
Chapter 1

Braincurry: A Domain-
Specific Language for
Integrative Neuroscience
Tom Nielsen1, Tom Matheson2, Henrik Nilsson3
Category: Research

Abstract: This paper describesBraincurry, a domain-specific, declarative lan-
guage for describing and analysing experiments in neuroscience. Braincurry has
three goals: to allow experiments and data analysis to be described in a way that is
sufficiently abstract to serve as adefinition; to facilitate carrying out experiments
by executingsuch descriptions; and to be directlyusable by end users: neurosci-
entists. We adopted an experimental and incremental approach to the design and
implementation of Braincurry, focusing on the neurophysiological response to vi-
sual stimuli in locusts as a test case. Braincurry is currently implemented as an
embedding in Haskell, which is a highly effective tool for this kind of exploratory
language design. The declarative nature of Haskell and its flexible syntax fitted
with our goals. We discuss the requirements for a realistic language meeting the
above goals, describe the current Braincurry design and howit may be gener-
alised, and explain how some particularly challenging hardreal-time requirements
were met.

1.1 INTRODUCTION

Repeatable experimentsare the very core of empirical science. Not until scientists
can repeat an experiment in a controlled manner can this experiment be used to

1Department of Biology, University of Leicester, UK, and School of Computer
Science, University of Nottingham, UK;tanielsen@gmail.com

2Department of Biology, University of Leicester, UK;tm75@le.ac.uk
3School of Computer Science, University of Nottingham, UK;

nhn@cs.nott.ac.uk

1

2 CHAPTER 1. BRAINCURRY

properly test a hypothesis. And not until an experiment can be repeated indepen-
dently byother scientists, permitting them to check the premises of the experi-
ment, are the outcomes of the experiment considered by the scientific community
to be proper evidence for or against various explanatory models. Experiments
must thus be repeated, potentially many times, as the success rate can be very low
or the outcome variable.

This raises two issues:

• How can an experiment be described in sufficient detail to make it repeatable?

• To what extent can an experiment be mechanised to reduce variability in ex-
perimental conditions and to save work?

Traditionally, these issues are addressed independently:published experimental
results are accompanied by a detailed description of the experiment in natural lan-
guage, and experimental paradigms are simplified and preprogrammed to permit
consistency. In this case the description is separate from the experiment itself.

If a singledescription could addressboth issues, at least to some extent, this
would bring a number of advantages. For example:

• A description that is part of a working experimental setup guarantees that the
description is complete and precise.

• There may be a reduced need for auxiliary experts such as programmers as
the experiment description developed by researchers wouldalso serve as the
program controlling the experiment.

• Ultimately, this could lead to a shared, precise language for describing exper-
iments in a particular area.

Braincurry is being developed to explore the feasibility of an experiment de-
scription language of the kind outlined above for integrative neuroscience. This
is a challenging task. For example, an experiment could involve showing a visual
stimulus to a living animal, recording electrical activityfrom neurons, and mea-
suring motor behaviour, all at the same time; see Figure 1.1.Another experiment
might involve direct patterned electrical stimulation of aneuron while monitoring
the responses of several other neurons recorded optically using a CCD camera
mounted on a microscope. Such experimental complexity and variability neces-
sitates the configuration and synchronisation of a potentially large set of hetero-
geneous devices, as well as the generation of stimuli and recording of responses
subject to hard real-time constraints.

Experiments may be performed to distinguish between competing models or
to estimate free parameters in a given model. Where an explicit computational
model exists, it would be advantageous to be able to directlycompare recorded
responses to simulations. For an experiment description language, this means that
a description should, where possible, be executable both ondata acquisition hard-
ware recording from living neural tissue, and on appropriate models.

1.1. INTRODUCTION 3

FIGURE 1.1. Top left, the adult desert locustSchistocerca gregaria with its central
nervous system (top right; modified from [1]) consisting of the brain and a series
of ganglia with nerves (“connectives”) running between them. We record from the
descending contralateral movement detector (DCMD) neuronusing a pair of silver
hook electrodes wrapped around one of the connectives. The bottom panels illustrate
the result of running an experiment using Braincurry. Left, the visual stimulus is
an expanding black square, giving the impression of a cube approaching on collision
course with constant velocity. Right, the recording from the hook electrodes shows
electrical responses from several distinct neurons, of which the largest amplitude is
the DCMD. On the same timescale below, two calculated parameters of the visual
stimulus: apparent distance and the observed angle formed by the visual stimulus on
the retina.

It is not clear what an experiment description language should look like to best
serve the diverse needs of neuroscientists. Conventionally, the description of ex-
periments is limited to configuration of pre-written software through a graphical
user interface, or by direct editing of configuration files. This approach is limiting
because any fundamentally new need has to be addressed by modifying the under-
lying software. For flexibility, a proper language is needed. But how to make such

4 CHAPTER 1. BRAINCURRY

a language flexible enough for general use without making it too complicated for
domain experts who may not possess conventional programming skills?

In our experimental and incremental approach to the design of Braincurry, the
initial version as presented here is focused on experimentson insect vision [4].
This allows us to test the feasibility of the idea of a language like Braincurry and to
more easily experiment with various language designs. To this end, Braincurry is
at present realised as an embedding in the functional language Haskell [7]. Using
a functional language allows us to use composition and abstraction to control
the complexity of experiment descriptions, and has the further advantage that the
functional program gives a concise, declarative description of what has been done
in the experiment in line with our overall goals introduced above.

The specific contributions of the present paper are as follows.

•We develop general requirements for an experiment description language for
integrative neuroscience.

•We outline a flexible implementation of such a language basedon composable
interpreters that has proved to be sufficient for our presentexperiments on
insect vision.

• Our particular research on insect vision required a high-throughput and pre-
dictable system for visual animations, typifying the kind of hard real-time
signal generation problem common in the application domain. As an example
of how to address this kind of requirement, we have implemented a hard real-
time 3D analogue of the Pan language [2]. We outline this implementation and
describe how it fits in with the rest of our framework.

•We sketch how the ideas presented in this paper could be extended to a general-
purpose experiment description language for integrative neuroscience.

1.2 REQUIREMENTS

Currently, in the field of neuroscience, experiments are conducted with varying
degrees of automation. One common approach is to use one of a range of systems
that are specifically intended for automating certain aspects of the experiment,
such as stimulus generation. These systems typically provide a graphical user in-
terface allowing the experimenter to define protocols within a domain restricted to
the intended target application. Alternatively, this may be done by amending some
kind of configuration file using a text editor. Examples include systems like Axo-
Graph4, NeuroMatic5, or the sequence editor in Spike26 (Spike2 does in addition
provide a simple programming language).

A key advantage of this approach is the relatively shallow learning curve: sci-
entists without any programming background, including junior graduate students

4http://axograph.com/
5http://www.neuromatic.thinkrandom.com/
6http://www.ced.co.uk/pru.shtml

1.2. REQUIREMENTS 5

who are only beginning to learn about neuroscience, can veryeasily design and
conduct experiments. The drawback is the limited flexibility: while some of these
systems can be extended, this does require programming in whatever language the
system is implemented in.

For increased flexibility, an experiment can be programmed in an imperative
language with bindings to the data acquisition and stimulation devices. This defi-
nition will delineate the steps necessary in preparing and running the experiments.
Common choices here are to use Matlab, Spike2 or Igor Pro7. However, the re-
sult is usually a monolithic application, fit for only a single purpose and hard
if not impossible to reuse as acomponentof other experiments. Moreover, the
high-level description of the experiment will be deeply hidden behind imperative
programming constructs, making it impossible to reflect on the experiment in any
meaningful way.

Ideally, a system for supporting experiments in neuroscience needs to be both
flexible, to allow experimenters to do what they need to do, anddeclarative, to
lower the learning curve and allow for composition and reflection. The above
considerations suggest the following principal requirements for Braincurry:

Synchronised analog and digital data acquisition and output: Typical integrative
neuroscience experiments require accurately synchronised generation of stimuli
and recording of responses. In our own experiments on locusts (Figure 1.1), these
experiments involve at the very least simultaneous presentation of visual stimuli
and recording of the electrical responses of cells, followed by signal detection
and sorting. This means that Braincurry must be able to meet hard real-time con-
straints if it is to be a practically useful tool.

Composable experiment descriptions: Experiment descriptions should becom-
posable: given a descriptiond1 with input i1 and outputo1, and another descrip-
tion d2 with input i2 and outputo2, it should, using anexperiment composition
operator⊕, be possible to form a composite experimentd1⊕d2 with a combined
input of i1 andi2, and a combined output ofo1 ando2. This allows for the develop-
ment of libraries of “small experiments” that can be combined to describe more
complex experiments. The experiment description gives a clear record of what
has been done on each experiment. (Of course, some combination of experiments
may not make sense. This must be detected and reported.)

One language for simulations and experiments: Two common modes of research
in integrative neuroscience are of particular interest to us:

• derivation of a computational model from experimental data;

• investigation of whether such a model can accurately predict experimental
observations.

In both of these cases, we are trying to match the response of two systems (one,
a living organism; the other, a numerical simulation) to a common set of inputs.
This task is greatly facilitated if these inputs are described in the same way for

7http://www.wavemetrics.com

6 CHAPTER 1. BRAINCURRY

both systems. Thus, we require that the experiment description can be executed
both onphysicaldata acquisition systems interfaced toreal neural tissue, and on
arbitrarysimulationsof such systems. Apart from the clarity that such a unified
approach gives in terms of comparing experimental data withmodels, it also opens
up exciting possibilities that would be hard to achieve withseparate experiment
description languages. For example, it may be possible to automatically estimate
free parameters of a model to fit given experimental data, or it may be possible to
automate experiments to search for a difference with a givenmodel.
Accommodation of diversity: Neuroscience is a highly interdisciplinary field where
new experimental possibilities constantly emerge. At the same time, no one lab
can embrace all of these experimental possibilities. An ideal data acquisition sys-
tem based on experiment descriptions thus needs to be very flexible.

Structured, practical storage: We would like to store the results of running ex-
periment descriptions (in vivoor in silico) so that they can be easily retrieved and
indexed. The experiment description itself and as much relevant information as
possible should be stored along with the raw data. We may alsolike the results
of analyses to be stored in a similar way to raw data, while clearly indicating
that it was obtained after the experiment. The data should beretrieved by posing
questions that are as natural as possible to a neuroscientist.

1.3 ARCHITECTURE OF BRAINCURRY

To accommodate the many different techniques used in experimental neuroscience,
we took a minimal approach in designing Braincurry. As a result, deploying Brain-
curry in a new setting requires the addition of quite a bit of functionality to create
a working data acquisition and simulation system. However,these definitions do
not have to be written on a blank slate: the Braincurry implementation provides
considerable conceptual and concrete infrastructure in the form of combinators
for composable interpretersand aschedulerthat provides a small core neces-
sary for coordinating the experiments. In practice, a groupof users with similar
requirements would define a part of their own description language and one or
more interpreters to link the final, customised experiment description language to
hardware or numerical solvers.

As a first step in customising Braincurry, the user defines thetrial option
datatype. This is a custom datatype for which variants denote individual compo-
nents of atrial ; i.e., a finite period of time with fixed configuration during which
observation takes place. For instance, for our experimentson locusts, we have
defined an algebraic datatypeLocustOptionswith (parametrised) constructors for
playing an animation, playing sounds, and recording from anelectrode. Values
of this type convey information about a particular aspect ofa trial such that a
list of trial options completely specifies the lab-specific aspects of a trial in an
experiment. Figure 1.2 shows the Braincurry code specifying the experiment of
Figure 1.1, including the specification of the animation andthe list of trial options.
The animation part of this code is explained in detail in Section 1.5.

1.3. ARCHITECTURE OF BRAINCURRY 7

black= Col 0 0 0

centreCube l= Translate(Vec(−l /2) (−l /2) 0)
(Box(Vec l l l))

loomAnim lov=
let l = 0.298

v = l / (lov∗2)
in

[LetN"distance" (minN (v∗ (Time−5)) (−0.17)),
MkShape$WithColour black

$Translate(Vec0 0(VarN"distance"))
$centreCube l

]

loomExperiment= concat$do
ivl← [15,30]
lov← [0.01,0.02]
take10(repeatInterval ivl

[PlayAnimation(loomAnim lov),
RecordEC])

FIGURE 1.2. Complete Braincurry specification for an experiment involving the
generation of a visual stimulus that gives the impression ofa cube-shaped object ap-
proaching with a length-to-velocity ratio lov (in seconds). The experiment description
loomExperimentspecifies that the experiment should be repeated 10 times fortwo dif-
ferent values of lov and with two different intervals ivl (in seconds) between repeti-
tions, and that the neural responses should be recorded concurrently (RecordEC).

The second step in customising Braincurry is to create one ormore appa-
ratuses: interpreters that execute experiments or simulations defined by the trial
options datatype. We stress that the value of the trial options datatype does not
have any inherent meaning in Braincurry until the user also defines an apparatus
that consumes a trial description and produces the results of running such a trial.

As discussed in section 1.2, one of our goals is that it shouldbe possible to
run an experiment descriptionboth on a physical experimental setup and as a
simulation. One way to achieve this would be to definetwo interpreters for the
sameoptions type. However, this solution is problematic in at least two ways:

•Writing an interpreter is not an easy task and is fundamentally at odds with
Braincurry’s stated aim of being accessible to scientists with little program-
ming experience.

• Two interpreters, even when written for the same language (option type), may
have different structure and present different interfaces.

We have addressed these issues by providing the facilities to composethe nec-

8 CHAPTER 1. BRAINCURRY

essary interpreters, rather than building them from scratch. These facilities consist
of a series ofbase interpreters, independent of the trial option type, for carrying
out experiments on data acquisition hardware or in simulated integrate-and-fire
neurons [6], and of the combinators necessary tomodifythese interpreters to re-
spond to the values of the trial option type. Although composing an interpreter in
this way still requires some knowledge of Haskell, such as the syntax for func-
tion application, it is much more straightforward than starting from scratch. The
resulting interpreters could likely also be shared betweenlabs using similar tech-
niques. Furthermore, the approach ensures a uniform interface for our interpreters
such that these can be used interchangeably.

1.4 IMPLEMENTATION OF BRAINCURRY

An apparatus is thus an options interpreter for either experimental setups or sim-
ulations. How shall they be represented? The chosen data structure must be para-
metric on the trial options datatype. In order to accommodate different kinds of
side effects of experiments (that must interact with the real world) and simula-
tions (that may not have any side effects at all), it should also be parametric on
the monad in which functions are run. In addition, the apparatus must present a
uniform interface to the experiment scheduler. We chose to represent apparatuses
as a type-parametrised module [11]; i.e., a record of functions (representing the
uniform interface) parametric on a monad and the trial options datatype. Each
field is a monadic action corresponding to astepinvolved in running a trial. The
step division is quite fine-grained so as to be appropriate for the configuration and
operation of a broad range of data acquisition devices:

data Apparatus m o= Apparatus{
initialise :: m(),

newTrial :: [o]→m(),
prepare :: [o]→m(),
wait :: Double→m(),
run :: [o]→m [(String,AnyResult)],
finaliseTrial:: m(),

finalise :: m()
}

In more detail, the meaning of each step is as follows. The step initialise is
run at the beginning of a long experiment consisting of many trials. It is typically
be used to initialise screens and to open devices. Correspondingly,finalisecan be
used to close these devices when the experiment is over. The remaining five steps
are invoked once for each trial in the order in which they are listed:

• newTrial andprepareset up any devices and prepare them for an imminent
triggering signal (the exact specification of which is dependent on the device)

• wait counts down a specified number of seconds to the trigger that will start

1.4. IMPLEMENTATION OF BRAINCURRY 9

the trial (although, for simulation purposes, an apparatuscan customise this
step to avoid spending real time waiting)

• run runs over the duration of the trial and returns outcomes of the trial

• finaliseTrialcleans up after a trial; for example, it may free memory allocated
for storing the trial results.

Note that the complete list of trial options are passed to each step where needed.
Some apparatuses may not require all of these steps. As new apparatuses are

defined from a default record where all fields are defined as theempty action (i.e.
return(), or, in the case ofrun, return[]), only steps that are required need to be
defined.

An individual apparatus is thus a value that can be manipulated and recon-
figured at run-time. To facilitate this, we have written a series of combinators
for generic modification of apparatuses. For example, thereare combinators for
insertion of monadic actions before or after a specific step,like the following:

beforeRun:: Monad m⇒
([o]→m ())→ Apparatus m o→ Apparatus m o

beforeRun brun app= app{run = brun≻→ run app}

where

(≻→) ::Monad m⇒ (a→m c)→ (a→m b)→ a→m b
f ≻→ g = λx→ f x>>g x

The composition of an apparatus begins with a base apparatus. This is pro-
vided as part of the initial Braincurry installation and is agnostic about the mean-
ing of the trial options datatype. For instance, we provide abase apparatus for
controlling data acquisition devices through the Comedi8 library:

type ComediApparatusM= StateT ComediState IO

comediApparatus:: Double→ Apparatus ComediApparatusM o
comediApparatus acquisitionFreqInHz=

Apparatus{
. . .
run = (λopts→ do

hasOut← anyScheduledOutputs
when hasOut(liftIO $do

forkIO start cont output
return())

liftIO $start cont acq
getAllWaves),

. . .
}

8http://www.comedi.org

10 CHAPTER 1. BRAINCURRY

Note how a Comedi-specific monad is constructed by adding a suitable state com-
ponent to the IO monad. The step operations are here exemplified with therun
step, the definition of which is rather typical: if there are scheduled outputs, like
sound, a thread is spawned whose task it is to keep the output buffers associated
with the outputs filled. Then data acquisition is initiated.

A base apparatus is supplied as a Haskell module, containinga value of the
apparatus type parametric on the trial options datatype, aswell as combinators
for modifying this apparatus. These combinators are intended to tie together this
apparatus with the options datatype.

The final apparatus is thus formed by layering modifying combinators around
a base apparatus, instantiated with a particular trial options type. For example:

dcmdRig::Apparatus ComediApparatusM LocustOptions
dcmdRig=

prepareMap dcmdRigPrepare$
triggerWith dcmdTrigger $
comediApparatus20000 {-Hz -}

In configuring an apparatus using specific values of the options datatype, we
found it helpful to write a combinator that iterates over theexperiment description
(presented as a list of trial options), thus allowing us to pattern-match and add for
instance a preparatory action for specific trial options:

dcmdRigPrepare::LocustOptions→ ComediApparatusM()
dcmdRigPrepare RecordEC=

readWave silverElectrode"ecVoltage"

Ultimately, the apparatus is passed to the scheduler that isresponsible for co-
ordinating the experiment. The run method returns a collection of named results
for each trial, wrapped in the existential data constructorAnyResult:

data AnyResult= ∀ r . Result r⇒ AnyRes r

The Resultclass details how to store and retrieve data types into a relational
database (see Section 1.6).

These wrapped data types are collected by the scheduler as the sequence of
trials is executed. No storage or display is performed automatically because the
person conducting the experiment might want to do differentthings with these
data depending on the purpose of the experiment. For instance, they might create a
log file, display the results on screen, or store the results in complete form for later
analysis. To give the experimenter a choice of how to processresults and to keep
the design as modular as possible, we have parametrised the scheduler on a results
handler, i.e. an action that consumes the named results. We have also implemented
an operator≻≻→→ that composes two results handlers into a new handler:

(≻≻→→) ::Monad m⇒ (a→ b→m c)→ (a→ b→m d)→ a→ b→m d
f ≻≻→→ g = λa b→ f a b>>g a b

1.5. VISUAL STIMULATION 11

1.5 VISUAL STIMULATION

Many neuroscience experiments investigating vision require the display of shapes
of differing colours, contrasts or textures that move or appear and disappear.
Such stimuli must be presented with a sufficiently high screen refresh rate and
no dropped frames to ensure a natural neural response. For example, insect vision
has high temporal resolution necessitating a screen refresh rate above 100 Hz [5].

To address the need to generate visual stimuli, we include a trial option de-
scribing animations. Animations are represented as a function from time to a list
of shapes (in the style of Functional Reactive Animation (Fran) [3]), where each
shape is composed of arbitrarily scaled or rotated geometric primitives.

To turn such descriptions into a live display on a monitor, the apparatus con-
trolling the experiment is extended with a mechanism takingcare of the rendering.
However, it is very difficult to fulfil the requirement of a refresh rate of at least
100 Hz in a garbage-collected language like Haskell as the garbage collector can
add unpredictable delays in execution9. Due to these hard real-time requirements,
we do not use Haskell functions directly to represent these animations. Instead the
user constructs a symbolic expression, effectively anAbstract Syntax Tree(AST),
detailing the shapes to be rendered and how they evolve over time. This expression
is thencompiledinto C code for execution in a different process. The implemen-
tation of our animation component is thus similar to the language Pan [2], but our
language is much simpler.

Besides shapes, our language provides primitive values, variables, expressions
over these, a conditional construct, and a variable bindingmechanism. The lan-
guage does not itself contain any mechanism for functional abstraction, relying
instead on the host language to provide this facility. The types of the language are
restricted to scalars and vectors of floating point numbers,Booleans, and colours.
Everything is simply typed to facilitate compilation into C. Moreover, the binding
mechanism is limited to scalar numbers for the same reason. The special numeric
expressionTimegives the number of seconds since the trial start. This is thekey to
describing animations as time-varying shapes, or, thanks to the conditional, even
more drastic changes.

As an example, consider the following code fragment from Figure 1.2:

LetN"distance" (minN (v∗ (Time−5)) (−0.17))

Here, theN suffix indicates we are working on scalar numbers. TheLetNconstruct
binds a variableat the C levelfor use later in the program. In this case, the variable
distance is bound to a time-varying value that represents the distance between
the object and the observer in real-world coordinates. Notethat all expressions
in our animation language potentially yield values that vary over time, i.e. they
really represent signals.

9Particularimplementationsof garbage-collected language may provide some hard
real-time guarantees, but the problem remains unless the languagespecificationprovides
such guarantees (and all implementations conform).

12 CHAPTER 1. BRAINCURRY

Shapes are composed in a functional manner starting from geometric primi-
tives. The latter can be translated or rotated as necessary by vectors specified in
real-world 3D coordinates relative to an observer at a knownlocation viewing the
display. For instance, consider the following fragment, again from Figure 1.2:

MkShape$WithColour black
$Translate(Vec0 0(VarN"distance"))
$centreCube l

Here, a time-varying shape is made up from a centred cube by first translating it
by a time-varying vector and then colouring it black.

Finally, an animation is a list of declarations that introduce new variables or
create shapes (as above). The functionloomAnimin Figure 1.2 is an example
of an animation of a looming object. As we have already seen, the object is a
cube with constant dimensions that is translated with respect to the viewer. As the
subject-object distance decreases linearly with time, it will appear as if the object
is approaching at a constant speed, until it intersects the location of the physical
screen surface (in our case, 0.17 m from the observer). Note how the animation
is made up of a list of declarations: first one that defines the variabledistance
bound to a decreasing value, then one that declares the cube shape, coloured in
black and translated by the previously defined variabledistance.

A consequence of this simple design is that whole animationsare themselves
composable by concatenating the lists of declarations, so that more animations can
be built up from simpler fragments that will be superimposed. These fragments
can be named and parametrised as Haskell values or functions.

The abstract syntax tree is translated to C source code, thencompiled by GCC
into a dynamic library. The generated source code uses OpenGL to display com-
puted geometric shapes at each frame. The graphics card handles the translation
of 3D coordinates to screen output, and in fact does so much more efficiently than
we would be able to achieve by calculating a screen buffer with the CPU and then
transferring that to the graphics card for display. In our measurements, on a Pen-
tium 4 computer with an nVidea GeForce 5200 graphics card, ittook up to 9 ms
to transfer a frame from the computer memory to the graphics card, but only a few
hundred microseconds to instruct the graphics card to draw equivalent primitives
in 3D coordinates. Ensuring that these coordinates correspond to the real world
is a matter of setting up the correct viewing angle and distance, which is a single
instruction in OpenGL code.

The dynamic library containing the animation is loaded by anindependent
process that controls the screen between animations. This process receives a trig-
gering signal from Braincurry when a trial involving animation starts, and the an-
imation is then executed. We use POSIX signals to communicate between these
processes.

1.6. PERSISTENCE 13

1.6 PERSISTENCE

One important advantage of using a language to define experiments is that we have
a clear record of the procedures that took place during a particular experimental
session, i.e. a collection of trials from (for instance) thesame animal. To take
full advantage of this possibility, it is desirable to storenot only the experiment
description, but also the results and any available metadata (such as time and
circumstances of the experiments) in a structured manner tofacilitate searching,
indexing, annotation, and further analysis later on.

The backend of Braincurry’s structured storage system is provided by the rela-
tional database PostgreSQL. Using an off-the-shelf solution for storage, searching
and indexing meant that we only had to write two components inorder to provide
structured storage for experimental results: a results handler (see Section 1.4) tar-
geting the database, and a tailored query language to retrieve results10.

Implementing composable results handlers turned out to be straightforward
and will not be discussed further. For querying the database, users could be asked
to use SQL. This would save us from (most of) the trouble of implementing a
query language, but would also make Braincurry considerably harder to use: First,
the end-user may not know SQL, which is a large and complex language. Second,
formulating queries in SQL necessitates revealing the relational structure of the
underlying database. This structure may not be obvious, andeven if it were, com-
mitting to some specific structure could unnecessarily restrict the implementation.

Instead, we chose to build a customised domain-specific query language which
encapsulates the underlying structure of the database suchthat we can hide con-
text queries including joins and sub-selects from the end user. For simplicity, we
implemented the domain-specific query language as a data term that is translated
to an SQL statement at runtime. To regain some of the type safety of an SQL state-
ment, we implemented this term as a Generalised Algebraic Data Type (GADT)
[10] parametrised on the type of the result of the query:

data Query rwhere
Values :: Result a⇒ Name→Query[a]
Trials :: Query[TrialInfo]
Sessions :: Query[SessionInfo]

InTrials :: Result a⇒ [Int]→Query[a]→Query[a]
InSession:: TrialQuery a⇒ Int→Query[a]→Query[a]
HasResult:: TrialQuery a⇒ Name→Query[a]→Query[a]

Where :: (TrialQuery a,Result b)⇒
Name→Oper→ b→Query[a]→Query[a]

SpecLike :: String→Query[a]→Query[a]

data Oper= LessThan|GreaterThan| Equals| Like

10However, this implementation was facilitated by having theoutcomes of an
experiment wrapped in a typeAnyResultsthat we know how to serialise to a relational
database. In that sense, Braincurry is not as loosely coupled as we would have liked.

14 CHAPTER 1. BRAINCURRY

Queries of this type permit the retrieval of either stored, named results (the
Valuesconstructor), metadata pertaining to the trial (theTrials constructor: trigger
time, experiment description), or the session (theSessionsconstructor: start time,
number of trials, name). Queries formed by these base constructors may then be
restricted to results that belong to specific sessions (InSession, parametrised on
the session identifier), a subset of the trials in a session (InTrials, that takes a
list of indices of the trials in session), trials during which a result with a certain
name has been stored (HasResults), trials where a named result fulfils a predicate
(Where), or trials in which the serialised experiment descriptionmatches a certain
regular expression (SpecLike).

Query terms are translated directly into SQL and results cast back to Haskell
through methods in theResultclass. This process is entirely hidden from the user:
we simply provide a top-level functionask::Query a→ IO (Maybe a).

Our typed, domain-specific query language gives a simple mechanism for re-
trieving results from a moderately complex database without requiring the end
user to understand sub-selects or joins. The main limitation is that each result
must be retrieved separately; i.e., there is no term for retrieving a pair of results. A
possible extension, at the expense of a more complicated implementation, would
be a constructorZip:: Query[a]→Query[b]→Query[(a,b)].

1.7 EVALUATION AND STATUS

The system as presented has been implemented and used to run successful exper-
iments in our laboratory. Thus far, Braincurry has not imposed any constraints on
the experiments we have wanted to do, performance has been adequate, and we
have been able to set up entirely new experiments very quickly. We have imple-
mented five different non-trivial experiments in Braincurry that include visual and
auditory stimulation and numerical simulations. These experiment definitions are
writtenby one person but have beenreadby several non-Haskell programmers. In
addition, we have used Braincurry definitions to present newexperimental results
to neuroscientists [9], thus validating the use of Braincurry as a medium for sci-
entific communication. All in all, Braincurry has proved to be a practically very
useful tool for describing and running experiments and simulations. The source
code is available athttp://github.com/glutamate/braincurry/.

A significant limitation in the design of Braincurry is the necessity of build-
ing new interpreters for every model or experimental setup.Although we have
sought to decrease the amount of work required to do this, setting up Braincurry
in a new laboratory does require nontrivial knowledge of Haskell. This difficulty
can be alleviated by sharing interpreters between labs. Forexample, code for fre-
quently used apparatuses could be made available on-line. Relying entirely on
prefabricated apparatuses does remove a significant amountof power from the
experimenter. However, such apparatuses can be made very general, even if this
means making the trial options datatype fixed. The advantages offered by using
combinators and functional abstraction in defining experiments remain.

Braincurry is a very general system for scheduling experiments, which can be

1.8. RELATED WORK 15

adapted to many different types of experiments both in neuroscience and in other
fields. However, this generality comes at the cost that the experiment description
does not reveal the semantics of the experiment, which relies on the implemen-
tation of the interpreters on which the experiment description is intended to run.
This makes it quite hard to choose an analysis method based onthe described ex-
periment. Our future work will focus on adding some structure to the experiment
description while retaining generality.

1.8 RELATED WORK

There is substantial overlap between our approach and the “robot scientist” in-
vestigating yeast genomics [8]. The principal difference is that the robot scientist
includes assumptions about the underlying biology that allow it to autonomously
form and test hypotheses, although limited to relatively simple experimental para-
digms. Our system aims to be more general by accommodating many different
experimental techniques. However, this generality makes it much more difficult
to generate new hypotheses from previous data. Our future research is likely to
address the need for a compromise between generality and functionality. We note
that large parts of the robot scientist are also written in a declarative language
(Prolog). However, it does not appear to be the goal of the robot scientist project
itself to develop new notations for describing experiments. For this purpose, sep-
arate semantic web ontologies have been proposed [12]. But it is not clear that
the subject-predicate-object triples underlying the semantic web are suitable for
describing the experiments conducted in neurophysiology.In the approach taking
by the Braincurry language, the ability to describe experimentalprocessesis criti-
cal. If one views experiments and simulations asprograms, they may be described
more concisely and with greater modularity in aprogramming language, where it
is possible to give a name to recurrent patterns of scientificprocedure.

1.9 CONCLUSIONS

The ease by which Haskell supports experimental language design and the us-
ability of the resulting language have shortened the cycle for implementing and
assessing new language features. Although Braincurry is atpresent somewhat lim-
ited in scope, we have a design which is sufficiently high-level to serve as a de-
scriptive specification of the parts of an experiment that can be mechanised, yet is
much more flexible than what could be achieved by just selecting options from a
menu and providing specific values for parameters. Moreover, thanks to the com-
positional design, it should be relatively straightforward to enlarge the scope of
Braincurry towards experimental techniques that we have not used in the present
study. Future work will address some of the limitations of Braincurry including
the difficulty in describing new components of an experiment, and will address
post-acquisition analysis.

In common with embedded domain-specific languages in general, there is ar-
guably a bit of “syntactic embedding noise” that could limitthe appeal of Brain-

16 CHAPTER 1. BRAINCURRY

curry to users who are chiefly interested in using a ready-configured Braincurry
instance in a specific lab setting. However, with some implementation effort, it
should be relatively straightforward to support such usersby providing a more
polished surface layer. What is important, and the focus of this paper, is that Brain-
curry is a proper language, the design principles of this language, and the flexibil-
ity and generality that ensues from this and that ultimatelybenefits all users.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their thorough and construc-
tive feedback that helped improve the paper, and Steve Rogers for the use of the
picture of a locust. This research was supported by a Human Frontier Science
Program Long-Term Fellowship and the BBSRC.

REFERENCES

[1] M. Burrows. The Neurobiology of an Insect Brain. Oxford University Press, 1996.

[2] C. Elliott, S. Finne, and O. de Moor. Compiling embedded languages.Journal of
Functional Programming, 13(3):455–481, 2003.

[3] C. Elliott and P. Hudak. Functional reactive animation.In Proceedings of ICFP’97:
International Conference on Functional Programming, pages 163–173, June 1997.

[4] F. Gabbiani, H. G. Krapp, and G. Laurent. Elementary computation of object ap-
proach by a wide-field neuron.Science, 270:1000–1003, 1995.

[5] F. Gabbiani, H. G. Krapp, and G. Laurent. Computation of object approach by a wide-
field, motion-sensitive neuron.Journal of Neuroscience, 19(3):1122–1141, 1999.

[6] W. Gerstner and W. M. Kistler.Spiking Neuron Models. Cambridge University Press,
2002.

[7] P. Hudak. Modular domain specific languages and tools. InProceedings of Fifth
International Conference on Software Reuse, pages 134–142, June 1998.

[8] R. D. King, K. E. Whelan, F. M. Jones, P. G. K. Reiser, C. H. Bryant, S. H. Mug-
gleton, D. B. Kell, and S. G. Oliver. Functional genomic hypothesis generation and
experimentation by a robot scientist.Nature, 427:247–252, Jan. 2004.

[9] T. A. Nielsen, H. Nilsson, and T. Matheson. New eyes on visual habituation in lo-
cust: an experiment description language for integrative neuroscience. Poster T14-7C
presented at Göttingen Meeting of the German NeuroscienceSociety, Mar. 2009.

[10] S. Peyton Jones, G. Washburn, and S. Weirich. Wobbly types: type inference for gen-
eralised algebraic data types. Technical Report MS-CIS-05-26, University of Penn-
sylvania, Computer and Information Science Department, Levine Hall, 3330 Walnut
Street, Philadelphia, Pennsylvania, 19104-6389, July 2004.

[11] T. Sheard and E. Pasalic. Two-level types and parameterized modules.Journal of
Functional Programming, 14(5):547–587, 2004.

[12] L. N. Soldatova, W. Aubrey, R. D. King, and A. Clare. The EXACT description of
biomedical protocols.Bioinformatics, 24(13):295–303, 2008.

