
Switched-On Yampa�

Declarative Programming of Modular Synthesizers

George Giorgidze1 and Henrik Nilsson2

1 School of Computer Science, University of Nottingham, UK
ggg@cs.nott.ac.uk

2 School of Computer Science, University of Nottingham, UK
nhn@cs.nott.ac.uk

Abstract. In this paper, we present an implementation of a modular
synthesizer in Haskell using Yampa. A synthesizer, be it a hardware in-
strument or a pure software implementation, as here, is said to be mod-
ular if it provides sound-generating and sound-shaping components that
can be interconnected in arbitrary ways. Yampa, a Haskell-embedded
implementation of Functional Reactive Programming, supports flexible,
purely declarative construction of hybrid systems. Since music is a hybrid
continuous-time and discrete-time phenomenon, Yampa is a good fit for
such applications, offering some unique possibilities compared to most
languages targeting music or audio applications. Through the presenta-
tion of our synthesizer application, we demonstrate this point and provide
insight into the Yampa approach to programming reactive, hybrid sys-
tems. We develop the synthesizer gradually, starting with fundamental
synthesizer components and ending with an application that is capable
of rendering a standard MIDI file as audio with respectable performance.

Keywords: Functional Reactive Programming, synchronous dataflow
languages, hybrid systems, computer music.

1 Introduction

A dynamic system or phenomenon is hybrid if it exhibits both continuous-time
and discrete-time behaviour at the chosen level of abstraction. Music is an in-
teresting example of a hybrid phenomenon in this sense. At a fundamental level,
music is sound: continuous pressure waves in some medium such as air. In con-
trast, a musical performance has some clear discrete aspects (along with contin-
uous ones): it consists of sequences of discrete notes, different instruments may
be played at different points of a performance, and so on.

There exist many languages and notations for describing sound or music and
for programming computers to carry out musical tasks. However, they mostly
tend to focus on either the discrete or the continuous aspects. Traditional mu-
sical notation, or its modern-day electronic derivatives such as MIDI files or
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domain-specific languages like Haskore [5], focus on describing music in terms
of sequences of notes. If we are interested in describing music at a finer level
of detail, in particular, what it actually sounds like, options include modelling
languages for describing the physics of acoustic instruments, various kinds of
electronic synthesizers, or domain-specific languages like Csound [14]. However,
the focus of synthesizer programming is the sound of a single note, and how that
sound evolves over time. The mapping between the discrete world of notes and
the continuous world of sound is hard-wired into the synthesizer, outside the
control of the programmer.

Here we take a more holistic approach allowing the description of both the
continuous and discrete aspects of music and musical applications; that is, an
approach supporting programming of hybrid systems. Yampa [4,10], an instance
of Functional Reactive Programming (FRP) in the form of a domain-specific
language embedded in Haskell, provides the prerequisite facilities. Our basic
approach is that of modular synthesis. Modular synthesizers were developed in
the late 1950s and early 1960s and offered the first programmatic way to de-
scribe sound. This was achieved by wiring together sound-generating and sound-
shaping modules electrically. Yampa’s continuous-time aspects serve this purpose
very well. Additionally we leverage Yampa’s capabilities for describing systems
with a highly dynamic structure, thus catering for the discrete aspects of music.
In this paper, we illustrate:

– how basic sound-generating and sound-shaping modules can be described
and combined into a simple monophonic (one note at a time) synthesizer;

– how a monophonic synthesizer can be constructed from an instrument de-
scription contained in a SoundFont file;

– how to run several monophonic synthesizer instances simultaneously, thus
creating a polyphonic synthesizer capable of playing Standard MIDI Files.

The resulting application renders the musical score in a given MIDI file using
SoundFont instrument descriptions. The performance is fairly good: a moder-
ately complex score can be rendered about as fast as it plays (with buffering).
All code is available on-line.1 In addition to what is described in this paper,
the code includes supporting infrastructure for reading MIDI files, for reading
SoundFont files, and for writing the result as audio files or streams (.wav).

The contribution of this work lies in the application of declarative hybrid
programming to a novel application area, and as an example of advanced declar-
ative hybrid programming. We believe it will be of interest to people interested
in a declarative approach to describing music and programming musical applica-
tions, to practitioners interested in advanced declarative hybrid programming,
and to educationalists seeking interesting and fun examples of declarative pro-
gramming off the beaten path. The importance of the latter is illustrated by the
DrScheme experience, where first-class images and appropriate reactive abstrac-
tions have enabled high-school students to very quickly pick up pure functional
programming through implementation of animations and games [3].

1 http://www.cs.nott.ac.uk/~ggg
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2 Yampa

In the interest of making this paper sufficiently self-contained, we summarize
the basics of Yampa in the following. For further details, see earlier papers on
Yampa [4,10]. The presentation draws heavily from the Yampa summary in [2].

2.1 Fundamental Concepts

Yampa is based on two central concepts: signals and signal functions. A signal
is a function from time to values of some type:

Signal α ≈ Time → α

Time is continuous, and is represented as a non-negative real number. The type
parameter α specifies the type of values carried by the signal. For example, the
type of an audio signal, i.e., a representation of sound, would be Signal Sample
if we take Sample to be the type of the varying quantity.2

A signal function is a function from Signal to Signal :

SF α β ≈ Signal α → Signal β

When a value of type SF α β is applied to an input signal of type Signal α,
it produces an output signal of type Signal β. Signal functions are first class
entities in Yampa. Signals, however, are not: they only exist indirectly through
the notion of signal function.

In order to ensure that signal functions are executable, we require them to be
causal : The output of a signal function at time t is uniquely determined by the
input signal on the interval [0, t]. If a signal function is such that the output at
time t only depends on the input at the very same time instant t, it is called
stateless. Otherwise it is stateful.

2.2 Composing Signal Functions

Programming in Yampa consists of defining signal functions compositionally
using Yampa’s library of primitive signal functions and a set of combinators.
Yampa’s signal functions are an instance of the arrow framework proposed by
Hughes [7]. Some central arrow combinators are arr that lifts an ordinary func-
tion to a stateless signal function, composition ≫, parallel composition &&&, and
the fixed point combinator loop. In Yampa, they have the following types:

arr :: (a → b) → SF a b
(≫) :: SF a b → SF b c → SF a c
(&&&) :: SF a b → SF a c → SF a (b, c)
loop :: SF (a, c) (b, c) → SF a b

2 Physically, sound is varying pressure, and it might come about as a result of the
varying displacement of a vibrating string, or the varying voltage of an electronic
oscillator. Here we abstract from the physics by referring to the instantaneous value
of a sound wave as a “sample”, as is conventional in digital audio processing.
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f

(a) arr f

gf

(b) f ≫ g

f

g

(c) f &&& g

f

(d) loop f

Fig. 1. Basic signal function combinators

We can think of signals and signal functions using a simple flow chart analogy.
Line segments (or “wires”) represent signals, with arrowheads indicating the
direction of flow. Boxes represent signal functions, with one signal flowing into
the box’s input port and another signal flowing out of the box’s output port.
Figure 1 illustrates the aforementioned combinators using this analogy. Through
the use of these and related combinators, arbitrary signal function networks can
be expressed.

2.3 Arrow Syntax

Paterson’s arrow notation [11] simplifies writing Yampa programs as it allows
signal function networks to be described directly. In particular, the notation
effectively allows signals to be named, despite signals not being first class values.
In this syntax, an expression denoting a signal function has the form:

proc pat → do
pat1 ← sfexp1−≺ exp1
pat2 ← sfexp2−≺ exp2
. . .
patn ← sfexpn−≺ expn

returnA−≺ exp

Note that this is just syntactic sugar : the notation is translated into plain Haskell
using the arrow combinators.

The keyword proc is analogous to the λ in λ-expressions, pat and pat i are
patterns binding signal variables pointwise by matching on instantaneous signal
values, exp and expi are expressions defining instantaneous signal values, and
sfexpi are expressions denoting signal functions. The idea is that the signal being
defined pointwise by each expi is fed into the corresponding signal function
sfexpi, whose output is bound pointwise in pat i. The overall input to the signal
function denoted by the proc-expression is bound pointwise by pat , and its
output signal is defined pointwise by the expression exp. An optional keyword
rec allows recursive definitions (feedback loops).

For a concrete example, consider the following:

sf = proc (a, b) → do
(c1 , c2 ) ← sf1 &&& sf2 −≺ a
d ← sf3 ≪ sf4−≺ (c1 , b)
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rec
e ← sf5−≺ (c2 , d , e)

returnA−≺ (d , e)

Note the use of the tuple pattern for splitting sf ’s input into two “named signals”,
a and b. Also note the use of tuple expressions and patterns for pairing and
splitting signals in the body of the definition; for example, for splitting the
output from sf1 &&& sf2 . Also note how the arrow notation may be freely mixed
with the use of basic arrow combinators.

2.4 Events and Event Sources

To model discrete events, we introduce the Event type:

data Event a = NoEvent | Event a

A signal function whose output signal is of type Event T for some type T is
called an event source. The value carried by an event occurrence may be used
to convey information about the occurrence. The operator tag is often used to
associate such a value with an occurrence:

tag :: Event a → b → Event b

2.5 Switching

The structure of a Yampa system may evolve over time. These structural changes
are known as mode switches. This is accomplished through a family of switching
primitives that use events to trigger changes in the connectivity of a system. The
simplest such primitive is switch:

switch :: SF a (b,Event c) → (c → SF a b) → SF a b

The switch combinator switches from one subordinate signal function into an-
other when a switching event occurs. Its first argument is the signal function
that initially is active. It outputs a pair of signals. The first defines the overall
output while the initial signal function is active. The second signal carries the
event that will cause the switch to take place. Once the switching event occurs,
switch applies its second argument to the value tagged to the event and switches
into the resulting signal function.

Yampa also includes parallel switching constructs that maintain dynamic col-
lections of signal functions connected in parallel [10]. We will come back to this
when when we discuss how to construct a polyphonic synthesizer.

3 Synthesizer Basics

A modular synthesizer provides a number of sound-generating and sound-shaping
modules. By combining these in appropriate ways, various types of sounds can



Switched-On Yampa 287

f w(ft)
VCO

(a) VCO: f is the control voltage that de-
termines the oscillator frequency; w deter-
mines the waveform.

(b) Examples of VCO
waveforms.

Fig. 2. Voltage Controlled Oscillator (VCO)

be realized, be they sounds that resemble different acoustic instruments such
as string or brass, or completely new ones. Such a configuration of modules is
known as a patch. Non-modular synthesizers are structured in a similar way,
except that the the module configuration to a large extend is predetermined. In
this section we introduce some basic synthesizer modules, explain their purpose,
and implement some simple ones in Yampa.

3.1 Oscillators

An oscillator is what generates the sound in a synthesizer. As it is necessary to
vary the frequency in order to play music, some form of dynamic tuning function-
ality is needed. Traditionally, this was done by constructing electronic oscillators
whose fundamental frequency could be determined by a control voltage. Such a
circuit is known as a Voltage Controlled Oscillator (VCO): see Fig. 2(a).

There are many choices for the actual waveform of the oscillator, indicated
by the function w in Fig. 2(a). Typically w is some simple periodic function, like
the ones in Fig. 2(b): sine and sawtooth. However, w can also be a recording
of some sound, often an acoustic instrument. The latter kind of oscillator is the
basis of so called sample3-based or wavetable synthesizers.

As a first example of using Yampa for sound synthesis, let us implement a sim-
ple sine wave oscillator with dynamically controllable frequency. The equations
for a sine wave with fixed frequency f are simply

φ = 2πft (1)
s = sin(φ) (2)

However, we want to allow the frequency to vary over time. To obtain the angle
of rotation φ at a point in time t, we thus have to integrate the varying angular
frequency 2πf from 0 to t. We obtain the following equations:

φ = 2π

t∫

0

f(τ) dτ (3)

s = sin(φ) (4)
3 “Sample” is an overloaded term. Depending on context, it can refer either to the

sampled, instantaneous value of a signal, or to a recording of some sound. In a digital
setting, the latter is a sequence of samples in the first sense.
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Let us consider how to realize this. Our sine oscillator becomes a signal func-
tion with a control input and an audio output. We will use the type CV (for
Control Value) for the former, while the type of the latter is just Sample as
discussed in Sect. 2.1. Further, we want to parameterize an oscillator on its
nominal frequency. Thus, our oscillator will become a function that given the
desired nominal frequency f0 returns a signal function whose output oscillates
at a frequency f that can be adjusted around f0 through the control input:

oscSine :: Frequency → SF CV Sample

Following common synthesizer designs, we adopt the convention that increas-
ing the control value by one unit should double the frequency (up one octave),
and decreasing by one unit should halve the frequency (down one octave). If we
denote the time-varying control value by cv(t), we get

f(t) = f02cv(t) (5)

We can now define oscSine by transliterating equations 3, 4, and 5 into Yampa
code:

oscSine :: Frequency → SF CV Sample
oscSine f0 = proc cv → do

let f = f0 ∗ (2 ∗∗ cv)
phi ← integral−≺ 2 ∗ pi ∗ f
returnA−≺ sin phi

Note that time is implied, so unlike the equations above, signals are never ex-
plicitly indexed by time.

In traditional synthesizers, there is a second class of oscillators known as Low
Frequency Oscillators (LFO) which are used to generate time-varying control
signals. However, our oscSine works just as well at low frequencies. Let us use
two sine oscillators where one modulates the other to construct an oscillator
with a gentle vibrato:

constant 0 ≫ oscSine 5.0 ≫ arr (∗0.05) ≫ oscSine 440

Figure 3 illustrates this patch graphically.

0
oscSine 5.0 oscSine f*0.05

Fig. 3. Modulating an oscillator to obtain vibrato



Switched-On Yampa 289

3.2 Amplifiers

The next fundamental synthesizer module is the variable-gain amplifier. As the
gain traditionally was set by a control voltage, such a device is known as a
Voltage Controlled Amplifier (VCA). See Fig. 4. VCAs are used to dynamically
control the amplitude of audio signals or control signals; that is, multiplication
of two signals, where one often is a low-frequency control signal.

x(t) a·x(t)
VCA

a

Fig. 4. Voltage Controlled Amplifier (VCA)

An important application of VCAs is to shape the output from oscillators in
order to create musical notes with a definite beginning and end. The approach
used is to derive a two-level control signal from the controlling keyboard called
the gate signal. It is typically positive when a key is being pressed and 0 V
otherwise. By deriving a second control signal from the keyboard proportional
to which key is being pressed, feeding this to a VCO, feeding the output from
the VCO to the input of a VCA, and finally controlling the gain of the VCA by
the gate signal, we have obtained a very basic but usable modular synthesizer
patch with an organ-like character: see Fig. 5.

f
VCO VCA

g

Fig. 5. Basic synthesizer patch: f controls the frequency, g is the gate signal

Since the conceptual operation of a VCA is just multiplication of signals,
implementation in Yampa is, of course, entirely straightforward.

3.3 Envelope Generators

When acoustic instruments are played, it often takes a discernable amount of
time from starting playing a note until the played note has reached full volume.
This is known as the attack. Similarly, a note may linger for a while after the end
of the playing action. How the volume of a note evolves over time, its envelope,
is a very important characteristic of an instrument. In Sect. 3.2, we saw how a
patch with an organ-like envelope could be obtained by controlling a VCA with
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key on key off t
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(a) Classic ADSR envelope
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(b) Step function

Fig. 6. Envelope generation

the gate signal. To play notes with other types of envelopes, we need to control
the VCA with a control signal that mirrors the desired envelope.

An envelope generator is a circuit that is designed to allow a variety of musi-
cally useful envelopes to be generated. Figure 6(a) shows a classic ADSR enve-
lope. The first phase is the Attack (A). Immediately after a key has been pressed,
the control signal grows to its maximal value at a programmable rate. Once the
maximal value has been reached, the envelope generator enters the second phase,
Decay (D). Here, the control signal decreases until it reaches the sustain level.
The third phase is Sustain (S), and the envelope generator will remain there
until the key is released. It then enters the fourth phase, Release (R), where the
control signal goes to 0. If the key is released before the sustain phase has been
reached, the envelope generator will proceed directly to the release phase.

This kind of behaviour is easily programmable in Yampa. An envelope signal
with segments of predetermined lengths can be obtained by integrating a step
function like the one in Fig. 6(b). Progression to the release phase upon reception
of a note-off event is naturally implemented by means of switching from a signal
function that describes the initial part of the envelope to one that describes
the release part in response to such an event since the release of a key does
not happen at a point in time known a priori. Note how the hybrid capabilities
of Yampa now start to come in very handy: envelope generation involves both
smoothly evolving segments and discrete switching between such segments.

To illustrate, we sketch the implementation of a generalized envelope generator
with the following signature:

envGen :: CV → [(Time ,CV )] → Maybe Int
→ SF (Event ()) (CV ,Event ())

The first argument gives the start level of the desired envelope control signal.
Then follows a list of time and control-value pairs. Each defines a target control
level and how long it should take to get there from the previous level. The
third argument specifies the number of the segment before which the sustain
phase should be inserted, if any. The input to the resulting signal function is
the note-off event that causes the envelope generator to go from the sustain
phase to the following release segment(s). The output is a pair of signals: the
generated envelope control signal and an event indicating the completion of the
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last release segment. This event will often occur significantly after the note-off
event and is useful for indicating when a sound-generating signal function should
be terminated.

Let us first consider a signal function to generate an envelope with a prede-
termined shape:

envGenAux :: CV → [(Time ,CV )] → SF a CV
envGenAux l0 tls = afterEach trs ≫ hold r0 ≫ integral ≫ arr (+l0 )

where
(r0 , trs) = toRates l0 tls

The auxiliary function toRates converts a list of time and level pairs to a list
of time and rate pairs. Given such a list of times and rates, the signal function
afterEach generates a sequence of events at the specified points in time. These are
passed through the signal function hold that converts a sequence of events, i.e.
a discrete-time signal, to a continuous-time signal. The result is a step function
like the one shown in Fig. 6(b). By integrating this, and adding the specified
start level, we obtain an envelope signal of the specified shape.

We can now implement the signal function envGen. In the case that no sustain
segment is desired, this is just a matter pairing envGenAux with an event source
that generates an event when the final segment of the specified envelope has been
completed. The time for this event is obtained by summing the durations of the
individual segments:

envGen l0 tls Nothing = envGenAux l0 tls &&& after (sum (map fst tls)) ()

If a sustain segment is desired, the list of time and level pairs is split at the
indicated segment, and each part is used to generate a fixed-shape envelope
using envGenAux . Yampa’s switch primitive is then employed to arrange the
transition from the initial part of the envelope to the release part upon reception
of a note-off event:

envGen l0 tls (Just n) =
switch (proc noteoff → do

l ← envGenAux l0 tls1−≺ ()
returnA−≺ ((l ,noEvent),noteoff ‘tag ‘ l))

(λl → envGenAux l tls2 &&& after (sum (map fst tls2 )) ())
where

(tls1 , tls2 ) = splitAt n tls

Note how the level of the generated envelope signal at the time of the note-off
event is sampled and attached to the switch event (the construction noteoff ‘tag ‘
l). This level determines the initial level of the release part of the envelope to
avoid any discontinuity in the generated envelope signal.

3.4 A Simple Modular Synthesizer Patch

Let us finish this synthesizer introduction with a slightly larger example that
combines most of the modules we have encountered so far. Our goal is a
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0

*

oscSine f*0.05

envBell

oscSine 5.0

Fig. 7. Vibrato and bell-like envelope

synthesizer patch that plays a note with vibrato and a bell-like envelope (fast
attack, gradual decay) in response to events carrying a MIDI note number; i.e.,
note-on events.

Let us start with the basic patch. It is a function that when applied to a note
number will generate a signal function that plays the desired note once:

playNote :: NoteNumber → SF a Sample
playNote n = proc → do

v ← oscSine 5.0 −≺ 0.0
s ← oscSine (toFreq n)−≺ 0.05 ∗ v
(e, ) ← envBell −≺ noEvent
returnA−≺ e ∗ s

envBell = envGen 0.0 [(0.1, 1.0), (1.5, 0.0)] Nothing

Figure 7 shows a graphical representation of playNotes .
The auxiliary function toFreq converts from MIDI note numbers to frequency,

assuming equal temperament:

toFreq :: NoteNumber → Frequency
toFreq n = 440 ∗ (2 ∗∗ (((fromIntegral n) − 69.0) / 12.0))

Next we need to arrange that to switch into an instance of playNote whenever
an event carrying a note number is received:

playNotes :: SF (Event NoteNumber) Sample
playNotes = switch (constant 0.0&&& identity)

playNotesRec
where

playNotesRec n =
switch (playNote n &&& notYet) playNotesRec

The idea here is to start with a signal function that generates a constant 0 audio
signal. As soon as a first event is received, we switch into playNotesRec. This
plays the note once. Meanwhile, we keep watching the input for note-on events
(except at time 0, when notYet blocks any event as playNotesRec otherwise
would keep switching on the event that started it), and as soon as an event
is received we switch again, recursively, into playNotesRec, thus initiating the
playing of the next note. And so on.
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4 A SoundFont-Based Monophonic Synthesizer

The SoundFont format is a standardized way to describe musical instruments. It
is a sample-based format, i.e. based on short recordings of actual instruments, but
it also provides true synthesizer capabilities through a network of interconnected
modules of the kind described in Sect. 3. In this section, we sketch how to turn
a SoundFont description into a monophonic synthesizer using Yampa.

4.1 Implementing a Sample-Based Oscillator

We first turn our attention to implementing an oscillator that uses recorded
waveforms or samples. A SoundFont file contains many individual samples (often
megabytes of data), each a recording of an instrument playing some particular
note. Along with the actual sample data there is information about each sample,
including the sampling frequency, the fundamental (or native) frequency of the
recorded note, and loop points. The latter defines a region of the sample that
will be repeated to allow notes to be sustained. Thus samples of short duration
can be used to play long notes.

In our implementation, data for all the samples is stored in a single array:

type SampleData = UArray SamplePointIndex Sample
type SamplePointIndex = Word32

Note that the type Sample here refers to an instantaneous sample value, as
opposed to an entire recording. Information about individual samples are stored
in records of type SampleInfo. In addition to the information already mentioned,
these also store the start and end index for each sample.

A sample-playing oscillator can now be defined in much the same way as the
sine oscillator from Sect. 3.1, the main difference being that the periodic function
now is given by table lookup and linear interpolation:

oscSmplAux :: Frequency → SampleData → SampleInfo
→ SF CV (Sample,SamplePointIndex )

oscSmplAux freq sdta sinf = proc cv → do
phi ← integral−≺ freq / (smplFreq sinf ) ∗ (2 ∗∗ cv )
let (n, f ) = properFraction (phi ∗ smplRate sinf )

p1 = pos n
p2 = pos (n + 1)
s1 = sdta ! p1
s2 = sdta ! p2

returnA−≺ (s1 + f ∗ (s2 − s1 ), p2 )
where

pos n = ...

The local function pos converts a sample number to an index by “wrapping
around” in the loop region as necessary. In addition to the instantaneous sample
value, the oscillator also outputs the current sample index. This enables a smooth
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Fig. 8. The SoundFont synthesis model

transition to the release segment of a sample (after the loop region) when a note-
off event is received.

Finally, we can define a complete oscillator that takes care of the transition
to the release segment on a note-off event through switching from oscSmplAux
to an oscillator that plays the release segment. We only give the type signature:

oscSmpl :: Frequency → SampleData → SampleInfo
→ SF (CV ,Event ()) Sample.

4.2 Combining the Pieces

Given the sample-based oscillator, a complete SoundFont synthesizer can be ob-
tained by wiring together the appropriate modules according to the SoundFont
synthesis model shown in Fig. 8, just like the simple monophonic synthesizer was
constructed in Sect. 3.4. The SoundFont model does include filters. While not con-
sidered in this paper, filters can easily be realized using Yampa’s unit delays [12].

In our case, we also choose to do the MIDI processing at this level. Each
monophonic synthesizer is instantiated to play a particular note at a particular
MIDI channel at some particular strength (velocity). The synthesizer instance
continuously monitors further MIDI events in order to identify those relevant to
it, including note-off events to switch to the release phase and any articulation
messages like pitch bend. This leads to the following type signature, where the
output event indicates that the release phase has been completed and the playing
of a note thus is complete:

type MonoSynth = Channel → NoteNumber → Velocity
→ SF MidiEvent (Sample,Event ()).

5 A Polyphonic Synthesizer

In this section, we consider how to leverage what we have seen so far in order to
construct a polyphonic synthesizer capable of playing standard MIDI files.
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5.1 Dynamic Synthesizer Instantiation

The central idea is to instantiate a monophonic synthesizer in response to every
note-on event, and then run it in parallel with any other active synthesizer
instances until the end of the played note. Yampa’s parallel switching construct
[10] is what enables this dynamic instantiation:

pSwitchB :: Functor col ⇒
col (SF a b) -- Initial signal func. collection
→ SF (a, col b) (Event c) -- Event source for switching
→ (col (SF a b) → c → SF a (col b)) -- Signal function to switch into
→ SF a (col b)

The combinator pSwitchB is similar to switch described in Sect. 2.5, except that

– a collection of signal functions are run in parallel
– a separate signal function is used to generate the switching event
– the function computing the signal function to switch into receives the col-

lection of subordinate signal functions as an extra argument.

The latter allows signal functions to be independently added to or removed from
a collection in response to note-on and monosynth termination events, while
preserving the state of all other signal functions in the collection.

The overall structure of the polyphonic synthesizer is shown in Fig. 9. The
signal function triggerChange generates a switching event when reconfiguration
is necessary (i.e. when adding or removing monosynth instances). The func-
tion performChange computes the new collection of monosynth instances after
a switch. The output signal from the parallel switch is a collection of samples
at each point in time, one for every running monosynth instance. This can be

Even t  ( )

S a m p l e

S a m p l e

S a m p l e

m i x e r

t r i g g e r C h a n g e

p e r f o r m C h a n g e

m o n o S y n t h

m o n o S y n t h

m o n o S y n t h

M i d i E v e n t

S y n t h S t a t e

( [ N o t e I d ] ,  [ M o n o S y n t h I d ] ,  S y n t h S t a t e )

( S a m p l e ,  E v e n t ( ) )

( S a m p l e ,  E v e n t ( ) )

( S a m p l e ,  E v e n t ( ) )

M i d i E v e n t

t r a c k  e n d  d e t e c t o r

M i d i E v e n t

S a m p l e

Fig. 9. Overall structure of the polyphonic synthesizer
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seen as a collection of audio signals. The signal function mixer sums all these
samples into a single audio signal.

5.2 Performance

Despite being implemented in a very straightforward (almost naive) way, the
performance of the polyphonic synthesizer is reasonable. For example, using
modern hardware (1.8 GHz Intel dual core) and compiling using GHC, a moder-
ately complex score like Mozart’s Rondo Alla Turca, can be rendered as fast as
it plays at 22 kHz sampling rate using a SoundFont4 piano definition. However,
an audio buffer is needed between the synthesizer process and the audio player
to guard against garbage collection pauses and the like: thus, the latency is high.

6 Related Work

Haskore [5] is a language for programming music embedded in Haskell. Its fun-
damental design resembles traditional musical scores, but as it is an embedding
in Haskell, Haskell can be used for “meta programming”. Haskore itself does
not deal with defining instruments, but see the discussion of HasSound below.
Describing musical scores was not our focus in this work. Haskore could clearly
be used to that end, being a Haskell embedding just like Yampa. Since our
framework provides an interface to MIDI and MIDI files, any application capa-
ble of generating MIDI could in principle be used as a frontend. However, one
could also explore implementing “score-construction” abstraction directly in the
Yampa framework. An interesting aspect of that would be that there is no firm
boundary between the musical score and the sounds used to perform it. One
could also imagine interactive compositions, as Yampa is a reactive program-
ming language.

Csound is a domain-specific language for programming sound and musical
scores [14]. Fundamentally, it is a modular synthesizer, enabling the user to
connect predefined modules in any conceivable manner. It is possible to extend
Csound with new modules, but these have to be programmed in the underlying
implementation language: C. Thanks to its extensibility, Csound now provides a
vast array of sound generating and sound shaping modules. Obviously, what we
have done in this paper does not come close to this level of maturity. However, we
do claim that our hybrid setting provides a lot of flexibility in that it both allows
the user to implement basic signal generation and processing algorithms as well
as higher-level discrete aspects in a single framework, with no hard boundaries
between the levels.

HasSound [6] is a domain-specific language embedded in Haskell for defining
instruments. It is actually a high-level frontend to Csound: HasSound definitions
are compiled to Csound instrument specifications. Therein lies both HasSound’s
strength and weakness. On the one hand, HasSound readily provides access to
lots of very sophisticated facilities from Csound. On the other hand, the end
4 http://www.sf2midi.com/index.php?page=sdet&id=8565
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result is ultimately a static Csound instrument definition: one cannot do anything
in HasSound that cannot (at least in principle) be done directly in Csound. The
approach taken in this paper is, in principle, more flexible.

Low-level audio processing and sound-generation in Haskell has also been done
earlier. For example, Thielemann [13] develops an audio-processing framework
based on representing signals as co-recursively defined streams. However, the
focus is on basic signal processing, not on synthesis applications.

Karczmarczuk [8] presents a framework with goals similar to ours using a
stream-based signal representation. Karczmarczuk focuses on musically relevant
algorithms and present a number of concise realizations of physical instrument
simulations, including the Karplus-Strong model of a plucked string [9], reverb,
and filters. He also presents an efficient, delay-based sine oscillator, and does
consider how to modulate its frequency by another signal to create vibrato.

However, Karczmarczuk’s framework, as far as it was developed in the paper,
lacks the higher-level, discrete facilities of Yampa, and the paper does not con-
sider how to actually go about programming the logic of playing notes, adding
polyphony5, etc. Also, the arrow framework offers a very direct and intuitive
way to combine synthesizer modules: we dare say that someone familiar with
programming modular synthesizers would feel rather at home in the Yampa set-
ting, at least as long as predefined modules are provided. The correspondence is
less direct in Karczmarczuk’s framework as it stands.

7 Conclusions

FRP and Yampa address application domains that have not been traditionally
associated with pure declarative programming. For example, in earlier work we
have applied Yampa to video game implementation [2], and others have since
taken those ideas much further [1]. In this paper, we have applied Yampa to
another domain where pure declarative programming normally is not consid-
ered, modular synthesis, arguing that the hybrid aspects of Yampa provides a
particularly good fit in that we can handle both low-level signal processing and
higher-level discrete aspects, including running many synthesizer instances in
parallel to handle polyphony. We saw that Yampa’s parallel, collection-based
switch construct [10] was instrumental for achieving the latter. We also think
that being able to do all of this seamlessly in a single framework opens up in-
teresting creative possibilities.

As it stands, our framework is mainly a proof of concept. Nevertheless, we feel
that the Yampa style of programming is immediately useful in an educational
context as it makes it possible to implement interesting examples from somewhat
unexpected domains in an intuitive, concise, and elegant manner, thus providing
an incentive to learn pure declarative programming. We note that others have
had similar experiences with related approaches [3].
5 Summing a fixed number of streams to play more than one note is, of course, straight-

forward. But polyphonic performance requires independent starting and stopping of
sound sources.
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