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Abstract: This paper describeBraincurry, a domain-specific, declarative lan-
guage for describing and analysing experiments in neusosel Braincurry has
three goals: to allow experiments and data analysis to berides in a way that is
sufficiently abstract to serve agafinition to facilitate carrying out experiments
by executingsuch descriptions; and to be directlgable by end userseurosci-
entists. We adopted an experimental and incremental apiptoathe design and
implementation of Braincurry, focusing on the neurophimigcal response to vi-
sual stimuli in locusts as a test case. Braincurry is culyeniplemented as an
embedding in Haskell, which is a highly effective tool foistkind of exploratory
language design. The declarative nature of Haskell andeiibfe syntax fitted
with our goals. We discuss the requirements for a realiatigliage meeting the
above goals, describe the current Braincurry design and ihoway be gener-
alised, and explain how some particularly challenging mead-time requirements
were met.

1.1 INTRODUCTION

Repeatable experimerdse the very core of empirical science. Not until scientists
can repeat an experiment in a controlled manner can thisriexget be used to
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properly test a hypothesis. And not until an experiment candpeated indepen-
dently byother scientists, permitting them to check the premises of thegxp
ment, are the outcomes of the experiment considered by thetdic community
to be proper evidence for or against various explanatory etsodExperiments
must thus be repeated, potentially many times, as the sucatescan be very low
or the outcome variable.

This raises two issues:

e How can an experiment be described in sufficient detail toanitadepeatable?

e To what extent can an experiment be mechanised to reduailayi in ex-
perimental conditions and to save work?

Traditionally, these issues are addressed independgntbfished experimental
results are accompanied by a detailed description of thererpnt in natural lan-
guage, and experimental paradigms are simplified and pgeqamomed to permit
consistency. In this case the description is separate fnenaxperiment itself.

If a singledescription could addredmthissues, at least to some extent, this
would bring a number of advantages. For example:

e A description that is part of a working experimental setuprgutees that the
description is complete and precise.

e There may be a reduced need for auxiliary experts such asgrogers as
the experiment description developed by researchers wals@ilserve as the
program controlling the experiment.

o Ultimately, this could lead to a shared, precise languagddscribing exper-
iments in a particular area.

Braincurryis being developed to explore the feasibility of an experitre-
scription language of the kind outlined above for integmatieuroscience. This
is a challenging task. For example, an experiment couldwevshowing a visual
stimulus to a living animal, recording electrical activitpm neurons, and mea-
suring motor behaviour, all at the same time; see FigureAindther experiment
might involve direct patterned electrical stimulation afeuron while monitoring
the responses of several other neurons recorded opticsiligwa CCD camera
mounted on a microscope. Such experimental complexity amidhility neces-
sitates the configuration and synchronisation of a potiyntarge set of hetero-
geneous devices, as well as the generation of stimuli aratdeg of responses
subject to hard real-time constraints.

Experiments may be performed to distinguish between comgpetodels or
to estimate free parameters in a given model. Where an é@xptimputational
model exists, it would be advantageous to be able to directigpare recorded
responses to simulations. For an experiment descriptigguiage, this means that
a description should, where possible, be executable bottatanacquisition hard-
ware recording from living neural tissue, and on appropriabdels.
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FIGURE 1.1. Top left, the adult desert locustSchistocerca gregaria with its central
nervous system (top right; modified from [1]) consisting of he brain and a series
of ganglia with nerves (“connectives”) running between then. We record from the
descending contralateral movement detector (DCMD) neurorusing a pair of silver
hook electrodes wrapped around one of the connectives. Thetiom panels illustrate
the result of running an experiment using Braincurry. Left, the visual stimulus is
an expanding black square, giving the impression of a cube gpoaching on collision
course with constant velocity. Right, the recording from the hook electrodes shows
electrical responses from several distinct neurons, of whh the largest amplitude is
the DCMD. On the same timescale below, two calculated paraners of the visual
stimulus: apparent distance and the observed angle formedybthe visual stimulus on
the retina.

Itis not clear what an experiment description language lshiook like to best
serve the diverse needs of neuroscientists. Conventiotiadl description of ex-
periments is limited to configuration of pre-written soft@ahrough a graphical
user interface, or by direct editing of configuration fileigapproach is limiting
because any fundamentally new need has to be addressed Hyingthe under-
lying software. For flexibility, a proper language is need&dt how to make such
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a language flexible enough for general use without makirgpittomplicated for
domain experts who may not possess conventional progragskilis?

In our experimental and incremental approach to the dedi@naincurry, the
initial version as presented here is focused on experimanigsect vision [4].
This allows us to test the feasibility of the idea of a langriiige Braincurry and to
more easily experiment with various language designs. iBoetid, Braincurry is
at present realised as an embedding in the functional layegdaskell [7]. Using
a functional language allows us to use composition and atigtn to control
the complexity of experiment descriptions, and has thé&rradvantage that the
functional program gives a concise, declarative desaoniptif what has been done
in the experiment in line with our overall goals introducédxbeae.

The specific contributions of the present paper are as fallow

¢ \We develop general requirements for an experiment degmmifgnguage for
integrative neuroscience.

¢ We outline a flexible implementation of such a language basesbmposable
interpreters that has proved to be sufficient for our pressperiments on
insect vision.

e Our particular research on insect vision required a highttghput and pre-
dictable system for visual animations, typifying the kinfihard real-time
signal generation problem common in the application dom&ran example
of how to address this kind of requirement, we have impleegathard real-
time 3D analogue of the Pan language [2]. We outline thisémantation and
describe how it fits in with the rest of our framework.

e We sketch how the ideas presented in this paper could bededéda a general-
purpose experiment description language for integratéugroscience.

1.2 REQUIREMENTS

Currently, in the field of neuroscience, experiments aredoeoited with varying
degrees of automation. One common approach is to use onanfe of systems
that are specifically intended for automating certain aspetthe experiment,
such as stimulus generation. These systems typically geavigraphical user in-
terface allowing the experimenter to define protocols witndomain restricted to
the intended target application. Alternatively, this maydone by amending some
kind of configuration file using a text editor. Examples ird#usystems like Axo-
GrapHf, NeuroMati®, or the sequence editor in SpikeBpike2 does in addition
provide a simple programming language).

A key advantage of this approach is the relatively shallaavieng curve: sci-
entists without any programming background, includingguigraduate students

4htt p: / / axogr aph. com
Shtt p: // www. neur omat i c. t hi nkr andom coml
6ht t p: / / www. ced. co. uk/ pru. sht ni
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who are only beginning to learn about neuroscience, can easity design and
conduct experiments. The drawback is the limited flexigilithile some of these
systems can be extended, this does require programminggtewdr language the
system is implemented in.

For increased flexibility, an experiment can be programmeah imperative
language with bindings to the data acquisition and stinedevices. This defi-
nition will delineate the steps necessary in preparing anding the experiments.
Common choices here are to use Matlab, Spike2 or Igof. Ffowever, the re-
sult is usually a monolithic application, fit for only a siegburpose and hard
if not impossible to reuse as@mponenbf other experiments. Moreover, the
high-level description of the experiment will be deeplydhdh behind imperative
programming constructs, making it impossible to reflectt@dxperiment in any
meaningful way.

Ideally, a system for supporting experiments in neurosiareeds to be both
flexible to allow experimenters to do what they need to do, dadarative to
lower the learning curve and allow for composition and rdftet The above
considerations suggest the following principal requiratador Braincurry:

Synchronised analog and digital data acquisition and output: Typical integrative
neuroscience experiments require accurately synchrémjsaeration of stimuli
and recording of responses. In our own experiments on le¢Ekgjure 1.1), these
experiments involve at the very least simultaneous prasientof visual stimuli
and recording of the electrical responses of cells, folldg signal detection
and sorting. This means that Braincurry must be able to meet teal-time con-
straints if it is to be a practically useful tool.

Composable experiment descriptions: Experiment descriptions should loem-
posable given a descriptiom; with inputi; and outpub;, and another descrip-
tion d, with inputi, and outputo,, it should, using arexperiment composition
operator®, be possible to form a composite experimeén d, with a combined
input ofi; andi,, and a combined output of ando,. This allows for the develop-
ment of libraries of “small experiments” that can be combline describe more
complex experiments. The experiment description givesaralecord of what
has been done on each experiment. (Of course, some conolidxperiments
may not make sense. This must be detected and reported.)

Onelanguagefor simulationsand experiments: Two common modes of research
in integrative neuroscience are of particular interestdn u
e derivation of a computational model from experimental data

e investigation of whether such a model can accurately ptesfiperimental
observations.

In both of these cases, we are trying to match the responseoagytstems (one,
a living organism; the other, a numerical simulation) to amomon set of inputs.
This task is greatly facilitated if these inputs are desailin the same way for

"htt p: // www. wavemet ri cs. com
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both systems. Thus, we require that the experiment desnripain be executed
both onphysicaldata acquisition systems interfaced¢al neural tissue, and on
arbitrary simulationsof such systems. Apart from the clarity that such a unified
approach gives in terms of comparing experimental datamvdtels, it also opens
up exciting possibilities that would be hard to achieve vaéiparate experiment
description languages. For example, it may be possibletmnzatically estimate
free parameters of a model to fit given experimental data,rmoay be possible to
automate experiments to search for a difference with a givedel.
Accommodation of diversity: Neuroscience is a highly interdisciplinary field where
new experimental possibilities constantly emerge. At tme time, no one lab
can embrace all of these experimental possibilities. Aalidata acquisition sys-
tem based on experiment descriptions thus needs to be vrilyiéle

Structured, practical storage: We would like to store the results of running ex-
periment descriptionsr({ vivo or in silico) so that they can be easily retrieved and
indexed. The experiment description itself and as muchvagleinformation as
possible should be stored along with the raw data. We maylikisdhe results
of analyses to be stored in a similar way to raw data, whilartyeindicating
that it was obtained after the experiment. The data shoulétoieved by posing
guestions that are as natural as possible to a neurostientis

1.3 ARCHITECTURE OF BRAINCURRY

To accommodate the many different techniques used in erpatal neuroscience,
we took a minimal approach in designing Braincurry. As alegeploying Brain-
curry in a new setting requires the addition of quite a bitwfdtionality to create
a working data acquisition and simulation system. Howethexse definitions do
not have to be written on a blank slate: the Braincurry immatation provides
considerable conceptual and concrete infrastructureerfahm of combinators
for composable interpreterand aschedulerthat provides a small core neces-
sary for coordinating the experiments. In practice, a grotipsers with similar
requirements would define a part of their own descriptiorglaage and one or
more interpreters to link the final, customised experimesidiption language to
hardware or numerical solvers.

As a first step in customising Braincurry, the user definesttia¢ option
datatype This is a custom datatype for which variants denote indialdcompo-
nents of atrial; i.e., a finite period of time with fixed configuration durindnigh
observation takes place. For instance, for our experimentocusts, we have
defined an algebraic datatyhecustOptionsvith (parametrised) constructors for
playing an animation, playing sounds, and recording froneksetrode. Values
of this type convey information about a particular aspectdfial such that a
list of trial options completely specifies the lab-specifspects of a trial in an
experiment. Figure 1.2 shows the Braincurry code spedgjfyire experiment of
Figure 1.1, including the specification of the animation trellist of trial options.
The animation part of this code is explained in detail in Becl.5.
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black=Col000

centreCube & Translate(Vec(—I /2) (—1/2) 0)
(Box(Veclll))

loomAnim lov=
let] =0.298
v=1/(lovx2)
in
[LetN" di st ance" (minN (v (Time—5)) (—0.17)),
MkShap& WithColour black
$Translate(VecO 0 (VarN " di st ance"))
$centreCube |

]
loomExperiment concatbdo
ivl — [15,30]
lov — [0.01,0.02]
take10 (repeatinterval ivl
[PlayAnimationloomAnim loy,
RecordEQ)

FIGURE 1.2. Complete Braincurry specification for an experiment involving the
generation of a visual stimulus that gives the impression od cube-shaped object ap-
proaching with a length-to-velocity ratio lov (in seconds). The experiment description
loomExperimenspecifies that the experiment should be repeated 10 times fowo dif-
ferent values oflov and with two different intervals ivl (in seconds) between repeti-
tions, and that the neural responses should be recorded conently ( RecordEG.

The second step in customising Braincurry is to create oneane appa-
ratuses interpreters that execute experiments or simulationsddfby the trial
options datatype. We stress that the value of the trial optbatatype does not
have any inherent meaning in Braincurry until the user alstings an apparatus
that consumes a trial description and produces the redultsiaing such a trial.

As discussed in section 1.2, one of our goals is that it shbalgossible to
run an experiment descriptidmoth on a physical experimental setup and as a
simulation. One way to achieve this would be to defiwe interpreters for the
sameoptions type. However, this solution is problematic in asietwo ways:

e Writing an interpreter is not an easy task and is fundambnétlodds with
Braincurry’s stated aim of being accessible to scientigth little program-
ming experience.

e Two interpreters, even when written for the same languaggdo type), may
have different structure and present different interfaces

We have addressed these issues by providing the facilitisshposéhe nec-
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essary interpreters, rather than building them from sbraftbese facilities consist
of a series obase interpretersindependent of the trial option type, for carrying
out experiments on data acquisition hardware or in simdlaieegrate-and-fire
neurons [6], and of the combinators necessamualifythese interpreters to re-
spond to the values of the trial option type. Although conipgan interpreter in
this way still requires some knowledge of Haskell, such assyntax for func-
tion application, it is much more straightforward than stay from scratch. The
resulting interpreters could likely also be shared betwaba using similar tech-
nigues. Furthermore, the approach ensures a uniform aaefbr our interpreters
such that these can be used interchangeably.

1.4 IMPLEMENTATION OF BRAINCURRY

An apparatus is thus an options interpreter for either d@rpamtal setups or sim-
ulations. How shall they be represented? The chosen datdste must be para-
metric on the trial options datatype. In order to accommedtiferent kinds of
side effects of experiments (that must interact with the weald) and simula-
tions (that may not have any side effects at all), it shoust dde parametric on
the monad in which functions are run. In addition, the apparanust present a
uniform interface to the experiment scheduler. We chosepoasent apparatuses
as a type-parametrised module [11]; i.e., a record of femsti(representing the
uniform interface) parametric on a monad and the trial opgtidatatype. Each
field is a monadic action corresponding tstapinvolved in running a trial. The
step division is quite fine-grained so as to be appropriatthfoconfiguration and
operation of a broad range of data acquisition devices:

data Apparatus m 6= Apparatug
initialise  ::mJ(),

newTrial ::[o] — mJ(),
prepare  :[o] — m(),
wait :: Double— m (),
run ::[0] — m[(String AnyResulf],
finaliseTrial:: m (),
finalise xm()
}

In more detail, the meaning of each step is as follows. The isi#alise is
run at the beginning of a long experiment consisting of maiayst It is typically
be used to initialise screens and to open devices. Corrdamgly, finalisecan be
used to close these devices when the experiment is overehiaiming five steps
are invoked once for each trial in the order in which they &éted:

e newTrial and prepareset up any devices and prepare them for an imminent
triggering signal (the exact specification of which is degemt on the device)

e wait counts down a specified number of seconds to the trigger thiastart
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the trial (although, for simulation purposes, an apparaars customise this
step to avoid spending real time waiting)

e run runs over the duration of the trial and returns outcomes efitial

¢ finaliseTrialcleans up after a trial; for example, it may free memory alted
for storing the trial results.

Note that the complete list of trial options are passed tt step where needed.

Some apparatuses may not require all of these steps. As ravapses are
defined from a default record where all fields are defined asitingty action (i.e.
return(), or, in the case ofun, return[]), only steps that are required need to be
defined.

An individual apparatus is thus a value that can be maniedlahd recon-
figured at run-time. To facilitate this, we have written aisgrof combinators
for generic modification of apparatuses. For example, taezecombinators for
insertion of monadic actions before or after a specific dikp the following:

beforeRun: Monad m=-
([o] = m()) — Apparatus m 6— Apparatus m o
beforeRun brun apg- app{ run = brun>— run app}

where

(>—=)::Monadm=(a—m¢ — (a—mb —a—mb
f—g=Ax—fx>gx

The composition of an apparatus begins with a base appafgttissis pro-
vided as part of the initial Braincurry installation and gnastic about the mean-
ing of the trial options datatype. For instance, we provideaae apparatus for
controlling data acquisition devices through the Corféitirary:

type ComediApparatusM- StateT ComediState IO

comediApparatusDouble— Apparatus ComediApparatusM o
comediApparatus acquisitionFreqinHz
Apparatug

run = (Aopts— do
hasOut— anyScheduledOutputs
when hasOutliftlO $do
forklO start. contoutput
return())
liftlO $start. contacq
getAllWavey

.

8ht t p: / / www. conedi . org
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Note how a Comedi-specific monad is constructed by addingatde state com-
ponent to the IO monad. The step operations are here exesdphifth therun
step, the definition of which is rather typical: if there aoheduled outputs, like
sound, a thread is spawned whose task it is to keep the ouiffetbassociated
with the outputs filled. Then data acquisition is initiated.

A base apparatus is supplied as a Haskell module, containirsdue of the
apparatus type parametric on the trial options datatypeyedlsas combinators
for modifying this apparatus. These combinators are ingera tie together this
apparatus with the options datatype.

The final apparatus is thus formed by layering modifying corators around
a base apparatus, instantiated with a particular triabogttype. For example:

demdRig: Apparatus ComediApparatusM LocustOptions
demdRig=

prepareMap dcmdRigPrepate

triggerWith dcmdTrigger  $

comediApparatug0000 {-Hz -}

In configuring an apparatus using specific values of the optéaatatype, we
found it helpful to write a combinator that iterates over gx@eriment description
(presented as a list of trial options), thus allowing us ttigga-match and add for
instance a preparatory action for specific trial options:

dcmdRigPrepare LocustOptions— ComediApparatusi()
dcmdRigPrepare RecordEE
readWave silverElectrodeec Vol t age"

Ultimately, the apparatus is passed to the scheduler thesmonsible for co-
ordinating the experiment. The run method returns a catiaadf named results
for each trial, wrapped in the existential data construdioyResult

data AnyResult=Vr . Result r= AnyResr

The Resultclass details how to store and retrieve data types into dioakl
database (see Section 1.6).

These wrapped data types are collected by the schedulee astjuence of
trials is executed. No storage or display is performed aatarally because the
person conducting the experiment might want to do diffetairtgs with these
data depending on the purpose of the experiment. For inst#mey might create a
log file, display the results on screen, or store the resulteimplete form for later
analysis. To give the experimenter a choice of how to proresdts and to keep
the design as modular as possible, we have parametrisechteédider on a results
handler, i.e. an action that consumes the named resultsaVéedhso implemented
an operator—» that composes two results handlers into a new handler:

(»>):Monadm= (a—b—m¢g—(a—b—-md —a—b—md
f»»g=Aab—fab>gab
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1.5 VISUAL STIMULATION

Many neuroscience experiments investigating vision negthie display of shapes
of differing colours, contrasts or textures that move or egpand disappear.
Such stimuli must be presented with a sufficiently high stnedresh rate and
no dropped frames to ensure a natural neural response. &onHs, insect vision
has high temporal resolution necessitating a screen tefe¢s above 100 Hz [5].

To address the need to generate visual stimuli, we includrmlaoption de-
scribing animations. Animations are represented as aifumétom time to a list
of shapes (in the style of Functional Reactive Animatiora(i{3]), where each
shape is composed of arbitrarily scaled or rotated geomgtinitives.

To turn such descriptions into a live display on a monitog, #pparatus con-
trolling the experiment is extended with a mechanism takerg of the rendering.
However, it is very difficult to fulfil the requirement of a mekh rate of at least
100 Hz in a garbage-collected language like Haskell as tHeage collector can
add unpredictable delays in execufloBue to these hard real-time requirements,
we do not use Haskell functions directly to represent thegaations. Instead the
user constructs a symbolic expression, effectively\batract Syntax Tre@AST),
detailing the shapes to be rendered and how they evolveiowerThis expression
is thencompiledinto C code for execution in a different process. The impleme
tation of our animation component is thus similar to the laaqge Pan [2], but our
language is much simpler.

Besides shapes, our language provides primitive valuésplas, expressions
over these, a conditional construct, and a variable bindieghanism. The lan-
guage does not itself contain any mechanism for functiobstraction, relying
instead on the host language to provide this facility. Thegyof the language are
restricted to scalars and vectors of floating point numt&os)eans, and colours.
Everything is simply typed to facilitate compilation into Roreover, the binding
mechanism is limited to scalar numbers for the same readenspecial numeric
expressiofimegives the number of seconds since the trial start. This ikelgeo
describing animations as time-varying shapes, or, thamkset conditional, even
more drastic changes.

As an example, consider the following code fragment fronukeégL.2:

LetN" di st ance" (minN (v« (Time—5)) (—0.17))

Here, theN suffix indicates we are working on scalar numbers. [&#N construct
binds a variablat the C levefor use later in the program. In this case, the variable
di st ance is bound to a time-varying value that represents the disthetwveen
the object and the observer in real-world coordinates. Noédall expressions

in our animation language potentially yield values thatyvaver time, i.e. they
really represent signals.

9Particularimplementationsf garbage-collected language may provide some hard
real-time guarantees, but the problem remains unless tigeidaespecificatiorprovides
such guarantees (and all implementations conform).
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Shapes are composed in a functional manner starting frommegegi primi-
tives. The latter can be translated or rotated as necesgargdiors specified in
real-world 3D coordinates relative to an observer at a knlmegation viewing the
display. For instance, consider the following fragmengiadrom Figure 1.2:

MkShap&WithColour black
$Translate(VecO 0 (VarN " di st ance"))
$centreCube |

Here, a time-varying shape is made up from a centred cubegiytrfinslating it
by a time-varying vector and then colouring it black.

Finally, an animation is a list of declarations that introdwnew variables or
create shapes (as above). The funclimomAnimin Figure 1.2 is an example
of an animation of a looming object. As we have already sdw®m,object is a
cube with constant dimensions that is translated with retdpehe viewer. As the
subject-object distance decreases linearly with timeijlitappear as if the object
is approaching at a constant speed, until it intersectsoibegibn of the physical
screen surface (in our case, 0.17 m from the observer). Nmtethe animation
is made up of a list of declarations: first one that defines thi@abledi st ance
bound to a decreasing value, then one that declares the bape,scoloured in
black and translated by the previously defined variahblst ance.

A consequence of this simple design is that whole animatoashemselves
composable by concatenating the lists of declarationfiaaore animations can
be built up from simpler fragments that will be superimpasEdese fragments
can be named and parametrised as Haskell values or functions

The abstract syntax tree is translated to C source codectimapiled by GCC
into a dynamic library. The generated source code uses Open@isplay com-
puted geometric shapes at each frame. The graphics cardelahd translation
of 3D coordinates to screen output, and in fact does so much efficiently than
we would be able to achieve by calculating a screen buffdr thik CPU and then
transferring that to the graphics card for display. In ouasw@ements, on a Pen-
tium 4 computer with an nVidea GeForce 5200 graphics catdpit up to 9 ms
to transfer a frame from the computer memory to the graptdaod,dut only a few
hundred microseconds to instruct the graphics card to dopvalent primitives
in 3D coordinates. Ensuring that these coordinates coorebpo the real world
is a matter of setting up the correct viewing angle and degtawhich is a single
instruction in OpenGL code.

The dynamic library containing the animation is loaded byiradependent
process that controls the screen between animations. Tédg$s receives a trig-
gering signal from Braincurry when a trial involving aninat starts, and the an-
imation is then executed. We use POSIX signals to communloetiveen these
processes.
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1.6 PERSISTENCE

One important advantage of using a language to define expetaTs that we have
a clear record of the procedures that took place during acpdat experimental
session, i.e. a collection of trials from (for instance) #ame animal. To take
full advantage of this possibility, it is desirable to storet only the experiment
description, but also the results and any available medagfaich as time and
circumstances of the experiments) in a structured mannfctlitate searching,
indexing, annotation, and further analysis later on.

The backend of Braincurry’s structured storage systemdsiged by the rela-
tional database PostgreSQL. Using an off-the-shelf smiftir storage, searching
and indexing meant that we only had to write two componentsdler to provide
structured storage for experimental results: a resultslleaijsee Section 1.4) tar-
geting the database, and a tailored query language tovenésultsC.

Implementing composable results handlers turned out taragbtforward
and will not be discussed further. For querying the datahasers could be asked
to use SQL. This would save us from (most of) the trouble oflengenting a
query language, but would also make Braincurry considgtadider to use: First,
the end-user may not know SQL, which is a large and compleguage. Second,
formulating queries in SQL necessitates revealing thdicglal structure of the
underlying database. This structure may not be obviousesed if it were, com-
mitting to some specific structure could unnecessarilyicshe implementation.

Instead, we chose to build a customised domain-specifigydaeguage which
encapsulates the underlying structure of the databasetlative can hide con-
text queries including joins and sub-selects from the erd. #r simplicity, we
implemented the domain-specific query language as a datetiert is translated
to an SQL statement at runtime. To regain some of the typ#ysaffan SQL state-
ment, we implemented this term as a Generalised Algebraia Dge (GADT)
[10] parametrised on the type of the result of the query:

data Query rwhere
Values ::Result a= Name— Query[a]
Trials  ::Query[Triallnfo]
Sessions :: Query[SessionInfp
InTrials ::Result &= [Int] — Query[a] — Query[a]
InSession: TrialQuery a= Int — Query[a] — Query|a]
HasResult: TrialQuery a= Name— Query[a] — Query|a]
Where ::(TrialQuery a Resulth =

Name— Oper— b — Query[a] — Query[a]

SpecLike:: String— Query[a] — Query|[a]

data Oper= LessThan GreaterThar] Equals| Like

10However, this implementation was facilitated by having dkecomes of an
experiment wrapped in a typenyResultshat we know how to serialise to a relational
database. In that sense, Braincurry is not as loosely cd@gseve would have liked.
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Queries of this type permit the retrieval of either storedmed results (the
Valuesconstructor), metadata pertaining to the trial (Ti@als constructor: trigger
time, experiment description), or the session @essionsonstructor: start time,
number of trials, name). Queries formed by these base emtsts may then be
restricted to results that belong to specific sessiémSegssionparametrised on
the session identifier), a subset of the trials in a sesdiofri@ls, that takes a
list of indices of the trials in session), trials during whia result with a certain
name has been stordddsResultf trials where a named result fulfils a predicate
(Whers, or trials in which the serialised experiment descriptioatches a certain
regular expressiorSpecLikg

Query terms are translated directly into SQL and results lcask to Haskell
through methods in thResultclass. This process is entirely hidden from the user:
we simply provide a top-level functiamsk:: Query a— 10 (Maybe 3.

Our typed, domain-specific query language gives a simpléhargsm for re-
trieving results from a moderately complex database witleguiring the end
user to understand sub-selects or joins. The main limitaSothat each result
must be retrieved separately; i.e., there is no term foiaatrg a pair of results. A
possible extension, at the expense of a more complicateléimgmtation, would
be a constructdZip:: Query[a] — Query[b] — Query[(a,b)].

1.7 EVALUATION AND STATUS

The system as presented has been implemented and used twecessful exper-
iments in our laboratory. Thus far, Braincurry has not imgebany constraints on
the experiments we have wanted to do, performance has beguaté, and we
have been able to set up entirely new experiments very quidé have imple-
mented five different non-trivial experiments in Braingutiat include visual and
auditory stimulation and numerical simulations. Theseegixpent definitions are
written by one person but have besradby several non-Haskell programmers. In
addition, we have used Braincurry definitions to present eeperimental results
to neuroscientists [9], thus validating the use of Braimgas a medium for sci-
entific communication. All in all, Braincurry has proved te b practically very
useful tool for describing and running experiments and &tnens. The source
code is available dit t p: / / gi t hub. com gl ut amat e/ brai ncurry/.

A significant limitation in the design of Braincurry is theaessity of build-
ing new interpreters for every model or experimental sefdfhough we have
sought to decrease the amount of work required to do thisngatp Braincurry
in a new laboratory does require nontrivial knowledge of kédis This difficulty
can be alleviated by sharing interpreters between labsefample, code for fre-
qguently used apparatuses could be made available on-lilging entirely on
prefabricated apparatuses does remove a significant aneéymawer from the
experimenter. However, such apparatuses can be made vegyafjeeven if this
means making the trial options datatype fixed. The advastaffered by using
combinators and functional abstraction in defining experita remain.

Braincurry is a very general system for scheduling expenitsievhich can be
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adapted to many different types of experiments both in retiemce and in other
fields. However, this generality comes at the cost that tipeement description
does not reveal the semantics of the experiment, whichsreliethe implemen-
tation of the interpreters on which the experiment desianipis intended to run.
This makes it quite hard to choose an analysis method bastealescribed ex-
periment. Our future work will focus on adding some struetta the experiment
description while retaining generality.

1.8 RELATED WORK

There is substantial overlap between our approach and timtrscientist” in-
vestigating yeast genomics [8]. The principal differerscéhiat the robot scientist
includes assumptions about the underlying biology thatait to autonomously
form and test hypotheses, although limited to relativatyse experimental para-
digms. Our system aims to be more general by accommodatimy wliéerent
experimental techniques. However, this generality makesuch more difficult
to generate new hypotheses from previous data. Our futsesareh is likely to
address the need for a compromise between generality antdoality. We note
that large parts of the robot scientist are also written inealarative language
(Prolog). However, it does not appear to be the goal of thetrebientist project
itself to develop new notations for describing experimeRts this purpose, sep-
arate semantic web ontologies have been proposed [12].tBunot clear that
the subject-predicate-object triples underlying the sgimaveb are suitable for
describing the experiments conducted in neurophysiologie approach taking
by the Braincurry language, the ability to describe expertalprocessess criti-
cal. If one views experiments and simulationpasgrams they may be described
more concisely and with greater modularity ipegramming languagevhere it
is possible to give a name to recurrent patterns of scieqiicedure.

1.9 CONCLUSIONS

The ease by which Haskell supports experimental languagigrdend the us-
ability of the resulting language have shortened the cyatémiplementing and
assessing new language features. Although Braincurrypiseaent somewhat lim-
ited in scope, we have a design which is sufficiently highelég serve as a de-
scriptive specification of the parts of an experiment thatlma mechanised, yetis
much more flexible than what could be achieved by just selgaiptions from a
menu and providing specific values for parameters. Moredianks to the com-
positional design, it should be relatively straightfordido enlarge the scope of
Braincurry towards experimental techniques that we hateised in the present
study. Future work will address some of the limitations o&Bcurry including
the difficulty in describing new components of an experimantd will address
post-acquisition analysis.

In common with embedded domain-specific languages in gkitleese is ar-
guably a bit of “syntactic embedding noise” that could lithie appeal of Brain-
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curry to users who are chiefly interested in using a readyfigored Braincurry

instance in a specific lab setting. However, with some impletation effort, it

should be relatively straightforward to support such udsrgroviding a more
polished surface layer. What is important, and the focukiefgaper, is that Brain-
curry is a proper language, the design principles of thigleme, and the flexibil-
ity and generality that ensues from this and that ultimatelyefits all users.
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