
Dynamic Optimization for Functional Reactive Programming
using Generalized Algebraic Data Types

Henrik Nilsson
School of Computer Science and Information Technology, University of Nottingham

Henrik.Nilsson@cs.nott.ac.uk

Abstract
A limited form of dependent types, called Generalized Algebraic
Data Types (GADTs), has recently been added to the list of Haskell
extensions supported by the Glasgow Haskell Compiler. Despite
not being full-fledged dependent types, GADTs still offer consid-
erably enlarged scope for enforcing important code and data invari-
ants statically. Moreover, GADTs offer the tantalizing possibility of
writing more efficient programs since capturing invariants statically
through the type system sometimes obviates entire layers of dy-
namic tests and associated data markup. This paper is a case study
on the applications of GADTs in the context of Yampa, a domain-
specific language for Functional Reactive Programming in the form
of a self-optimizing, arrow-based Haskell combinator library. The
paper has two aims. Firstly, to explore what kind of optimizations
GADTs make possible in this context. Much of that should also
be relevant for other domain-specific embedded language imple-
mentations, in particular arrow-based ones. Secondly, as the actual
performance impact of the GADT-based optimizations is not ob-
vious, to quantify this impact, both on tailored micro benchmarks,
to establish the effectiveness of individual optimizations, and on
two fairly large, realistic applications, to gauge the overall impact.
The performance gains for the micro benchmarks are substantial.
This implies that the Yampa API could be simplified as a num-
ber of “pre-composed” primitives that were there mainly for per-
formance reasons are no longer needed. As to the applications, a
worthwhile performance gain was obtained in one case whereas
the performance was more or less unchanged in the other.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Functional Programming; D.3.2 [Programming Lan-
guages]: Language Classifications—functional languages, dataflow
languages; D.3.3 [Programming Languages]: Language Con-
structs and Features—data types and structures, polymorphism

General Terms Languages, Performance

Keywords Functional programming, Haskell, arrows, combinator
library, domain-specific languages, DSEL, reactive programming,
FRP, Yampa, synchronous dataflow languages, GADT

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ICFP ’05 September 26–28, 2005, Tallinn, Estonia
Copyright c© 2005 ACM supplied by the printer. . . $5.00.

1. Introduction
Combinator libraries have proven to be a very effective way of
tailoring a functional programming language to address particular
programming problems, such as parsing [30, 29], pretty-printing
[17, 7], graphical user-interfaces [3], or even entire application do-
mains, such as animation [12], vision [25], or robotics [23]. Part of
their attraction is that programming with a well-designed combina-
tor library can be very much like using a customized programming
language that provides features and abstractions highly appropriate
for the task at hand, but at a fraction of the implementation effort re-
quired for a stand-alone language implementation. Indeed, the term
Domain-Specific Embedded Languages (DSEL) has been coined to
refer to such libraries [15].

An equally important aspect of their attractiveness is that such
libraries often can be implemented in a way that achieves levels
of performance that are acceptable for many practical purposes.
However, this may require quite sophisticated library implementa-
tions that carry out static and/or dynamic analysis and optimiza-
tion, and thus a bit more effort on behalf of the library imple-
mentor. A good example is Swierstra’s and Duponcheel’s self-
analyzing parser combinators [29]. Another example is Yampa
[21]1, a domain-specific language for Functional Reactive Pro-
gramming (FRP) in the form of a self-optimizing Haskell combi-
nator library, which provides the setting for this paper.

Unfortunately, as many combinator library implementors have
observed, the Hindley-Milner-based type systems of typical, mod-
ern functional languages, such as SML or Haskell 98, often tend to
get in the way once one try to pursue the optimization approach in
earnest. For example, this was noted in the Yampa paper, where it
was pointed out that the efficient implementation of a particularly
obvious optimization would require a simple form of dependent
types [21, p. 62]. Baars and Swierstra [1] and Hughes [19] discuss
the problems that the standard Haskell 98 system causes for op-
timizing DSEL implementations in more general terms. Addition-
ally, they show how certain commonly implemented extensions of
the Haskell 98 type system can be put to clever use to work around
some of the limitations of the standard type system. Alas, for rea-
sons to be discussed (see section 6), neither of these approaches
would be ideal for Yampa.

To give a concrete example, let us consider a simplified version
of the problem encountered in the optimizing Yampa implementa-
tion. The central abstraction in Yampa is that of a Signal Function.
A signal function represents a simple, synchronous process, map-
ping an input signal to an output signal. However, for this example,
one can think of signal functions just as a plain function. The type
of a signal function is written SFα β, where α is the type of the
input and β is the type of the output. Yampa is structured using
John Hughes’ arrow framework [18]. This is an an abstract data

1 Then called AFRP for Arrowized Functional Reactive Programming

type interface for function-like types, particularly suitable for types
that represent process-like computations, such as Yampa’s signal
functions. Two central arrow combinators are arr, that constructs
a (pure) arrow from an ordinary function (often referred to as lift-
ing), and >>>, that forms a new arrow by composing two arrows,
similar to ordinary function composition. In the context of Yampa,
the type signatures of these two combinators are

arr :: (a -> b) -> SF a b
(>>>) :: SF a b -> SF b c -> SF a c

In addition, the arrow framework specifies a set of algebraic laws
that all instances of the framework must satisfy. One of the require-
ments is that the lifting of the identity function id must be the iden-
tity of arrow composition. That is, for an arbitrary arrow f:

arr id >>> f = f = f >>> arr id

It would of course be great if these two algebraic identities could
be exploited in the definition of >>>, as this would eliminate the
overhead of an arrow composition and of applying the identity
function to the input or output of f. In an attempt to implement
this for Yampa, one could imagine introducing a constructor for
signal functions that represents arr id:

data SF a b = ...
| SFId -- Represents arr id
| ...

The type SF is then made abstract by hiding all of its constructors,
and an appropriately typed constant is added to the API as the only
way of constructing a signal function represented by SFId:

identity :: SF a a
identity = SFId

Note that the constructor SFId itself has the more general type SF
a b. The programmer would be asked to use identity in place of
arr id if he or she wishes to take advantage of the optimizations.

The above algebraic identities can now we exploited in the defi-
nition of >>>. For example, the following fragment of the definition
of >>> captures the first of the two algebraic identities above:

(>>>) :: SF a b -> SF b c -> SF a c
...
SFId >>> sf = sf
...

The problem is now obvious. The defining equation above is only
well-typed if the type of the second argument sf is the same as the
overall return type of >>>. That would be the case if the type vari-
ables a and b always were instantiated to the same type when the
first argument is SFId. And indeed, as long as the only way to intro-
duce SFId is through the type-constrained constant identity, that
will be the case. Unfortunately, the type of the constructor SFId
itself, which is all that matters when type checking the equation
above, is too general to enforce that constraint. In fact, the Haskell
98 type system does not provide any way to give SFId a sufficiently
constrained type, nor any way to exploit such information in indi-
vidual branches of function definitions or case expressions if it were
possible.

However, the recent addition of Generalized Algebraic Data
Types (GADTs) [26] to the list of Haskell extensions supported
by the Glasgow Haskell Compiler (GHC) gives programmers a
lot more freedom. GADTs are a limited form of dependent types,
offering a considerably enlarged scope for capturing and thus en-
forcing important code and data invariants statically. In particular,
GADTs are just what is needed to address the problem discussed
above since the key idea is to allow constructors that have more spe-
cific types than usual, and to take that extra type information into

account in individual case branches. GADTs would no doubt also
offer an interesting alternative to the methods described by Baars
and Swierstra [1] and Hughes [19].

This paper is a case study on the applications of GADTs in
the context of Yampa. It has two aims. Firstly, to explore what
kind of optimizations that GADTs make possible in this context.
It turned out that GADTs are expressive enough to enable the
implementation of optimizations well beyond what was originally
envisioned. Much of this should also be relevant for other domain-
specific embedded language implementations, in particular arrow-
based ones. Secondly, to quantify the actual performance impact
those optimizations can have, as the performance gains of GADT-
based optimizations are not as clear-cut as it might first appear. The
problem is that the optimizations do add to the size and complexity
of the combinator library. This could have a negative performance
impact which might offset the gains from the optimizations.

With this in mind, performance figures are given both for small,
tailored, benchmarks, to establish the effectiveness of individual
optimizations, and for two fairly large, realistic applications, to
gauge their overall impact. The performance gains for the small
benchmarks are substantial. This is encouraging in itself, and also
implies that the Yampa API could be simplified as a number of
“pre-composed” primitives that were there mainly for performance
reasons are no longer needed. As to the applications, the first was
written well before GADTs were added to GHC and thus without
GADT-based optimizations in mind. The other is mainly an event
processing application, as it turned out that GADTs enabled a num-
ber of interesting optimizations in that area. A worthwhile perfor-
mance gain was obtained for the event processing one, whereas the
performance was more or less unchanged for the other.

The rest of the paper is organized as follows. Section 2 gives the
necessary background on arrows, Yampa, and GADTs. Section 3
reviews the the current, simply optimized, Yampa implementation,
and shows that these optimizations do have a positive performance
impact that is sufficiently large to make a substantial difference at
the system level for non-trivial applications. This was always the
assumption, but had not been confirmed by measurements before.
Section 4 then shows how GADTs can be used to optimize Yampa
further. The effectiveness of the GADT-based optimization efforts
is evaluated in section 5. Related work is discussed in section 6.
Section 7, finally, gives conclusions.

2. Technical Background
The introduction briefly outlined the arrow framework, Yampa,
Generalized Algebraic Data Types, and their respective roles in this
paper. This section gives a somewhat more thorough presentation
of these topics in the interest of making this paper self-contained.
Nothing here is new, and a reader who is familiar with any (or all)
of these can probably skim or even skip past the subsection(s) in
question without loss of continuity.

2.1 Arrows

The arrow framework, introduced by John Hughes [18], is an ab-
stract data type interface for function-like types. It is particularly
suitable for types that represent process-like computations, and that
is why it is interesting in the context of Functional Reactive Pro-
gramming and Yampa. Since arrows can be be seen as computa-
tions, arrows are related to monads, but arrows are more general in
that they can handle more kinds of computations.

A type constructor of arity two, together with three operations,
arr, >>>, and first, form an arrow, provided certain algebraic
laws hold (see below). In Haskell, this, except for the algebraic
requirements, is captured by the following class definition:

class Arrow a where

(a) arr f (b) a1 >>> a2

(c) first a (d) loop a

Figure 1. The core arrow combinators.

arr :: (b -> c) -> a b c
(>>>) :: a b c -> a c d -> a b d
first :: a b c -> a (b,d) (c,d)

The operator arr lifts an ordinary function to an arrow. Any ar-
row that can be constructed in that way is called pure. The operator
>>> composes arrows in series, similar to ordinary (albeit reversed)
function composition. The operator first is a “widening” opera-
tion that converts an arrow from type b to type c to one operating
on pairs, processing the first component of the pair through the ar-
row, but leaving the second component of the pair unchanged. This
combinator is crucial when combining arrows to work on more than
one input, as it allows part of the input to be “routed past” an arrow
for individual processing later.

Ordinary functions is the canonical example of an arrow. In that
case, arr is just the identity function, >>> is reversed function
composition, and first applies a function to the first component
of a pair.

Another important operator is loop: a fixed-point operator used
to express recursive arrows or feedback [22]. Since not all arrow
instances support such an operation, it is a method of a separate
class:

class Arrow a => ArrowLoop a where
loop :: a (b, d) (c, d) -> a b c

An intuitive, and in the context of this paper, fully adequate, way
to think about arrows, is as “boxes” with an input and an output, en-
capsulating a mechanism for computing the output from the input,
possibly making use of some form of state in the process. Figure 1
uses that idea to illustrate the arrow combinators graphically.

Other arrow combinators can be defined in terms of these primi-
tives. Commonly used derived combinators are second, the mirror
image of first, and *** and &&&, two forms of parallel arrow
composition:

second :: Arrow a => a b c -> a (d,b) (d,c)
(***) :: Arrow a => a b c -> a d e

-> a (b,d) (c,e)
(&&&) :: Arrow a => a b c -> a b d -> a b (c,d)

It is a remarkable fact that using only the three basic arrow opera-
tors and loop, it is possible to express any conceivable network of
interconnected arrows.

As to the algebraic laws, Hughes lists 9 laws for the three
basic operators in his paper, and Paterson lists a further 6 laws for
loop. The following are the laws that are directly exploited for
optimization purposes later in this paper:

(f >>> g) >>> h = f >>> (g >>> h) (1)

arr (f >>> g) = arr f >>> arr g (2)

arr id >>> f = f (3)

f = f >>> arr id (4)

That is, composition is associative, is preserved by arr, and arr
id is an identity for composition. Note that the fact that functions
are arrows is exploited in the formulation of law 2.

2.2 Yampa

Functional Reactive Programming (FRP) is about describing reac-
tive systems as functions mapping signals (time-varying values) to
signals. The nature of these signals depends on the application do-
main, but they could represent input from sensors, video streams,
or control signals for motors and other actuators. FRP has been ap-
plied to a number of domains, for example robotics (Frob) [23, 24],
visual tracking (FVision) [25], and graphical user interfaces (Fruit)
[8].

FRP grew out of Conal Elliott’s and Paul Hudak’s work on
Functional Reactive Animation [12]. Since then, the basic FRP
framework has been implemented in a number of different ways.
However, synchrony and support for both continuous and discrete
time are common to most of them. There are thus close connections
to, on the one hand, synchronous dataflow languages like like
Esterel [2], Lustre [5, 13], and Lucid Synchrone [6, 27], and to,
on the other hand, hybrid automata [14] and languages for hybrid
modeling and simulation, like Simulink [20].

2.2.1 Basics

Yampa is an arrow-based implementation of FRP [21, 16]. Yampa
takes the idea of describing systems as functions on signals quite
literally and provides Signal Functions as the central abstraction.
The type of a signal function mapping a signal of type α onto a
signal of type β is written SFα β. Intuitively:

SFα β ≈ Signal α → Signal β

where

Signalα ≈ Time → α

for some suitable type Time representing continuous time. How-
ever, only signal functions are first-class entities in Yampa: signals
only exist indirectly, through signal functions. This distinguishes
Yampa from earlier FRP implementations.

To ensure that signal functions are executable, they are required
to be causal: the output of a signal function at time t must be
uniquely determined by the input signal on the interval [0, t]. Note
that time here is local time, measured from the time at which a
signal function is applied to its input signal, or switched in using
Yampa terminology. If the output at time t is determined solely
by the input at time t, the signal function is said to be stateless,
otherwise it is said to be stateful. A simple example of a stateful
signal function is integral:

integral :: SF Double Double

defined by

y(t) =

t∫

0

x(τ) dτ

where x(t) is the input signal and y(t) is the output signal.
If more than one input or output signal are needed, tuples are

used for α or β since a signal of tuples is isomorphic2 to a tuple
of signals. A Yampa system consists of a number of interconnected
signal functions, operating on the system input and producing the
system output. The signal functions operate in parallel, sensing a
common rate of time flow. This is why Yampa is a synchronous
language.

2 More or less: the fact that the “undefined value” (⊥) belongs to every type
in Haskell complicates the picture slightly.

Of course, when it comes to implementation, Yampa can only
approximate the conceptually continuous signal model since the
signals necessarily are evaluated for only a discrete set of sample
points. In Yampa, these points need not be equidistant, but it is the
same set for all continuous-time signals in a system. Another way to
think of a signal function is thus as a simple synchronous process,
possibly encapsulating some internal state, that at each tick of a
global clock reads a value from the input, processes it, updates any
internal state, and outputs the result. This is indeed close to how
Yampa (and other FRP-based systems) are implemented.

Signal functions are arrows, and Yampa makes the signal func-
tion type SF an instance of the classes Arrow and ArrowLoop. The
Yampa instance of the combinator arr lifts an ordinary function to
a signal function by applying the function pointwise to the input
signal. The result is a stateless signal function since the instanta-
neous value of the output signal at any point in time only depends
on the instantaneous input value at that same time. Any stateless
signal function can be constructed in this way, and stateless signal
functions are thus pure arrows. The Yampa instance of composi-
tion, >>>, is what one would expect: at all points in time, the input
to the composed signal function is fed into the first subordinate
signal function, the resulting output is fed into the second subordi-
nate signal function, and the resulting output from the second signal
function is the overall output of the composed signal function. The
other basic arrow combinators are defined in a similar manner.

2.2.2 Events

In FRP, the domain of a signal can, conceptually, be either be
continuous or discrete. In the former case, the signal is defined
at every point in time. In the latter case, the signal is a partial
function, only defined at discrete points in time. Such a point of
definition is called an event. In Yampa, this distinction has been
deliberately blurred to make it easier to mix and match continuous-
time and discrete-time signals. The notion of discrete-time signals
is captured by lifting the range of continuous-time signals using an
option type called Event, similar to Haskell’s Maybe type.3 This
type has two data constructors: NoEvent, representing the absence
of a value; and Event, representing the presence of a value, also
called an event occurrence. In Haskell notation:

data Event a = NoEvent | Event a

A discrete-time signal carrying elements of type α can thus be
thought of as a function of type Signal (Eventα).

Yampa provides a rich set of functions for operating pointwise
on events. In fact, the type Event is abstract in the current Yampa
implementation, so events cannot be manipulated except through
these operations. Some examples are:

tag :: Event a -> b -> Event b
lMerge :: Event a -> Event a -> Event a
rMerge :: Event a -> Event a -> Event a
filterE :: (a -> Bool) -> Event a -> Event a

Note that these all are ordinary functions. They have to be lifted
(using arr) in order to process discrete-time signals. The func-
tion tag tags an event with a new value, replacing the old one.
lMerge and rMerge allow two discrete signals to be merged point-
wise. In case of simultaneous event occurrences, lMerge favors the
left event (first argument), whereas rMerge favors the right event
(second argument). filterE, finally, suppresses events which do
not satisfy the Boolean predicate supplied as the first argument.

3 Note that Event is used as the name for both the type constructor and a
data constructor, which is not uncommon in Haskell code. A clearer name
for the type constructor might have been MaybeEvent, but that, among
other problems, is a bit verbose.

Additionally, Event is an instance of Functor, allowing fmap to be
used on events:

fmap :: Functor f => (a -> b) -> f a -> f b

Yampa also provides stateful signal functions for generating and
processing events. Four important examples are:

edge :: SF Bool (Event ())
hold :: a -> SF (Event a) a
accumBy :: (b -> a -> b) -> b

-> SF (Event a) (Event b)
accum :: a -> SF (Event (a -> a)) (Event a)

The signal function edge generates an event whenever the in-
put changes from False to True. A signal function whose out-
put signal is of type Eventα for some type α is called an event
source. The signal function hold converts a discrete-time signal
to a continuous-time one by “holding on” to the value carried by
the last input event. The signal function accumBy processes events
by applying a function to incoming events and an internal state.
An output event is generated in response to each input event. It is
tagged with the result of the function application, which also be-
comes the new internal state. The signal function accum is similar.

2.2.3 Dynamic System Structure

The structure of a Yampa system may evolve over time. These
structural changes are known as mode switches. This is accom-
plished through a family of switching primitives that use events to
trigger changes in the connectivity of a system. The simplest such
primitive is switch:

switch :: SF a (b,Event c) -> (c->SF a b)
-> SF a b

switch switches from one subordinate signal function into another
when a switching event occurs. The first argument of switch is the
signal function that initially is active. It outputs a pair of signals.
The first defines the overall output while the initial signal function
is active. The second signal carries the event that will cause the
switch to take place. Once the switching event occurs, switch
applies its second argument to the value with which the event is
tagged and switches into the resulting signal function.

Note that the switching constructs are what apply a signal func-
tion to a signal argument, or, if one prefers, spawns a process, with
the exception of the initial top-level signal function that gets started
by other means. A signal function in itself is just inert code.4

Yampa also includes parallel switching constructs that maintain
dynamic collections of signal functions connected in parallel. Sig-
nal functions can be added to or removed from such a collection
at runtime in response to events; see figure 2. The first class status
of signal functions in combination with switching over dynamic
collections of signal functions makes Yampa an unusually flexible
language for describing hybrid systems and sets it apart from typi-
cal synchronous dataflow and simulation languages [21].

2.3 Generalized Algebraic Data Types

Generalized Algebraic Data Types (GADTs) have recently been
added to the list of Haskell extensions supported by the Glasgow
Haskell Compiler (GHC) [26]. The idea of GADTs is not new. A
number of variations have been proposed under a number of differ-
ent names, such as guarded recursive data types and equality qual-
ified types. In particular, GADTs are closely related to inductive
families that have been studied in the dependent types community
for a very long time. However, this is the first time these ideas have

4 This is in contrast to some earlier FRP implementations that didn’t make
a sharp distinction between signals and signal functions.

Figure 2. System of interconnected signal functions with varying
structure

been made available to a wider audience in the context of a very
mature implementation of a reasonably well-established language.

The key idea of GADTs is to allow the type of each data
type constructor to be stated separately, and to take that extra
type information into account in individual case branches when
taking data structures apart, during pattern matching. Let us return
to the example from the introduction. GADTs allow us to define
a constructor representing arr id that has the expected, more
specific type SF a a as opposed to SF a b:

data SF a b where
...
SFId :: SF a a
...

But apart from this, there is nothing special with SFId, and its type
is a perfectly normal Haskell type.

The fun starts when we do case analysis on signal functions.
The following fragment of the definition of >>>, that reflects arrow
law 3 (section 2.1), is exactly as given in the introduction:

(>>>) :: SF a b -> SF b c -> SF a c
...
SFId >>> sf = sf
...

The difference is that the type checker now is going to accept the
definition since it knows that the type of the first argument in case
it is constructed using SFId must be SF a a. That is, the types a
and b must in fact be equal, and thus the second argument sf in fact
has type SF a c, which is exactly the return type. The equation is
therefore well-typed.

3. Basic Yampa Implementation
This section outlines the implementation of the current version of
Yampa. This has been described before [21], and is only included
here to make the present paper self-contained. The current Yampa
version performs some basic dynamic optimizations, for example,
it exploits arrow law 2 (section 2.1), replacing arrow composition
by simple function composition, but as noted in the introduction,
there are a number of obvious optimizations that were not imple-
mented because the Haskell 98 type system got in the way.

However, before looking at the current version, a very simple
implementation that does not do any dynamic optimization at all
will be described. This is done in part for explanatory purposes,
and in part to provide a baseline for establishing the effectiveness
of the basic optimizations, as that up until know had been taken
on faith. For example, while replacing arrow composition by sim-
ple function composition indeed does seem like an obvious win
in a system like Yampa, where arrow composition is an expensive
operation compared to function composition, the merit of simplic-
ity should never be underestimated. Simplicity does translate into
smaller function definitions, less case analysis, and possibly a bit
more compact representation of signal functions, all of which could
have a positive impact on the performance. This section is thus con-

cluded by a simple comparison of the performance of the current
implementation and the totally unoptimized one.

3.1 The Unoptimized Implementation

The Yampa implementation uses a continuation-based signal func-
tion representation, originally inspired by the implementation of
the Fudgets graphical user interface toolkit [4]. There are also sim-
ilarities to the “residual behaviors” implementation of Fran [10].

We start by considering the unoptimized version. Each signal
function is essentially represented by a transition function. This
takes as arguments the amount of time passed since the previous
time step and the current instantaneous value of the input signal. It
returns a transition: a pair of a (possibly) updated representation of
the signal function, the continuation, along with the current value
of the output signal:

type DTime = Double

data SF a b =
SF {sfTF :: DTime -> a -> Transition a b}

type Transition a b = (SF a b, b)

The continuation encapsulates any internal state of the signal func-
tion. The type synonym DTime is the type used for the time deltas.
They are assumed to be strictly greater than 0. We will return to the
question what the initial time delta should be below.

The function reactimate is responsible for animating a sig-
nal function. It runs in an infinite loop. At each point in time,
reactimate reads an input sample and the time from the external
environment (typically via an I/O action), feeds this sample value
and the amount of time that passed since the previous sampling
to the signal function’s transition function, and then writes the re-
sulting output sample to the environment (also typically via an I/O
action). The loop then repeats, but uses the continuation returned
from the transition function on the next iteration, thus ensuring that
any internal state is maintained properly.

As a first example of a signal function implementation, let us
consider the combinator arr:

arr :: (a -> b) -> SF a b
arr f = sf
where

sf = SF {sfTF = _ a -> (sf, f a)}

It is obvious that arr constructs a stateless signal function since the
returned continuation is exactly the signal function being defined,
i.e. it never changes.

Now let us consider serial composition. Since each of the signal
functions being composed could be stateful, we have to make sure
to combine their continuations into an updated continuation for the
composed arrow:

(>>>) :: SF a b -> SF b c -> SF a c
(SF {sfTF = tf1}) >>> (SF {sfTF = tf2}) =

SF {sfTF = tf}
where

tf dt a = (sf1’ >>> sf2’, c)
where

(sf1’, b) = tf1 dt a
(sf2’, c) = tf2 dt b

Note how the definition corresponds to the intuitive semantics given
in section 2.2.1. Also note how the same time delta is fed to both
subordinate signal functions, thus ensuring synchrony.

When a transition function is invoked for the very first time,
there is no meaningful time delta to feed in since there is no prior
invocation of that transition function. For that reason, signal func-

tions are actually represented by a slightly simpler transition func-
tion that only expects a single argument: the initial input value.
Once an initial input sample has been fed in, the signal functions
makes a transition to a “running” state, where the transition func-
tion has the more general form described above. Thus, the real type
definitions are as follows:

data SF a b = SF {sfTF :: a -> Transition a b}

data SF’ a b =
SF’ {sfTF’ :: DTime -> a -> Transition a b}

type Transition a b = (SF’ a b, b)

The type SF’ is an internal type, hidden from the user. The real
definitions of arr and >>> are also slightly more complicated,
as the definitions above are internal and really called something
else, and what the user sees are essentially wrappers around these
internal definitions.

3.2 The Simply Optimized Implementation

We now turn our attention to the current, simply optimized version
of Yampa. The central idea is to represent stateless signal functions,
i.e., signal functions constructed by arr, using a special construc-
tor. This makes it possible to recognize such signal functions for
example when composing signal functions, allowing arrow law 2
to be exploited:

arr (f >>> g) = arr f >>> arr g

Additionally, we introduce a special constructor for the signal
function constant, conceptually defined through

constant :: b -> SF a b
constant b = arr (const b)

This is done because the following laws hold, suggesting what
ought to be worthwhile optimizations:

sf >>> constant c = constant c

constant c >>> arr f = constant (f c)

A number of useful identities involving constant also hold for
other arrow combinators, like first and &&&, and for some
Yampa-specific ones like switch. The utility of handling constant
specially thus goes beyond serial arrow composition.

Here is the new definition of SF’:

data SF’ a b
= SFConst {

sfTF’ :: DTime -> a -> Transition a b,
sfCVal :: b

}
| SFArr {

sfTF’ :: DTime -> a -> Transition a b,
sfAFun :: a -> b

}
| SF’ {sfTF’ :: DTime -> a -> Transition a b}

Note that all constructors has a sfTF’ component. This enables
signal functions to be handled uniformly in cases where one do not
wish to differentiate between the different kinds.

The internal versions of constant and arr are then defined as
follows:

sfConst :: b -> SF’ a b
sfConst b = sf
where

sf = SFConst {
sfTF’ = _ _ -> (sf, b),

sfCVal = b
}

sfArr :: (a -> b) -> SF’ a b
sfArr f = sf
where

sf = SFArr {
sfTF’ = _ a -> (sf, f a),
sfAFun = f

}

Implementing the internal version of >>> is straightforward, if
a bit tedious:

cpAux _ sf2@(SFConst {}) = sfConst (sfCVal sf2)
cpAux sf1@(SFConst {}) sf2 = cpAuxC1 (sfCVal sf1)

sf2
cpAux sf1@(SFArr {}) sf2 = cpAuxA1 (sfAFun sf1)

sf2
cpAux sf1 sf2@(SFArr {}) = cpAuxA2 sf1

(sfAFun sf2)
cpAux sf1 sf2 = SF’ {sfTF’ = tf}
where

tf dt a = (cpAux sf1’ sf2’, c)
where

(sf1’, b) = (sfTF’ sf1) dt a
(sf2’, c) = (sfTF’ sf2) dt b

The functions cpAuxC1, cpAuxA1 and cpAuxA2 are specialized
versions of cpAux that exploit that the form of the first or second
of the arrows being composed is known, and that it thus would be
wasteful to pattern match on those over and over again. We give
cpAuxA1 as an example. Note the second equation that implements
the optimization suggested by arrow law 2:

cpAuxA1 _ (SFConst{sfCVal=c}) = sfConst c
cpAuxA1 f1 (SFArr {sfAFun=f2}) = sfArr (f2 . f1)
cpAuxA1 f1 (SF’ {sfTF’=tf2}) = SF’ {sfTF’=tf}
where

tf dt a = (cpAuxA1 f1 sf2’, c)
where

(sf2’, c) = tf2 dt (f1 a)

Recall that Yampa, through the use of switching, allows system
with dynamic structure to be described (see section 2.2.3). This
means that a signal function at some point could “become” a to-
tally different signal function, perhaps something very simple, like
arr f. For example:

switch (...) (_ -> arr f)

If the above code fragment was used in, say, an arrow composition,
it might, at the time of the switch, become possible to eliminate that
arrow composition completely, e.g.:

arr g >>> switch (...) (\ -> arr f)
switch

=⇒ arr g >>> arr f = arr (f . g)

Yampa does implement this, as can be seen from the code for com-
position above (cpAuxA1), but it means that the various arrow com-
binators constantly have to monitor the subordinate signal functions
to see if they have “changed shape” in such a way that an optimiza-
tion has become possible. The dynamic system structure is why
optimizations have to be performed dynamically in Yampa, while
the system is running. A single optimization phase before the sig-
nal processing proper starts would not be good enough. See section
6 for some further discussion.

Figure 3. Screenshot of Space Invaders

3.3 Effectiveness of the Simple Optimizations

From comparing the code of the unoptimized and the simply opti-
mized implementations of Yampa, it should be clear that the simply
optimized version is quite a bit bigger, and that it potentially spends
more time on case analysis than the unoptimized version since there
simply are more cases to consider. All of this could have a negative
performance impact, and that price would have to be paid regard-
less of whether any actual optimization opportunities turn up or
not. Thus, as always, the question is if the gains really outweigh
the costs? In particular, what is the bottom line in the context of
fairly large, realistic applications? Are there sufficiently many op-
timization opportunities, and are any gains large enough to justify
the extra implementation complexity?

To begin answering such questions, a simple, initial experi-
ment was carried out. The performance of two reasonably large
and demanding application were measured using the two Yampa
implementations to see if any significant performance differences
emerged. Obviously, since only two applications are involved, any
far-reaching conclusions based on the outcome must be avoided.
But a positive outcome should still be reassuring.

The Yampa Space Invaders game [9] was chosen as one of
the benchmark application since it was considered representative
of typical applications. The screenshot in figure 3 should give an
indication as to its complexity. Since the objective was to measure
the impact of the optimizations on the execution of signal functions,
the game was modified by disabling the graphical rendering as that
accounted for a significant part of the overall run time. Further
modifications were made to run the game for a fixed number of
cycles over a fixed length of simulated time on fixed input.

The other benchmark is a high-level model of a MIDI5 Event
Processor (MEP), patterned after hardware devices like the Yamaha
MEP46. Such a device allows a stream of MIDI events (like note
on and off) to be transformed to achieve effects like splitting,
layering, and arpeggios (by adding delayed messages). Yampa’s
synchronous nature and event processing capabilities make it very
well suited for this type of application. The Yampa MEP was

5 Musical Instrument Data Interface
6 http://www.yamaha.co.jp/manual/english/

Benchmark TU [s] TS [s] TS/TU

Space Invaders 0.95 0.86 0.91
MEP 19.39 10.31 0.53

Table 1. Benchmark performance. Averages over five runs.

programmed to carry out typical split and layering duties, including
adding arpeggiated notes if the velocity attribute of a note-on event
indicates that the keyboard key has been played hard.

The measurements were carried out on a 1.6 GHz Pentium lap-
top running Linux. The speedstep facility was turned off to ensure
that the CPU speed was not changed during the measurements. Two
versions of the each benchmark were compiled, one using an unop-
timized version of Yampa like the one presented in section 3.1, the
other using the simply optimized version. The benchmarks were
then run with a known initial heap size (8 MByte). The size was
chosen large enough so that most time would be spent executing
actual Yampa code as opposed to doing garbage collection, but also
small enough so that really bad space behavior of either implemen-
tation would have an impact. The average execution time was mea-
sured over five “good” runs using the Linux time command by
adding the reported “user” and “system” times. A run was consid-
ered good if 90 % or more of the CPU time was spent on executing
the benchmarks, indicating that not much else that could skew the
results was going on. The GHC runtime system was instructed to
print out the time spent on executing code and doing garbage col-
lection. About 5 % of the overall run time was spent on garbage
collection in each case. Thus there were no significant differences
in this respect.

The results are given in table 1. T stands for total execution
time. The subscript U refers to the unoptimized implementation,
whereas S refers to the simply optimized one. The results do indeed
suggest that the simple optimizations have a substantial positive
impact at the system level, in particular the results for MEP where
the optimized version runs almost twice as fast. The Space Invaders
benchmark involves a lot of numerical floating point and vector
computations, and a closer inspection reveals that a large part of
the overall time is spent there. Considering this, a 10 % shorter
execution time is a fairly good performance improvement.

4. Optimizing Yampa Using GADTs
This section explores how GADTs can be employed to implement
dynamic optimizations in a Yampa that go beyond what is possible
in plain Haskell 98. General arrow optimizations are considered
first, then Yampa-specific ones, particularly improving on event
processing.

4.1 Optimizing Pure Arrows

Let us return to the problem of optimizing arrow composition
with the identity arrow. One approach was outlined in section 2.3,
and integrating that into the current Yampa implementation as de-
scribed in section 3.2 is mostly a matter of just adding the con-
structor SFId to the type SF’. However, when the emerging opti-
mization opportunities are implemented for the various arrow com-
binators, there is a lot of code duplication related to composition
of pure arrows, of which there now are three varieties: constant,
identity, and all others. Additionally, for Yampa-specific opti-
mizations, it is necessary to consider further cases, as will be dis-
cussed later.

A better approach is to factor out the description of the functions
to be lifted, write a single function for dealing with composition
of such descriptions, and finally add a single signal function con-

structor SFArr for pure arrows, that incorporates this description
(instead of just a function about which nothing is known).

Using GADTs, a data type describing the three kinds of func-
tions can be defined as follows:

data FunDesc a b where
FDI :: FunDesc a a
FDC :: b -> FunDesc a b
FDG :: (a -> b) -> FunDesc a b

FDI represents the identity function id, FDC b represents the func-
tion const b, and FDG f represents a general function f. Note how
the types of the function descriptions match the types of the func-
tions being described.

Next, a way to recover the described function from a function
description is needed:

fdFun :: FunDesc a b -> (a -> b)
fdFun FDI = id
fdFun (FDC b) = const b
fdFun (FDG f) = f

Note how GADTs come into play in the FDI case. The equation
is well-typed only because FDI has type FunDesc a a, meaning
that types a and b are equal in that case, which in turns makes it
legitimate to return id as the result.

Composition of function descriptions can now be defined.
Again, note how GADTs come into play wherever FDI is used.

fdComp :: FunDesc a b -> FunDesc b c
-> FunDesc a c

fdComp FDI fd2 = fd2
fdComp fd1 FDI = fd1
fdComp (FDC b) fd2 = FDC ((fdFun fd2) b)
fdComp _ (FDC c) = FDC c
fdComp (FDG f1) fd2 = FDG (fdFun fd2 . f1)

It is also worth to note how pleasingly natural and direct the defini-
tion is.

4.2 Optimizing Arrow Composition

Arrow composition is associative. Thus it would be desirable if op-
timization of composition was performed as well as possible re-
gardless of the bracketing. This is particularly important when ar-
row notation [22] is being used since the user then does not always
have control over the bracketing. However, the current Yampa im-
plementation is not that well-behaved. For example, if sf is some
general signal function, then

(arr f >>> arr g) >>> sf

would be optimized to

arr (g . f) >>> sf

eliminating one costly arrow composition, but

arr f >>> (arr g >>> sf)

would not be optimized, except that the implementation of >>>
is slightly more efficient for composition with a pure arrow (see
section 3.2).

To address this problem, a constructor representing arrow com-
positions of the form

arr f >>> sf >>> arr g

is introduced. The idea is due to Hughes [19]. The point is that com-
position becomes observable, allowing re-bracketing if necessary,
and that pure arrows to either side always can be “absorbed”.

Here is the new definition of SF’. SFArr is the single con-
structor for pure arrows that was discussed in the previous section.
SFCpAXA represents pre and post composition with pure arrows:

data SF’ a b where
SFArr ::

(DTime -> a -> Transition a b)
-> FunDesc a b
-> SF’ a b

SFCpAXA ::
(DTime -> a -> Transition a d)
-> FunDesc a b
-> SF’ b c
-> FunDesc c d
-> SF’ a d

SF’ ::
(DTime -> a -> Transition a b)
-> SF’ a b

Note that a signal function constructed using SFCpAXA includes the
representations of the three subordinate signal functions. This is
what makes it possible to change the bracketing structure. However,
they play no direct role when making a transition: that is the sole
responsibility of the transition function, as before. It will construct
an updated version of the composed signal function, where the two
subordinate pure arrows of course are the same as before, but where
the signal function “in the middle” possibly has been updated.

Let us now look at the implementation of composition. Like
in the simply optimized implementation, unnecessary construction
and destruction of signal function representations is avoided by
having specialized functions dealing with cases where one or more
of the subordinate signal functions is something simple, like a pure
arrow, constant, or even identity. However, there are now more
cases to consider, and we will thus only look at some fragments of
the definition to convey the general ideas.

We begin with composition of two arbitrary signal functions.
A naming convention is used where X stands for arbitrary signal
function (could be anything) and A stands for an arbitrary pure ar-
row. Thus the function dealing with composition of arbitrary signal
functions is called cpXX, and the first few lines of its definition are
as follows:

cpXX :: SF’ a b -> SF’ b c -> SF’ a c
cpXX (SFArr _ fd1) sf2 = cpAX fd1 sf2
cpXX sf1 (SFArr _ fd2) = cpXA sf1 fd2

As can be seen, if it turns out that either the first or the second
argument is a pure arrow, one of two dedicated functions that are
optimized for those cases are invoked to carry out further analysis.

Here is the definition of cpAX that handles the case where the
first argument is a pure arrow.

cpAX :: FunDesc a b -> SF’ b c -> SF’ a c
cpAX FDI sf2 = sf2
cpAX (FDC b) sf2 = cpCX b sf2
cpAX (FDG f1) sf2 = cpGX f1 sf2

If the first argument is the identity function, then the entire com-
position can be immediately optimized to just sf2. GADTs are
needed to make this case well-typed. Otherwise, further process-
ing is delegated to functions that analyze the second argument to
spot further optimization possibilities and, if none is found, are de-
signed to implement composition as efficiently as possible given
the knowledge they have about the first argument (constant or a
pure function).

If two signal functions constructed by SFCpAXA are composed,
then a re-bracketing step is performed with the aim of fusing the

two pure arrows in the middle. Algebraically, we have:

(arr f >>> sf1 >>> arr g)
>>> (arr f’ >>> sf2 >>> arr g’)
=
arr f
>>> ((sf1 >>> arr (f’ . g)) >>> sf2)
>>> arr g’

The code is as follows:

cpXX (SFCpAXA _ fd11 sf12 fd13)
(SFCpAXA _ fd21 sf22 fd23) =

cpAXA fd11
(cpXX (cpXA sf12 (fdComp fd13 fd21))

sf22)
fd23

Finally, if no optimizable case has been detected, the basic
composition is performed. Note that the updated representation
of the composed signal function is constructed recursively using
cpXX, ensuring that sf1’ and sf2’ will be analyzed during the
next time step to detect any emerging optimization possibilities.

cpXX sf1 sf2 = SF’ tf
where

tf dt a = (cpXX sf1’ sf2’, c)
where

(sf1’, b) = (sfTF’ sf1) dt a
(sf2’, c) = (sfTF’ sf2) dt b

Other arrow combinators are optimized in similar ways. For
example, first identity is optimized to identity. More ad-
vanced optimizations involving e.g. first and >>> have not
yet been attempted. For instance, Hughes identify optimizing
first f >>> first g to first (f >>> g) as troublesome
due to the type system really getting in the way. GADTs should
solve this. The main difficulty is structuring the code in a way that
keeps the number of cases that have to be considered manageable.

4.3 Optimizing Event Processing

As was discussed in section 2.2.2, Yampa deliberately blurs the dis-
tinction between continuous-time signal and discrete-time signals
by layering the latter on top of the former through the Event op-
tion type. This is quite convenient from a programming perspective,
but does mean that it is hard to implement pure event-processing
as efficiently as one could hope for. The involved signal functions
gets invoked at every single time step, even though everything re-
main constant between events. Thus, if events are relatively sparse,
the overhead is considerable. In some earlier FRP implementations,
where discrete and continuous signal functions were separate con-
cepts, there was greater scope for optimization. In this section, we
will see how GADTs allow some optimizations of event-processing
to be reintroduced.

Consider the following composition of pure arrows:

f :: Event a -> Event b
g :: Event b -> Event c

arr f >>> arr g

Normally events occur relatively sparsely. Thus, for the most part,
the output from f is going to be NoEvent, and the result of g ap-
plied to NoEvent is going to be computed over and over again. That
seems a bit wasteful. If the assumption that events occur sparsely
holds, it would be better to compute g NoEvent only once, and
reuse that value whenever the output from f is NoEvent. The func-
tion g would then only have to be invoked on event occurrences.

This can be achieved by introducing a function description
for event-processing functions, allowing the composition of such

functions to be handled specially. However, instead of representing
functions of type Event a->Event b as the example above would
suggest, we chose to represent functions of type Event a->b to
cover more functions. Nothing is lost by doing this: if two such
functions are composed, the result type of the first function must in
fact be Event, and GADTs allow that fact to be exploited.

The type FunDesc from section 2.2.2 is thus extended as fol-
lows:

data FunDesc a b where
...
FDE :: (Event a -> b) -> b

-> FunDesc (Event a) b

The first argument to FDE is the event-processing function in ques-
tion. The second argument is the result of applying that function to
NoEvent. The function fdComp is then extended to handle compo-
sitions involving event-processing functions:

fdComp :: FunDesc a b -> FunDesc b c
-> FunDesc a c

...
fdComp (FDE f1 f1ne) fd2 = FDE (f2 . f1)

(f2 f1ne)
where

f2 = fdFun fd2
fdComp (FDG f1) (FDE f2 f2ne) = FDG f
where

f a = case f1 a of
NoEvent -> f2ne
f1a -> f2 f1a

The second equation reflects the discussion above. Note how f2
only gets invoked on events. Also note the crucial role played by
GADTs for making the code well-typed. In particular, the type
refinement due to GADTs is what makes the case analysis of f1
a possible.

The only question now is how to get FDEs into play. The other
two special function descriptions, FDI and FDC, are introduced by
providing the special signal functions identity and constant in
the Yampa API, and asking the user to use those in preference to
writing arr id and arr (const x). Similarly we could intro-
duce a special version of arr, say arrE :: Event a -> b, and
ask the user to use that wherever possible. However, while not ideal,
identity and constant work because they are fairly natural sig-
nal functions to have in the API anyway, and because it is only those
two. Asking the user to remember to use arrE where possible is a
bit too much. Moreover, when the arrow notation is used, many
arrs get introduced by the translation into plain Haskell, outside
the control of the user.

One way to resolve this dilemma is to employ a GHC-specific
trick. A rewriting rule is specified that instructs the compiler to
rewrite arr f to arrE fwhenever the type of f is Event a -> b7.
The rule is remarkably simple, exploiting that the GHC rewriting
rules only apply when the types match:

{-# RULES "arrPrim/arrEPrim"
arrPrim = arrEPrim #-}

This solution is good because it is totally transparent to the user.
However, the price paid is that the Yampa implementation gets tied
even harder to GHC. An alternative might be to use the class sys-
tem, but the only solution in that direction explored by this author
necessitated changing the Arrow class slightly and enabling both

7 Note that GHC rewrite rules could not be used to implement the optimiza-
tions described in this paper in general since the optimizations have to be
carried out dynamically as explained in section 3.2.

overlapping and incoherent instances. Altogether not very appeal-
ing. In the worst case, should rewriting rules not be available, all is
not lost since optimization of stateful event processing, described
in the following, only relies on GADTs.

Event-based optimization in the spirit above can also be imple-
mented for stateful event-processing signal functions like accumBy
and hold. Both of these, and many other Yampa event processors,
can be seen as instances of a general stateful event-processing sig-
nal function that we can call ep:

ep :: (c -> a -> (c,b,b)) -> c -> b
-> SF (Event a) b

The argument of type c is the initial sate, the argument of type b
is the initial quiescent output (when the input is NoEvent), and the
function argument is the function that gets invoked on the value of
any incoming event and the current state to compute the updated
state, the output at the point of the event, and the new quiescent
output. For example, hold can be defined as follows:

hold :: a -> SF (Event a) a
hold a_init = ep f () a_init
where

f _ a = ((), a, a)

The point of this is that composition of ep with ep or with pure
arrows, both event-processing ones and others, results in a signal
function that can be expressed in terms of a single ep, in a manner
similar to the composition of pure, event-processing arrows, thus
allowing an arrow composition to be optimized away. The result is
that “pipelines” of event-processing signal functions execute very
efficiently since the latter signal functions in the pipeline only get
invoked on events. All that is needed to achieve this is to introduce
a constructor that represents ep, and extend the implementation of
arrow composition accordingly:

data SF’ a b where
...
SFEP ::

(DTime -> Event a -> Transition (Event a) b)
-> (c -> a -> (c, b, b)) -> c -> b
-> SF’ (Event a) b

Note that GADTs are again needed here. The code for composition
is in many ways very similar to the stateless case discussed above.
The details are omitted.

4.4 Optimizing Simple Stateful Signal Processing

Many simple, stateful continuous signal functions, like edge or pre
(an “infinitesimal” delay), can be expressed in terms of a common
underlying primitive signal function in much the same way as the
stateful event processors discussed above. If that underlying signal
function is designed in such a way that it composes nicely with pure
arrows, stateful event processors, and itself, this opens up many
opportunities for optimization. There is a quite large design space
here. The current design employs a function of type

c -> a -> Maybe (c, b)

to compute the new internal state and the output given the present
internal state an input. If the result is Nothing, this indicates
that both the state and output should stay as they were. The new
constructor is called SFSScan:

data SF’ a b where
...
SFSScan ::

(DTime -> a -> Transition a b)
-> (c -> a -> Maybe (c, b)) -> c -> b
-> SF’ a b

Benchmark TS [s] TG [s]
1 0.41 0.00
2 0.74 0.22
3 0.45 0.22
4 1.29 0.07
5 1.95 0.08
6 1.48 0.69
7 2.85 0.72

Table 3. Micro benchmark performance. Averages over five runs.

Note that GADTs are not absolutely essential for expressing
SFSScan in itself: existential quantification could have been used.
However, GADTs are needed when coding composing with e.g
SFEP. The details of coding the various compositions are omitted,
but again similar to what has been discussed before.

5. Evaluation of the GADT-based Optimizations
In the previous section we saw how GADTs made possible a num-
ber optimizations, both general and Yampa-specific ones. However,
we also saw that the size and complexity of the implementation
grew. That could offset any gains from the optimizations. This sec-
tion presents some benchmark results in an attempt to determine
whether the optimizations are worthwhile.

Extensive testing was conducted on a number of “micro bench-
marks” designed to evaluate whether optimizations based on the
arrow laws, event processing, and composition of simple stateful
signal functions worked as intended. A few representative ones are
considered in the following: see table 2. The procedure and test-
ing conditions were as described in section 3.3, except that the
benchmarked implementations now are the simply optimized one
(YampaS) and the one with GADT-based optimizations (YampaG).
The benchmarks were executed for a fixed simulated time period.
Appropriate input (continuous or events) was generated using suit-
able signal functions. However, the time for generating the input
was excluded from the benchmark times in order to highlight how
much longer the execution times became when the input was pro-
cessed through the benchmarks of table 2.

The average execution times for the micro benchmarks are given
in table 3. TS and TG are the execution times for YampaS and
YampaG respectively. The amount of time spent on garbage col-
lection was monitored, but it was small in all cases. The measured
times thus represent time spent on executing Yampa code.

As can be seen from the times for benchmark 1, YampaG, as
expected, succeeds in eliminating the overhead of composition with
identity completely. Studying benchmarks 2 and 3, we see that
YampaG is insensitive to parenthesization order, whereas YampaS

is not (sf is the input generator and is not included in the measured
times). Moreover, YampaG appears to be a little faster.

In the case of benchmarks 4 to 7, one should keep in mind that
the implementations of the involved stateful signal functions are
very different in YampaS and YampaG. While it certainly is good
that YampaG is a lot faster here, the most important is to study how
the execution times change as further signal functions are added
to a pipeline. Comparing the times for benchmarks 4 and 5 shows
that the overhead of adding an additional stateful event processor
(here accumBy) to an event processing pipeline in YampaG is al-
most negligible. Similarly, the results for benchmarks 6 and 7 show
that the overhead of adding stateless and stateful event processing
signal functions to some stateful continuous-time signal processing
is also very small. GADTs have thus enabled efficient fusing of a
variety of stateful and stateles signal functions. However, it should

Benchmark Code Description
1 identity >>> identity Composition of identity
2 (sf >>> arr (*1)) >>> arr (*2) Left-biased parenthesization
3 sf >>> (arr (*1) >>> arr (*2)) Right-biased parenthesization
4 accumBy count >>> hold 0 Stateful event processing
5 accumBy count >>> accumBy (+) 0 >>> hold 0 Stateful event processing
6 arr (>) >>> edge Stateful and stateless signal processing
7 arr (>) >>> edge >>> arr (‘tag‘ (+1)) >>> accum 0 Stateful and stateless signal and event processing

Table 2. Micro benchmarks.

Benchmark TS [s] TG [s] TG/TS

Space Invaders 0.86 0.88 1.02
MEP 10.31 9.36 0.91

Table 4. Application benchmark performance. Averages over five
runs.

be pointed out that the event density was very low in these experi-
ments. The results may thus be a bit too optimistic.

Anyway, these results are important. The present Yampa API
contains a number of “pre-composed” signal functions, such as
accumHoldBy and edgeTag, implemented as primitives for rea-
sons of efficiency. However, benchmark results 4 to 7 indicate that
there is no need for such primitives in YampaG. The GADT-based
optimizations make it is possible to simplify both the Yampa imple-
mentation, and, more importantly, the Yampa API, in this respect.

The above results are good, but perhaps not wholly unexpected:
the benchmarks are small and set up in a way that let the opti-
mizations have maximal impact. What about the effect on larger
application like Space Invaders and MEP (see section 3.3)? Table 4
shows the results. As can be seen, the execution times for Space In-
vaders are almost exactly the same. This application does quite a bit
of floating-point and vector computations, and a closer inspection
reveals that that is where most time is spent. After the basic opti-
mizations as implemented in YampaS have been performed, there
just is not so many more (easy) optimization opportunities. This is
a bit disappointing, but at least it suggests that the size and com-
plexity of YampaG does not have any major negative impact.

The MEP fares better, showing a worthwhile speedup. Of
course, one would hope that, given that this is an event-centered
application and the effort put into optimizing event processing.
However, it should be emphasized that the MEP is non-trivial, in-
volving many stateful signal functions that cannot be expressed in
terms of the composable primitives. It is not the case that the MEP
trivially reduces to just a single or a few signal functions.

6. Related Work
Dynamic optimization of domain-specific embedded languages it
not new. This was briefly discussed in the introduction, one ex-
ample being Swierstra’s and Duponcheel’s self-analyzing parser
combinators [29]. Optimization in FRP or FRP like systems has
also been attempted a number of times, e.g. various implementa-
tions of Fran [10]; Pan, a compiled embedded language implemen-
tation [11]; the highly optimized FranTk implementation, employ-
ing unsafePerformIO behind the scenes [28]; and, of course, the
current Yampa implementation [21].

However, most closely related to the optimization approach pre-
sented here is Hughes’ work on self-optimizing arrow-based com-
binator libraries [19]. There are two parts to Hughes’ approach.
First, a generalized optimization framework for arrows based on

arrow transformers is introduced. This allows any arrow instance
to be transformed into a self-optimizing version utilizing the arrow
laws. Moreover, the run-time overhead is small, since the optimiza-
tions are carried out once and for all up front: the transformed ar-
row is run to produce an optimized untransformed arrow. Second,
Hughes makes clever use of (commonly implemented) extensions
to the Haskell 98 type system to allow optimizing e.g. composi-
tion with the identity arrow. Now that GADTs are available, they
could have been used instead, allowing more optimizations, but at
the cost of being tied to GHC for the time being. This is no surprise:
both Hughes and Nilsson et al. [21, p. 62] note that some form of
dependent types is what really is wanted in this context.

The main question then is why the idea of an optimizing ar-
row transformer was not used for Yampa? That would arguably
have been more elegant than optimizing the the individual arrow
combinator instances individually. There are two reasons for this
choice. First, optimizations of event processing is very important
but rather Yampa-specific. There does not seem to be much point
in inventing a Yampa-specific arrow transformer for transforming
the Yampa arrow. A layered approach might have been possible,
where the basic Yampa arrow first was transformed using Hughes’
general optimizing arrow transformer, and then further transformed
by an arrow transformer addressing only event processing. That
does seem rather complicated, however. The second reason is that
Yampa needs to consider optimization at every time step since
Yampa allows systems with dynamic structure to be described. This
was discussed in section 3.2, where an example showing how a sig-
nal function eventually might “become” something simple, like a
pure arrow, was given, at which point one would like any optimiza-
tions that this enables to be carried out. The overhead of an arrow
transformer approach can thus not be reduced away once and for
all, and the approach simply seemed too costly.

7. Conclusions
This paper showed how GADTs make possible a number of use-
ful dynamic optimizations for Yampa, an arrow-based, domain-
specific language for Functional Reactive Programming. Some of
these optimizations are applicable for arrow-based libraries in gen-
eral, whereas others are specific to Yampa. A set of small bench-
marks showed that these optimizations can boost the performance
significantly in some cases. At the level of of complete applications,
the gains ranged from modest but worthwhile to none.

However, the optimization possibilities have not yet been ex-
hausted. In particular, optimization of combinations of serial (>>>)
and parallel (first, ***, . . .) arrow composition has not yet been
attempted. GADTs are expressive enough to cope with such exten-
sions: the difficult part is to manage the combinatorial growth of
cases for optimization that need to be considered.

All in all, despite the lack of major system-wide performance
gains, and without taking the possible impact of further optimiza-
tions into account, the GADT-based Yampa implementation is still
an improvement on the old one. The gains at the code fragment

level are important as they allow a more concise and principled
API, without “pre-composed” signal functions that are there only
for performance reasons. The GADT-based implementation is also
able to exploit that arrow composition is associative, making it in-
sensitive to how arrow composition is parenthesized. The measure-
ments thus far suggest that these benefits were obtained without an
overall negative performance impact that could have been the result
of the general increase of the size and complexity of the core of the
Yampa implementation.

On a general note, GADTs were found to be intuitive to use
and pleasingly expressive. Among other applications, they should
be quite useful for dynamic optimizations in a wide range of em-
bedded domain-specific languages. At present, they do, however,
have a bit of a “bolted on” feel. For instance they cannot be used
together with Haskell’s labeled-field notation (compare the stylistic
difference between the definitions of SF’ in sections 3.2 and 4.2 for
an example).

Acknowledgments
The author would like to thank the anonymous reviewers for their
thorough and constructive comments.

References
[1] Arthur I. Baars and S. Doaitse Swierstra. Type-safe, self inspecting

code. In Proceedings of the 2004 ACM SIGPLAN Haskell Workshop
(Haskell’04), pages 69–79. ACM Press, 2004.

[2] G. Berry and G. Gonthier. The Esterel synchronous programming
language: design, semantics, implementation. Science of Computer
Programming, 19(2):217–248, 1992.

[3] Magnus Carlsson and Thomas Hallgren. Fudgets: A graphical user
interface in a lazy functional language. In Conference on Functional
Programming Languages and Computer Architecture (FPCA ’93),
pages 321–330, Copenhagen, Denmark, June 1993. ACM Press.

[4] Magnus Carlsson and Thomas Hallgren. Fudgets – Purely Functional
Processes with Applications to Graphical User Interfaces. PhD
thesis, Department of Computing Science, Chalmers University of
Technology, 1998.

[5] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. LUSTRE:
A declarative language for programming synchronous systems.
In Proceedings of the 14th ACM Symposium on Principles of
Programming Languages, New York, NY, 1987. ACM.

[6] Paul Caspi and Marc Pouzet. Lucid Synchrone, a functional extension
of Lustre. Submitted for publication, 2000.

[7] Olaf Chitil, Colin Runciman, and Malcolm Wallace. Freja, Hat
and Hood – a comparative evaluation of three systems for tracing
and debugging lazy functional programs. In Markus Mohnen and
Pieter Koopman, editors, Proceedings of the 12th International
Workshop on Implementation of Functional Languages (IFL 2000),
Aachen, Germany, September 2000, volume 2011 of Lecture Notes in
Computer Science, pages 176–193. Springer-Verlag, 2001.

[8] Antony Courtney and Conal Elliott. Genuinely functional user
interfaces. In Proceedings of the 2001 ACM SIGPLAN Haskell
Workshop, Firenze, Italy, September 2001.

[9] Antony Courtney, Henrik Nilsson, and John Peterson. The Yampa
arcade. In Proceedings of the 2003 ACM SIGPLAN Haskell Workshop
(Haskell’03), pages 7–18, Uppsala, Sweden, August 2003. ACM
Press.

[10] Conal Elliott. Functional implementations of continuous modelled
animation. In Proceedings of PLILP/ALP ’98. Springer-Verlag, 1998.

[11] Conal Elliott, Sigbjørn Finne, and Oege de Moor. Compiling embed-
ded languages. In Semantics, Applications, and Implementation of
Program Generation (SAIG 2000), volume 1924 of Lecture Notes in
Computer Science, pages 9–27, Montreal, Canada, September 2000.
Springer-Verlag.

[12] Conal Elliott and Paul Hudak. Functional reactive animation. In
Proceedings of ICFP’97: International Conference on Functional
Programming, pages 163–173, June 1997.

[13] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous
dataflow programming language LUSTRE. Proceedings of the IEEE,
79(9):1305–1320, 1991.

[14] Thomas A. Henzinger. The theory of hybrid automata. In Proceedings
of the 11th Annual IEEE Symposium on Logics in Computer Science
(LICS 1996), pages 278–292, 1996.

[15] Paul Hudak. Modular domain specific languages and tools. In
Proceedings of Fifth International Conference on Software Reuse,
pages 134–142, June 1998.

[16] Paul Hudak, Antony Courtney, Henrik Nilsson, and John Peterson.
Arrows, robots, and functional reactive programming. In Johan
Jeuring and Simon Peyton Jones, editors, Advanced Functional
Programming, 4th International School 2002, volume 2638 of Lecture
Notes in Computer Science, pages 159–187. Springer-Verlag, 2003.

[17] John Hughes. The design of a pretty-printing library. In J. Jeuring
and E. Meijer, editors, Advanced Functional Programming, volume
925 of Lecture Notes in Computer Science, pages 53–96. Springer
Verlag, LNCS 925, 1995.

[18] John Hughes. Generalising monads to arrows. Science of Computer
Programming, 37:67–111, May 2000.

[19] John Hughes. Programming with arrows. In Advanced Functional
Programming, 2004. To be published by Springer Verlag in their
LNCS series.

[20] The MathWorks, Inc. Using Simulink Version 4, June 2001.
http://www.mathworks.com

[21] Henrik Nilsson, Antony Courtney, and John Peterson. Functional
reactive programming, continued. In Proceedings of the 2002 ACM
SIGPLAN Haskell Workshop (Haskell’02), pages 51–64, Pittsburgh,
Pennsylvania, USA, October 2002. ACM Press.

[22] Ross Paterson. A new notation for arrows. In Proceedings of
the 2001 ACM SIGPLAN International Conference on Functional
Programming, pages 229–240, Firenze, Italy, September 2001.

[23] John Peterson, Greg Hager, and Paul Hudak. A language for
declarative robotic programming. In Proceedings of IEEE Conference
on Robotics and Automation, May 1999.

[24] John Peterson, Paul Hudak, and Conal Elliott. Lambda in motion:
Controlling robots with Haskell. In Proceedings of PADL’99:
1st International Conference on Practical Aspects of Declarative
Languages, pages 91–105, January 1999.

[25] John Peterson, Paul Hudak, Alastair Reid, and Greg Hager. FVision:
A declarative language for visual tracking. In Proceedings of
PADL’01: 3rd International Workshop on Practical Aspects of
Declarative Languages, pages 304–321, January 2001.

[26] Simon Peyton Jones, Geoffrey Washburn, and Stephanie Weirich.
Wobbly types: type inference for generalized algebraic data types.
Submitted to POPL’05, July 2004.

[27] Marc Pouzet, Paul Caspi, Pascal Couq, and Grégoire Hamon. Lucid
Synchrone v2.0 – tutorial and reference manual.

http://www-spi.lip6.fr/lucid-synchrone/
lucid_synchrone_2.0_manual.ps, April 2001.

[28] Meurig Sage. FranTk: A declarative GUI system for Haskell. In
Proceedings of the ACM SIGPLAN International Conference on
Functional Programming (ICFP 2000), September 2000.

[29] S. D. Swierstra and Luc Duponcheel. Deterministic, error-correcting
combinator parsers. In John Launchbury, Erik Meijer, and Tim
Sheard, editors, Advanced Functional Programming, volume 1129 of
Lecture Notes in Computer Science, pages 184–207. Springer-Verlag,
1996.

[30] Philip Wadler. How to replace failure with a list of successes. In
Conference on Functional Programming Languages and Computer
Architecture (FPCA ’85), volume 201 of Lecture Notes in Computer
Science, pages 113–128. Springer-Verlag, 1985.

