the textual context what they stand for. Consider for example two mutually
recursive function definitions in a Letrec, f and g say, where both f and g are free
in the two function bodies. From the context is perfectly clear what they are bound
to, so it might be a good idea make use of this information and only record free
variable bindings that are not known statically.

The function sf is the semantic representation of the function being defined. It
expects a list of arguments, as before, and returns a pair of the result and a list with
a single EDT corresponding to the application. The EDT is formed by constructing
an EDT node where the relevant information about the invoked function, the values
of the free variables, the arguments and the result are recorded. Note that all values

139

are represented as EDT values. The children of the node are obtained by evaluating
the body in the environment at the point of definition updated by binding the formal
arguments to the actual ones.

This concludes the definition of the EDT for our small language. It remains to
note that eval in general will return a list of more than one EDT for a program.
A single EDT is obtained by adding a root node corresponding to the execution
of the entire program. Finally, as was discussed earlier, to obtain the real EDT,
the above EDT should be pruned so that only nodes and values that were actually
needed remain.

An important aspect of the EDT definition above is that it clearly shows what
kind of information must be obtainable from the run-time representation of various
objects in a real implementation in order to construct EDT nodes and to convert
values from their run-time representation to EDT values. In particular, it must be
possible to recognize basic types like integers, to find the constructor name for a
constructed object, and to find the name of a function and the names and values
of its free variables. In practice even more information must be available to the
debugger through the EDT, for example source code references.

Further, the informal parts of the semantics above makes it evident that to con-
struct an EDT, it is necessary to know what will be evaluated and what will not.
The only way of finding out this in general, is to wait until something actually is
evaluated or otherwise until the execution has finished. Once the execution has fin-
ished anything that was never evaluated will be represented as a thunk. In order to
construct the EDT it must thus be possible to inspect the run-time representation
of values and recognize any thunks, without causing further evaluation.

4.3. EDT Based Debugging

Algorithmic debugging [13] is one way of guiding the user through the possibly huge
amount of data in an EDT. An algorithm-guided, interactive search is conducted
in the EDT for the application that caused the externally visible symptom of the
bug. Provided that the user can correctly answer whether results of certain function
applications are correct or not, the erroneous function will be located. An alternative
is to let the user browse the tree freely, looking for function applications and results
that somehow seem wrong.

To illustrate this, consider the example in section 3 again, but assume that main
is defined as snd (foo 1 2) instead. The resulting EDT is given in figure 4.

If browsing freely, the user would find that ⊥ comes from the application of foo.
He would then inspect this node and realize that the problem is a division by 0.
Debugging algorithmically, the user would first be asked about the result of main,
which is wrong, then about the application of foo, which is wrong as well, then
about 1/0 yielding ⊥, which is correct, and finally about fie ⊥, also yielding ⊥,
which is correct as well. Given these answers, the debugger would conclude that
the bug must be in foo.

140 NILSSON AND SPARUD

main �
�

foo 1 2 � (?,
�
) snd (?,

�
) �

�

1/0 �
�

fie
�
 �

�

2*
�
 �

�

Figure 4. EDT with a bug. ⊥ represents an undefined value, which in this case caused an execution
error. Since the second component of the result from foo was not supposed to be undefined, and
since the nodes on which the application of foo depends show correct behaviour, the bug must be
in the definition of foo.

Algorithmic debugging for lazy functional languages, including handling of more
complicated source constructs such as list comprehensions, is considered further in
Nilsson [8]. Sparud [14] investigates the the free browsing scheme.

5. EDT Generation

There are basically two options for generating an EDT from a target program.
Either the target program is transformed so that the program itself generates an
EDT, or the language implementation (a compiler or interpreter) is changed so as to
produce an EDT as a side effect of execution. An implementation of each approach
is outlined in this section. See Nilsson & Sparud [10] for details.

5.1. Graph Reduction

Implementations of lazy functional languages are usually based on graph reduction.
The basic ideas are reviewed here, for details refer, e.g., to Peyton Jones [12].

In a graph-reduction based implementation of a lazy language, expressions and
data are represented as pieces of graph (stored in the heap). A key point is that
whenever a reducible expression, or redex, is evaluated, that redex is overwritten
with the result. Thus no expression is evaluated more than once. Consequently it is
easy to find out exactly which expressions were eventually evaluated by inspecting
the graph once the execution has terminated. Anything that was not needed will
still be a redex, whereas anything that was needed will be in WHNF (weak head
normal form, see section 4.1.3).

141

A function definition is compiled into code that rewrites a graph representing an
application of the function to a graph in WHNF. The function f x = x * x would
for instance be compiled into code that performs the following rewriting step:

@
/ \
f E

⇒ @
/|
@ |

/ \|
* E

Here, @ denotes an application node and E represents an arbitrary graph. Thus
the compiled code constructs an instance of the function body, substituting actual
arguments for formal ones, and overwrites the redex with the constructed instance.

5.2. EDT Generation by Source Code Transformation

5.2.1. How the Transformation Affects the Types of Functions

The purpose of the transformation is to make the functions in a Haskell program
return an EDT in addition to its normal result. The return type of each function
becomes a pair consisting of a result and a list of EDTs for that result. We define
a type abbreviation for the return type: type R a = (a, [EDT]).

The (overloaded) function edtVal converts ordinary values to their representation
in the EDTValue data type. This is straightforward for ground (non-functional)
types. However, for functional types there is a problem since Haskell does not
provide a way of finding out the name of a function. We solve this by representing
functions with a new data type which explicitly encodes information such as the
function name. This enables edtVal to handle functions too.

data Fun a = Fun a Function [EDTValue]

The fields are the function in question, information about the function, and the
arguments the function has been applied to so far (partial application). As an
example, the transformation changes the type of foldr as follows:

foldr :: (a -> b -> b) -> b -> [a] -> b

⇒

foldrD :: Fun (a -> b -> R b) -> b -> [a] -> R b

5.2.2. Transforming Function Definitions

The nodes in the EDT are created by the function mkDep, which is called from all
transformed functions.

mkDep :: (EDTAble a) => Function -> [EDTValue] -> R a -> R a

mkDep f vs (res, ds) = (res, [EDTNode f vs (edtVal res) ds])

142 NILSSON AND SPARUD

The function mkDep is only used at the top level in a function definition. The
(EDTAble a) part of the type for mkDep means that the type a must be an instance
of the class EDTAble (see 5.2.4). The arguments to mkDep are the function name,
the arguments (represented as EDTValues), and a pair of an expression result and
a list of evaluation dependences.

Transforming a function body is just a matter of collecting the EDTs from all
subexpressions in the body and calling mkDep. Consider the definition:

foo x y = f (g x) (h y)

The body of foo contains three subexpressions, all of which will return values as
well as dependence trees. When we transform the expression we must propagate the
dependence information. In principle, the transformed version of foo is as follows:

foo x y = mkDep "foo"

[edtVal x, edtVal y]

(let (a1, d1) = g x

(a2, d2) = h y

(a3, d3) = f a1 a2

in (a3, d1 ++ d2 ++ d3))

5.2.3. Avoiding Further Evaluation

The tree structure of the EDT is built during the execution of the target. The values
in the EDT (of type EDTValue), on the other hand, are built after the execution has
terminated. This is due to laziness: the EDT values are built by calls to edtVal,
but the results of these calls are not needed until after the execution has terminated
and the tree is examined. Thus values will be seen in their most evaluated form.

However, it is impossible to ‘look’ at a value in a lazy functional language to
determine whether it has been evaluated or not. By looking at something, it gets
evaluated. Fortunately, it is easy to determine whether a value is evaluated or not at
the language implementation level (see 5.1). It is usually also possible to recognize
values that were being evaluated when the execution stopped and the debugger took
over, e.g. after a run-time error. Semantically, such a value is undefined (bottom).
We have thus introduced two non-pure functions, implemented as a part of the
debugging runtime system:

evaluated :: a -> Bool

evaluating :: a -> Bool

5.2.4. Definition of edtVal

The function edtVal is overloaded, i.e. defined separately for each type in the
program. This is implemented using the Haskell class system. In Haskell, a class

143

is a collection of functions (or methods) that is parameterized over a certain type.
These functions are then defined for any type that is an instance of the class. We
introduce a class EDTAble and make all types in a program instances of it.

class EDTAble a where

edtVal :: a -> EDTValue

edtVal x = if evaluating x then

EVBottom

else

if evaluated x then safeEdtVal x else EVUneval

safeEdtVal :: a -> EDTValue

The edtVal method makes use of the evaluating and evaluated predicates. When
making instances of this class, we only define the safeEdtVal method, which is only
called by the edtVal method when the argument is known to be evaluated. Here
are some examples of instances of the EDTAble class:

instance EDTAble Int where

safeEdtVal i = EVInt i

instance EDTAble (Fun a) where

safeEdtVal (Fun _ f as) = EVClosure f as

Instances of the EDTAble class are generated automatically for user defined types.

5.3. EDT Generation by Modifying the Language Implementation

An alternative approach to EDT generation is to change the implementation of a
language, i.e. the compiler or interpreter, so that an EDT is obtained as a side-effect
of execution.

5.3.1. The Basic Scheme

When a redex is being evaluated, the code that has been compiled for the applied
function is entered. This code will construct an instance of the function body and
then overwrite the redex root with the root of the newly constructed graph.

Recall that a function application depends on another if the latter is an instance
of an application that syntactically occurs in the body of the former and eventually
becomes evaluated. This means that an EDT node corresponding to a function
application cannot be constructed until that particular application is evaluated.
Moreover, when this happens it must somehow be possible to determine where in
the EDT this node should be inserted.

144 NILSSON AND SPARUD

XXX f • •

@

@

E
+

Figure 5. The graph and the EDT after reduction of f E. Note that each redex refers to the EDT
node corresponding to the function invocation that created that redex (the grey arrows).

Achieving this is simple: whenever a function is invoked, each application in the
instantiated function body is annotated with a reference to the EDT node corre-
sponding to the current function invocation. Thus, when a redex is evaluated, it is
clear where the resulting EDT node belongs in the tree.

For example, suppose that we have f x = x + x. Suppose also that we are evalu-
ating f E, where E is some as yet unevaluated expression. The situation immediately
after the reduction of f E is shown in figure 5. Note that the argument and the
result are live pieces of graph, referred to via pointers from the newly constructed
EDT node. Note also how each allocated redex refers to its parent in the EDT.

The result of f E is a new expression, E + E, and next this expression is reduced.
Now, + is strict in both its arguments, which causes the evaluation of E, yielding 7,
say. The new situation is shown in figure 6. Note that the nodes corresponding to
the reductions of the expressions E and E + E have been inserted as children of the
EDT nodes that originally created them.

5.3.2. Piecemeal EDT Generation

A big problem with the construction of an EDT is that there is no upper bound on
its size. Even a program that normally runs in constant memory space with very
modest memory requirements, may generate a huge EDT if it runs for long enough.
Note that the transformational EDT generation scheme suffers from exactly the
same deficiency. While the EDT nodes are not be created until demanded by the
debugger, thanks to working in a lazy language, a large expression representing
the entire EDT is going to be constructed as the execution proceeds. Storing this
expressions requires about the same amount of memory as storing the EDT.

Furthermore, since the EDT does not grow in a linear way like traces for impera-
tive languages, and since it contains references to live pieces of data on the garbage

145

7 14

XXX

E • •+• •

f • •

Figure 6. After reduction of E + E, the redexes have been overwritten by their results and two
new nodes corresponding to the reductions that just took place have been added to the EDT.

collected heap, it would be very expensive to store it on secondary storage. Keeping
all references updated would involve too much random access. Moreover, file sizes
are typically limited due to sizes of physical disks and arbitrary operating systems
restrictions (4 Gbyte under typical UNIX implementations, for instance).

An alternative is to store only so much of the EDT as there is room for. Debugging
is then started on this first piece of the EDT. If this is not enough to find the bug,
the target is re-executed, and the next piece of the EDT captured and stored. We
refer to this as piecemeal EDT generation. Since the construction of a partial EDT
is much quicker than constructing an entire EDT, and since it can be expected
that only a fraction of the EDT is visited during debugging, the scheme is not as
expensive as it might seem at first.

The basic idea of piecemeal generation is quite general, but we have thus far
only implemented it in the context of the low-level EDT generation approach. A
particular feature, made possible by working at the language implementation level,
is that it allows a firm upper limit to be imposed on the memory consumption of
the debugger. Thus there is no risk of the debugger running out of memory, which
guarantees that any program can be debugged. This might of course require a lot
of re-executions if the debugger is given too little memory. Such guarantees are
probably more difficult to give in the context of transformational schemes. See the
discussion on Naish & Barbour in section 7.

5.4. Comparison of the Approaches

The main advantage of the transformation based scheme is its portability. While
the implementation relies on having access to two impure functions, these should

146 NILSSON AND SPARUD

be easy to implement within most current Haskell implementations. Furthermore,
since only the transformations decide what the resulting EDT should look like, it
does not matter what a compiler does to the code. A highly optimizing compiler
does not cause any particular problems. The problems with this approach mainly
concern performance. The transformed code runs considerably slower than code us-
ing the low-level EDT generation scheme. The worst aspect, however, is the memory
consumption. Since a complete EDT is always constructed, only programs that do
not perform long computations can currently be debugged. If real programs are to
be debugged, this problem must be addressed, perhaps as suggested by Naish &
Barbour [7]. See section 7 for a brief description.

By working at the language implementation level it is possible to control the tree
construction process in a very precise manner. This makes it possible to keep the
resource requirements within reasonable (and user definable) limits. Working at the
implementation level also incurs a smaller overhead with respect to execution time
than does the current implementation of the transformation based scheme. The
main disadvantage is that the implementation effort is substantial.

To get an indication of the cost of our EDT generation schemes, we have com-
pared the normal execution time of a few small programs with the execution time
when generating EDTs. For the transformational scheme, execution times increased
between 8 and 25 times, whereas it increased between 4 and 10 times for the low-
level approach. Tolmach & Appel [16] report a slowdown of a factor 3 for their
transformation-based SML debugger, indicating that it might be possible to im-
prove the performance of the transformational scheme. For the transformational
approach only small runs could be performed due to memory restrictions. For the
low-level approach, piecemeal tree construction was used and up to 30000 nodes
(out of between 500000 and 2500000) were kept (execution times increased as the
number of kept nodes increased).

A closer inspection of the figures for the low-level approach reveals that the ac-
tual tree construction is very quick. Most of the extra execution time is due to
garbage collection and crude integration of the mechanisms into the host system
(the Chalmers Haskell implementation, HBC). With better integration, the execu-
tion times would probably be around 2 to 4 times the normal ones when keeping
some 10000 nodes in the EDT. See Nilsson & Sparud [10] for details.

6. Architectural Issues

So far, we have concentrated on the problem of building EDTs. A practical debugger
must also be able to present the EDT to the user. It is not obvious how to give the
user an informative view of the EDT: possible solutions range from presenting one
node at a time to showing the whole EDT.

The presentation issue is separate from the problem of generating the EDT, so
it is quite feasible to have separate solutions for them. We call the part of the
debugger that builds an EDT the EDT generator and the part that is responsible
for presenting the EDT the EDT navigator. Between them there should be a pure,

147

root :: EDTNode

function :: EDTNode -> Function

arguments :: EDTNode -> [EDTValue]

result :: EDTNode -> EDTValue

children :: EDTNode -> [EDTNode]

funName :: Function -> String

funSourceRef :: Function -> SourceRef

funFreeVarNames :: Function -> [String]

... -- Other attributes for Function as needed

Figure 7. Typical interface to the EDT generator.

functional interface that just provides an EDT, hiding low-level details regarding
re-execution, etc.

There are several advantages with this two level design, both from the user’s point
of view and from a software engineering perspective. Some of the advantages are:

• Programmability : By providing a pure, functional interface to the EDT gener-
ator, the EDT navigator may easily be written in the language for which the
debugger is intended. Since the user is familiar with this language, he may easily
extend and adapt the navigator to his needs.

• Flexibility : A single EDT generator could serve as a basis for several debuggers,
e.g. an algorithmic debugger and one permitting unrestricted EDT-browsing.
On the other hand, a single EDT navigator might be able to make use of different
EDT generators optimized with respect to different parameters, such as speed or
space requirements. We also gain implementation flexibility, e.g. the generator
and navigator may run as separate processes, perhaps on separate machines.

• Separation of concerns : The construction of the EDT is complicated and re-
quires at least some support from the language environment, i.e. it cannot be
done in a satisfactory manner entirely within a lazy functional language. Thus
it is beneficial to factor out the problem of EDT construction and consider it
on its own.

We note that such a two level architecture is not uncommon for debuggers. One
example is Ducassé’s Prolog debugger Opium [1]. There is also a lot in common
between our reasons and Ducassé’s for suggesting such an approach; in particular
we share her view on the importance of providing an extensible and customizable
debugger.

Part of a typical interface between the EDT generator and the EDT navigator, as
it might look in Haskell, is shown in figure 7. The abstract type EDTNode represents
nodes in the EDT. The root of the EDT is bound to root. The various parts of a
node may be accessed by means of a number of selector functions such as function
or children.

148 NILSSON AND SPARUD

Function is also an abstract type, and various attributes may be accessed by
means of functions such as funName and funSourceRef. SourceRef is intended to
be a reference to e.g. a function definition in the source code. This makes it possible
to access relevant source code and present it to the user, which is an important aid
in helping the user understand the target program.

The EDTValue is more or less as described in section 4.2.2. However, it is important
to have an explicit representation of circular values. Consider sending EDTValues
from one process to another using some textual protocol, for example. This can be
achieved by means of special constructors for labelling values and for referring to
such labels.

7. Related Work

Hall & O’Donnell [2], [11] were among the first who investigated the particular prob-
lems of lazy functional debugging. The focus is on on implementing debugging tools
within an interactive, purely functional environment, implemented in the language
itself, Daisy, a lazy descendant of Lisp.

One approach they suggest is to transform the source code of the entire target
program so that, in addition to its normal value, the program produces a trace of
its execution. The structure of the trace reflects the structure of the source code.
This is similar to our transformational EDT generation scheme, but there are also
differences, one being that we work in a strongly typed language and that our
transformations thus have to respect the type discipline. We also have to work
harder to make functional vales displayable.

A problem is that the very printing of the trace might turn an otherwise termi-
nating program into a non-terminating one. This happens when the trace contains
references to infinite data structures or diverging computations which normally
would not be printed. We address this problem by introducing the impure function
evaluated for supporting our transformational approach (see section 5.2.3).

Kamin [5] starts from an operational semantics of a lazy language and changes it
so that a program in the language has a tree-structured trace of its execution as its
meaning. A ‘meta-evaluation rule’ is used to get rid of as many unevaluated values
as possible. The rule simply states that values should be shared, i.e. they should be
represented by pointers to unique heap-allocated objects. The effect is that values
in the trace will be as evaluated as possible once the computation has terminated.

Kamin thus gives a formal definition of a trace that reflects the structure of
the source code, much in the same way as we do. However, in comparison to our
specification, Kamin uses a simpler language (no currying and no local let-bindings)
which simplifies his specification. Furthermore, the information needed for properly
displaying tree nodes and values, such as names of free variables and user defined
functions, is not explicitly included in the trace. Instead it is assumed that this
information can be obtained from the run-time representation of values, which
is often impossible. We think that it is an advantage to explicitly include this
information in the trace since it makes it clear that the issue must be addressed.

149

Kishon & Hudak [6] take an approach similar to Kamin’s, but more general and
systematic. Starting from a denotational continuation semantics of a language, they
derive a monitoring semantics by composing the standard semantics with one or
more monitor specifications. As an example, by composing a semantics for a lazy
language with a monitor specification for a lazy tracer, an instrumented interpreter
for the lazy language that generates a trace is obtained. They also derive an (op-
erational) source level debugger with the ability to interactively force evaluation of
thunks.

Since monitoring semantics are given separately from the language semantics, the
trace of Kishon & Hudak is specified more indirectly than in our case. Its structure is
also different from the structure of our EDT since it is a linear sequence of function
calls and returns reflecting the lazy evaluation order, not the structure of the source
code. Arguments and results are however shown in their most evaluated form. For
debugging purposes, we think that a source code related structure is preferable.
A problem of their work is that functional values cannot be shown properly. To
solve this, the semantic definition of the language would have to be changed so that
functional values carry additional information for printing purposes.

Neither Kishon & Hudak nor Kamin address debugging in the context of currently
available language implementations, and it is an open question whether sufficiently
efficient implementations can be automatically derived in the way they suggest. Nor
do they address the problem of large memory consumption.

The work by Naish & Barbour [7] is closely related to ours. They use a source-to-
source transformation which transforms the target into a program that generates
a trace, similar to our EDT, in addition to its normal output. However, no explicit
specification of the generated trace is given. The language is simpler than ours: a
set of top-level function-defining equations where the right-hand sides consist solely
of function applications. There are no local let-definitions and no currying.

A key distinction between their transformation and ours is that they rely on an
impure function dirt (Display Intermediate Reduced Term), which must be sup-
plied by the underlying language implementation. As its name suggests, it converts
any value, without evaluating it further, to displayable representation. Dirt thus
combines the functionality of our functions evaluated and the overloaded edtVal.
It is interesting to note that the use of dirt puts Naish’s and Barbour’s approach
somewhere in between the two approaches suggested in this article.

Thanks to dirt Naish’s and Barbour’s transformation is simpler than ours since
there is no need to handle functional values in a special way (see 5.2.1). On the
other hand, requiring a function like dirt makes their approach significantly less
portable. For example, in the Chalmers Haskell implementation HBC values in the
heap do not carry precise type information, let alone, in the case of functional
values, information about function name and free variables. Implementing dirt in
HBC would thus be a major undertaking. Implementing evaluated is simple.

Naish and Barbour also consider the memory consumption problem and suggest
generating parts of the tree on demand. Once a node at the fringe of the stored
portion of the tree is reached, the function of that node is re-applied to its argu-

150 NILSSON AND SPARUD

ments. This application is then compared to the evaluated parts of the result of
the previous application of the function, which is also stored in the node. This will
drive the computation exactly the right amount for constructing the tree below the
node in question, and the scheme thus avoids re-executing the entire program. Note
that dirt again plays a crucial role since comparing against unevaluated parts of
the result would drive the computation beyond what was originally computed.

To limit the amount of memory required to store the tree, Naish and Barbour
suggest keeping a fixed number of levels of the tree below the current root. This will
probably work in most cases, but it should be noted that a single node can refer to
data structures of arbitrary size. Thus their scheme is not able to put a firm upper
limit on the resource consumption of the debugger. An advantage of our piecemeal
scheme is that it allows the number of tree nodes to vary in an effort to keep the
overall size of the stored part of the EDT below a prescribed limit.

8. Conclusions

This paper has proposed the Evaluation Dependence Tree (EDT) as a basis to build
debuggers for lazy functional languages. The reason is that the EDT shows how the
performed computations depend on each other, while abstracting away operational
concerns such as evaluation order. The EDT may thus be used to systematically
search for the bug in a declarative way since it allows the user to focus on what
was computed, rather than how things actually were computed.

We formally defined the EDT, presented two different ways of constructing EDTs,
and compared their relative merits. The problem of large memory consumption
was considered and a solution given. Some preliminary performance measurements
indicate that the approach is realistic.

We also briefly considered some architectural issues and proposed a two level
debugger design, where the bottom level EDT generator takes care of the EDT
construction and the top level EDT navigator is responsible for helping the user
navigating through the EDT in search for the bug. Making a clear distinction
between these, both conceptually and physically, results in a flexible and extensible
debugger architecture.

Acknowledgements

The authors would like to thank Mireille Ducass and the anonymous referees for
many useful comments that substantially improved this article. We would also like
to thank Rickard Westman and Graeme Moss who proof-read the article.

Notes

1. In the case of non-termination some heuristic for recovering is needed, such as the user explicitly
aborting it.

151

References

1. Mireille Ducassé. An Extendable Trace Analyser to Support Automated Debugging. PhD
thesis, University of Rennes I, Campus de Beaulieu, 35042 Rennes cedex, France, June 1992.
Numéro d’ordre 758. European Doctorate. In English.

2. Cordelia V. Hall and John T. O’Donnell. Debugging in a side effect free programming
environment. In Proceedings of the ACM SIGPLAN 85 Symposium on Language Issues

in Programming Environments, pages 60–68, Seattle, Washington, June 1985. Proceedings
published in ACM SIGPLAN Notices 20(7).

3. Paul Hudak and Joseph H. Fasel. A gentle introduction to Haskell. ACM SIGPLAN Notices,
27(5), May 1992.

4. Paul Hudak, Simon L. Peyton Jones, Philip Wadler, Brian Boutel, Jon Fairbairn, Joseph
Fasel, Maŕıa M. Guzmán, Kevin Hammond, John Hughes, Thomas Johnsson, Dick Kieburtz,
Rishiyur Nikhil, Will Partain, and John Peterson. Report on the programming language
Haskell. ACM SIGPLAN Notices, 27(5), May 1992. Version 1.2.

5. Samuel Kamin. A debugging environment for functional programming in Centaur. Research
report, Institut National de Recherche en Informatique et en Automatique (INRIA), Domaine
de Voluceau, Rocquencourt, B.P.105, 78153 Le Chesnay Cedex, France, July 1990.

6. Amir Kishon and Paul Hudak. Semantics directed program execution monitoring. Journal

of Functional Programming, 5(4):501–547, October 1995.
7. Lee Naish and Tim Barbour. Towards a portable lazy functional declarative debugger. Tech-

nical Report 95/27, Department of Computer Science, University of Melbourne, Australia,
1995.

8. Henrik Nilsson. A declarative approach to debugging for lazy functional languages. Licentiate
Thesis No. 450, Department of Computer and Information Science, Linköping University, S-
581 83, Linköping, Sweden, September 1994.

9. Henrik Nilsson and Peter Fritzson. Algorithmic debugging for lazy functional languages.
Journal of Functional Programming, 4(3):337–370, July 1994.

10. Henrik Nilsson and Jan Sparud. The evaluation dependence tree: an execution record for
lazy functional debugging. Research Report LiTH-IDA-R-96-23, Department of Computer
and Information Science, Linköping University, S-581 83, Linköping, Sweden, August 1996.

11. John T. O’Donnell and Cordelia V. Hall. Debugging in applicative languages. Lisp and

Symbolic Computation, 1(2):113–145, 1988.
12. Simon L. Peyton Jones. The Implementation of Functional Programming Languages. Pren-

tice Hall, 1987.
13. Ehud Y. Shapiro. Algorithmic Program Debugging. MIT Press, May 1982.
14. Jan Sparud. A transformational approach to debugging lazy functional programs. Licentiate

Thesis, Department of Computing Science, Chalmers University of Technology, S-412 96,
Göteborg, Sweden, February 1996.

15. Günter Specht. Generating explanation trees even for negations in deductive database sys-
tems. In Proceedings of the 5th Workshop on Logic Programming Environments, pages 8–13,
Vancouver, Canada, October 1993.

16. Andrew Tolmach and Andrew W. Appel. A debugger for Standard ML. Journal of Functional

Programming, 5(2):155–200, April 1995.

