Haskell Gets Argumentative

Bas van Gijzel and Henrik Nilsson

Functional Programming Laboratory,
School of Computer Science,
University of Nottingham,
United Kingdom
{bmv,nhn}@cs.nott.ac.uk

Abstract. Argumentation theory is an interdisciplinary field studying
how conclusions can be reached through logical reasoning. The notion of
argument is completely general, including for example legal arguments,
scientific arguments, and political arguments. Computational argumen-
tation theory is studied in the context of artificial intelligence, and a num-
ber of computational argumentation frameworks have been put forward
to date. However, there is a lack of concrete, high level realisations of
these frameworks, which hampers research and applications at a number
of levels. We hypothesise that the lack of suitable domain-specific lan-
guages in which to formalise argumentation frameworks is a contributing
factor. In this paper, we present a formalisation of a particular computa-
tional argumentation framework, Carneades, as a case study with a view
to investigate the extent to which functional languages are useful as a
means to realising computational argumentation frameworks and reason
about them.

Keywords: computational argumentation theory, domain-specific lan-
guages, functional programming

1 Introduction

Argumentation theory is an interdisciplinary field studying how conclusions can
be reached through logical reasoning. Argumentation should here be understood
in a general sense, including for example political debates along with more rig-
orous settings such as a legal or a scientific argument. A central aspect is that
there is usually not going to be any clear-cut truth, but rather arguments and
counter-arguments, possibly carrying different weights, and possibly relative to
to the understanding of a specific audience and what is known at a specific point
in time. The question, then, is what it means to systematically evaluate such a
set of arguments to reach a rational conclusion, which in turn leads to the no-
tion of proof standards, such as “beyond reasonable doubt”. Fields that intersect
with argumentation theory thus include philosophy (notably epistemology and
the philosophy of science and mathematics), logic, rhetoric, and psychology.
Argumentation theory has also been studied from a computational perspec-
tive in the field of artificial intelligence, with the dual aim of studying argumen-
tation theory as such [7,24] and of more direct applications such as verification

2 Bas van Gijzel and Henrik Nilsson

of arguments [27] or for programming autonomous agents capable of argumen-
tation [25]. Dung’s abstract argumentation framework [8] has been particularly
influential, as it attempts to capture only the essence of arguments, thus making
it generally applicable across different argumentation domains.

Since Dung’s seminal work, a number of other computational argumenta-
tion frameworks have been proposed, and the study of their relative merits and
exact, mathematical relationships is now an active sub-field in its own right
[3,2,13,18,23]. However, a problem here is the lack of concrete realisations of
many of these frameworks, in particular realisations that are sufficiently close to
the mathematical definitions to serve as specifications in their own right. This
hampers communication between argumentation theorists, impedes formal ver-
ification of frameworks and their relationships as well as investigation of their
computational complexity, and raises the barrier of entry for people interested
in developing practical applications of computational argumentation.

We believe that a contributing factor to this state of affairs is the lack of
a language for expressing such frameworks that on the one hand is sufficiently
high-level to be attractive to argumentation theorists, and on the other is rig-
orous and facilitates formal (preferably machine-checked) reasoning. We further
hypothesise that a functional, domain-specific language (DSL) would be a good
way to address this problem, in particular if realised in close connection with a
proof assistant.

The work presented in this paper is a first step towards such a language. In
order to learn how to best capture argumentation theory in a functional setting,
we have undertaken a case study of casting a particular computational argu-
mentation framework, Carneades [17,16], into Haskell'. We ultimately hope to
generalise this into an embedded DSL for argumentation theory, possibly within
the dependently typed language Agda with a view to facilitate machine checking
of proofs about arguments and the relationships between argumentation frame-
works. While we are still a long way away from this goal, the initial experience
from our case study has been positive: our formalisation in Haskell was deemed
to be intuitive and readable as a specification on its own by Tom Gordon, an
argumentation theorist and one of the authors of the Carneades argumentation
framework [15]. Furthermore, our case study is a contribution in its own right
in that it:

— already constitutes a helpful tool for argumentation theorists;

— demonstrates the usefulness of a language like Haskell itself as a tool for
argumentation theorists, albeit assuming a certain proficiency in functional
programming;

— is a novel application of Haskell that should be of interest for example to
researchers interested in using Haskell for Al research and applications.

This is not to say that there are no implementations of specific argumenta-
tion theory frameworks around; see Sect. 4 for an overview. However, the goals
and structure of those systems are rather different from what we are concerned

! Cabal package on Hackage: http://hackage.haskell.org/package/CarneadesDSL.

Haskell Gets Argumentative 3

with in our case study. In particular, a close and manifest connection between
argumentation theory and its realisation in software appears not to be a main
objective of existing work. For us, on the other hand, maintaining such a con-
nection is central, as this is the key to our ultimate goal of a successful generic
DSL suitable for realising any argumentation framework.

The rest of this paper is structured as follows. In Sect. 2, we give an intuitive
introduction to Carneades, both to provide a concrete and easy to grasp exam-
ple of what argumentation frameworks are and how they work, and to provide a
grounding for the technical account of Carneades and our implementation of it
that follows. We then continue in Sect. 3 by giving the formal definition of the
central parts of Carneades juxtapositioned with our realisation in Haskell. The
section covers central notions such as the argumentation graph that captures the
relationships between arguments and counter arguments, the exact characterisa-
tion of proof standards (including “beyond reasonable doubt”), and the notion
of an audience with respect to which arguments are assigned weights. Related
work is discussed in Sect. 4, and we conclude in Sect. 5 with a discussion of what
we have learnt from this case study, its relevance to argumentation theorists,
and various avenues for future work.

2 Background: The Carneades Argumentation Model

The main of purpose of the Carneades argumentation model is to formalise
argumentation problems in a legal context. Carneades contains mathematical
structures to represent arguments placed in favour of or against atomic propo-
sitions; i.e., an argument in Carneades is a single inference step from a set of
premises and exceptions to a conclusion, where all propositions in the premises,
exceptions and conclusion are literals in the language of propositional logic. For
example, Fig. 1 gives an argument in favour of the proposition murder mimicking
an argument that might be put forward in a court case.

kill intent

0.8

murder

Fig. 1. Carneades argument for murder

4 Bas van Gijzel and Henrik Nilsson

For ease of reference, we name the argument (arg!). However, arguments are
not formally named in Carneades, but instead identified by their logical content.
An argument is only to be taken into account if it is applicable in a technical sense
defined in Carneades. In this case, arg! is applicable given that its two premises
kill and intent are acceptable, also in a technical sense defined in Carneades. (We
will come back to exceptions below.) In other words, we are able to derive that
there was a murder, given that we know (with sufficient certainty) that someone
was killed and that this was done with intent.

In Carneades, a set of arguments is evaluated relative to a specific audience
(jury). The audience determines two things: a set of assumptions, and the weight
of each argument, ranging from 0 to 1. The assumptions are the premises and
exceptions that are taken for granted by the audience, while the weights reflect
the subjective merit of the arguments. In our example, the weight of arg? is 0.8,
and it is applicable if kill and intent are either assumptions of the audience, or
have been derived by some other arguments, relative to the same audience.

Things get more interesting when there are arguments both for and against
the same proposition. The conclusion of an argument against an atomic proposi-
tion is the propositional negation of that proposition, while an argument against
a negated atomic proposition is just the (positive) proposition itself. Depending
on the type of proposition, and even the type of case (criminal or civil), there
are certain requirements the arguments should fulfil to tip the balance in either
direction. These requirements are called proof standards. Carneades specifies a
range of proof standards, and to model opposing arguments we need to assign a
specific proof standard, such as clear and convincing evidence, to a proposition.

witness unreliable witness2 unreliable2
Q Q
0.3 0.8
intent -intent
(a) Pro intent (b) Con intent

Fig. 2. Arguments pro and con intent

Consider the two arguments in Fig. 2, where the arrows with circular heads
indicate exceptions. Figure 2(a) represents an argument in favour of intent. It

Haskell Gets Argumentative 5

is applicable given that the premise witness is acceptable and the exception
unreliable does not hold. Figure 2(b) represents an argument against intent. It
involves a second witness, witness2, who claims the opposite of the first witness.
Let us assume that the required proof standard for intent indeed is clear and
convincing evidence, which Carneades formally defines as follows:

Definition 1 (Clear and convincing evidence). Given two globally prede-
fined positive constants o and B; clear and convincing evidence holds for a specific

proposition p iff

— There is at least one applicable argument for proposition p that has at least
a weight of a.

— The mazimal weight of the applicable arguments in favour of p are at least
B stronger than the maximal weight of the applicable arguments against p.

Taking o = 0.2, 8 = 0.3, and given an audience that determines the argument
weights to be as per the figure and that assumes {witness, witness2}, we have
that —intent is acceptable, because arg3 and arg2 are applicable, weight(arg3) >
a, and weight(arg3) > weight(arg2) + S.

For another example, had unreliable2 been assumed as well, or found to be
acceptable through other (applicable) arguments, that would have made arg3
inapplicable. That in turn would make intent acceptable, as the weight 0.3 of
arg2 satisfies the conditions for clear and convincing evidence given that there
now are no applicable counter arguments, and we could then proceed to establish
murder by argl had it been established that someone indeed was killed.

3 Towards a DSL for Carneades in Haskell

3.1 Arguments

As our ultimate goal is a DSL for argumentation theory, we strive for a reali-
sation in Haskell that mirrors the mathematical model of Carneades argumen-
tation framework as closely as possible. Ideally, there would be little more to a
realisation than a transliteration. We will thus proceed by stating the central
definitions of Carneades along with our realisation of them in Haskell.

Definition 2 (Arguments). Let £ be a propositional language. An argument
is a tuple (P, E,c) where P C L are its premises, E C £ with PN E = are its
exceptions and ¢ € L is its conclusion. For simplicity, all members of L must
be literals, i.e. either an atomic proposition or a negated atomic proposition. An
argument 1is said to be pro its conclusion ¢ (which may be a negative atomic
proposition) and con the negation of c.

In Carneades all logical formulae are literals in propositional logic; i.e., all
propositions are either positive or negative atoms. Taking atoms to be strings
suffice in the following, and propositional literals can then be formed by pairing
this atom with a Boolean to denote whether it is negated or not:

6 Bas van Gijzel and Henrik Nilsson

type PropLiteral = (Bool, String)
We write p for the negation of a literal p. The realisation is immediate:

negate :: PropLiteral — PropLiteral
negate (b,z) = (= b,)

We chose to realise an argument as a newtype (to allow a manual Eq instance)
containing a tuple of two lists of propositions, its premises and its exceptions,
and a proposition that denotes the conclusion:

newtype Argument = Arg ([PropLiteral], [PropLiteral], PropLiteral)

Arguments are considered equal if their premises, exceptions and conclusion
are equal; thus arguments are identified by their logical content. The equality
instance for Argument (omitted for brevity) takes this into account by comparing
the lists as sets.

A set of arguments determines how propositions depend on each other.
Carneades requires that there are no cycles among these dependencies. Following
Brewka and Gordon [3], we use a dependency graph to determine acyclicity of a
set of arguments.

Definition 3 (Acyclic set of arguments). A set of arguments is acyclic
iff its corresponding dependency graph is acyclic. The corresponding dependency
graph has a node for every literal appearing in the set of arguments. A node p has
a link to node q whenever p depends on q in the sense that there is an argument
pro or con p that has q or q in its set of premises or exceptions.

Our realisation of a set of arguments is considered abstract for DSL purposes,
only providing a check for acyclicity and a function to retrieve arguments pro a
proposition. We use FGL [9] to implement the dependency graph, forming nodes
for propositions and edges for the dependencies. For simplicity, we opt to keep
the graph also as the representation of a set of arguments.

type ArgSet = ...

getArgs :: PropLiteral — ArgSet — [Argument]
checkCycle :: ArgSet — Bool

3.2 Carneades Argument Evaluation Structure

The main structure of the argumentation model is called a Carneades Argument
Evaluation Structure (CAES):

Definition 4 (Carneades Argument Evaluation Structure (CAES)). A
Carneades Argument Evaluation Structure (CAES) is a triple

(arguments, audience, standard)

where arguments is an acyclic set of arguments, audience is an audience as
defined below (Def. 5), and standard is a total function mapping each proposition
to to its specific proof standard.

Haskell Gets Argumentative 7

Note that propositions may be associated with different proof standards. This is
considered a particular strength of the Carneades framework. The transliteration
into Haskell is almost immediate?:

newtype CAES = CAES (ArgSet, Audience, PropStandard)

Definition 5 (Audience). Let L be a propositional language. An audience is
a tuple (assumptions, weight), where assumptions C L is a propositionally con-
sistent set of literals (i.e., not containing both a literal and its negation) assumed
to be acceptable by the audience and weight is a function mapping arguments to
a real-valued weight in the range [0, 1].

This definition is captured by the following Haskell definitions:

type Audience = (Assumptions, ArgWeight)
type Assumptions = [PropLiteral]

type ArgWeight = Arqgument — Weight
type Weight = Double

Further, as each proposition is associated with a specific proof standard, we
need a mapping from propositions to proof standards:

type PropStandard = PropLiteral — ProofStandard

A proof standard is a function that given a proposition p, aggregates arguments
pro and con p and decides whether it is acceptable or not:

type ProofStandard = PropLiteral — CAES — Bool

This aggregation process will be defined in detail in the next section, but note
that it is done relative to a specific CAES, and note the cyclic dependence at
the type level between CAES and ProofStandard.

The above definition of proof standard also demonstrates that implementa-
tion in a typed language such as Haskell is a useful way of verifying definitions
from argumentation theoretic models. Our implementation effort revealed that
the original definition as given in [17] could not be realised as stated, because
proof standards in general not only depend on a set of arguments and the audi-
ence, but may need the whole CAES.

3.3 Evaluation

Two concepts central to the evaluation of a CAES are applicability of arguments,
which arguments should be taken into account, and acceptability of propositions,
which conclusions can be reached under the relevant proof standards, given the
beliefs of a specific audience.

2 Note that we use a newtype to prevent a cycle in the type definitions.

8 Bas van Gijzel and Henrik Nilsson

Definition 6 (Applicability of arguments). Given a set of arguments and
a set of assumptions (in an audience) in a CAES C, then an argument a =
(P, E,c) is applicable iff

— p € P implies p is an assumption or [D is not an assumption and p is
acceptable in C | and

— e € FE implies e is not an assumption and [€ is an assumption or e is not
acceptable in C'].

Definition 7 (Acceptability of propositions). Given a CAES C, a propo-
sition p is acceptable in C iff (s p C) is true, where s is the proof standard for
p.

Note that these two definitions in general are mutually dependent because
acceptability depends on proof standards, and most sensible proof standards
depend on the applicability of arguments. This is the reason that Carneades
restricts the set of arguments to be acyclic. (Specific proof standards are con-
sidered in the next section.) The realisation of applicability and acceptability in
Haskell is straightforward:

applicable :: Argument — CAES — Bool
applicable (Arg (prems, excns, _)) caes@Q(CAES (_, (assumptions, _), _))
= and $ [(p € assumptions) V (p ‘acceptable’ caes) | p + prems)]
H
[(e € assumptions) | (e ‘acceptable’ caes) | e « excns |
where
zly=-(zVy)
acceptable :: PropLiteral — CAES — Bool
acceptable ¢ caes@Q(CAES (_, _, standard))
= c ‘s’ caes
where s = standard c

3.4 Proof standards

Carneades predefines five proof standards, originating from the work of Freeman
and Farley [12,11]: scintilla of evidence, preponderance of the evidence, clear
and convincing evidence, beyond reasonable doubt and dialectical validity. Some
proof standards depend on constants such as «a, 3, v; these are assumed to be
defined once and globally. This time, we proceed to give the definitions directly
in Haskell, as they really only are translitarations of the original definitions.

For a proposition p to satisfy the weakest proof standard, scintilla of evidence,
there should be at least one applicable argument pro p in the CAES:

scintilla :: ProofStandard
scintilla p caes@Q(CAES (g, —,_))
= any (‘applicable‘ caes) (getArgs p g)

Haskell Gets Argumentative 9

Preponderance of the evidence additionally requires the maximum weight of
the applicable arguments pro p to be greater than the maximum weight of the
applicable arguments con p. The weight of zero arguments is taken to be 0. As
the maximal weight of applicable arguments pro and con is a recurring theme
in the definitions of several of the proof standards, we start by defining those
notions:

maz Weight Applicable :: [Argument] — CAES — Weight
mazWeight Applicable as caes@Q(CAES (_, (_, argWeight), _))
= foldl maz 0 [argWeight a | a + as, a ‘applicable caes]

mazWeightPro :: PropLiteral — CAES — Weight
mazWeightPro p caesQ(CAES (g, —,_))
= maz WeightApplicable (getArgs p g) caes

mazxWeightCon :: PropLiteral — CAES — Weight
mazWeightCon p caesQ(CAES (g, —,—))
= maxWeightApplicable (getArgs (negate p) g) caes

We can then define the proof standard preponderance:

preponderance :: ProofStandard
preponderance p caes = maxWeightPro p caes > maxWeightCon p caes

Clear and convincing evidence strengthen the preponderance constraints by
insisting that the difference between the maximal weights of the pro and con
arguments must be greater than a given positive constant 3, and there should
furthermore be at least one applicable argument pro p that is stronger than a
given positive constant a:

clear_and_convincing :: ProofStandard
clear_and_convincing p caes
= (mwp >a) A (mwp — mwe > f3)
where
mwp = maxWeightPro p caes
mwc = max WeightCon p caes

Beyond reasonable doubt has one further requirement: the maximal strength
of an argument con p must be less than a given positive constant -; i.e., there
must be no reasonable doubt:

beyond_reasonable_doubt :: ProofStandard
beyond _reasonable_doubt p caes
= clear_and_convincing p caes N (maxWeightCon p caes < 7y)

Finally dialectical validity requires at least one applicable argument pro p
and no applicable arguments con p:

dialectical _validity :: ProofStandard
dialectical _validity p caes
= scintilla p caes N — (scintilla (negate p) caes)

10 Bas van Gijzel and Henrik Nilsson

3.5 Convenience functions

We provide a set of functions to facilitate construction of propositions, argu-
ments, argument sets and sets of assumptions. Together with the definitions
covered so far, this constitute our DSL for constructing Carneades argumenta-
tion models.

mkProp :: String — PropLiteral
mkArg i [String] — [String] — String — Argument
mkArgSet it [Argument] — ArgSet

mkAssumptions :: [String] — [PropLiteral]

A string starting with a ’>-’ is taken to denote a negative atomic proposition.

To construct an audience, native Haskell tupling is used to combine a set of
assumptions and a weight function, exactly as it would be done in the Carneades
model:

audience :: Audience
audience = (assumptions, weight)

Carneades Argument Evaluation Structures and weight functions are defined in
a similar way, as will be shown in the next subsection.

Finally, we provide a function for retrieving the arguments for a specific
proposition from an argument set, a couple of functions to retrieve all arguments
and propositions respectively from an argument set, and functions to retrieve
the (not) applicable arguments or (not) acceptable propositions from a CAES:

getArgs :: PropLiteral — ArgSet — [Argument)
getAllArgs o ArgSet — [Argument)]
getProps it ArgSet — [PropLiteral]
applicableArgs w CAES — [Argument)]
nonApplicableArgs :: CAES — [Argument)]
acceptableProps :: CAES — [PropLiteral)
nonAcceptableProps :: CAES — [PropLiteral)

3.6 Implementing a CAES

This subsection shows how an argumentation theorist given the Carneades DSL
developed in this section quickly and at a high level of abstraction can implement
a Carneades argument evaluation structure and evaluate it as well. We revisit
the arguments from Section 2 and assume the following:

arguments = {argl , arg2, arg3},
assumptions = {kill, witness, witness2, unreliable2 },
standard(intent) = beyond-reasonable-doubt,

standard(z) = scintilla, for any other proposition x,
a=04, =0.3, v=0.2.

Haskell Gets Argumentative 11

Arguments and the argument graph are constructed by calling mkArg and
mkArgSet respectively:

argl, arg2, args :: Argument

argl = mkArg ["kill", "intent"] [] "murder"

arg2 = mkArg ["witness"] ["unreliable"] "intent"
arg3 = mkArg ["witness2"] ["unreliable2"| "-intent"
argSet :: ArgSet

argSet = mkArgSet [argl, arg2, arg3]

The audience is implemented by defining the weight function and calling
mkAssumptions on the propositions which are to be assumed. The audience is
just a pair of these:

weight :: ArgWeight

weight arg | arg = argl = 0.8

weight arg | arg = arg2 = 0.3

weight arg | arg = arg8 = 0.8

weight _ = error "no weight assigned"

assumptions :: [PropLiteral]

assumptions = mkAssumptions ["kill", "witness",
"witness2", "unreliable2"]

audience :: Audience
audience = (assumptions, weight)

Finally, after assigning proof standards in the standard function, we form the
CAES from the argument graph, audience and function standard:

standard :: PropStandard

standard (_, "intent") = beyond_reasonable_doubt
standard _ = scintilla

caes :: CAES

caes = CAES (argSet, audience, standard)

We can now try out the argumentation structure. Arguments are pretty
printed in the format premises ~ exceptions = conclusion:

getAllArgs argSet

> [["witness2"] ~["unreliable2"] = "-intent",
["witness"] ~["unreliable"] = "intent",
["kill", "intent"]|~] = "murder"|

As expected, there are no applicable arguments for —intent, since unreliable2
is an exception, but there is an applicable argument for intent, namely arg2:

filter (‘applicable‘caes) $ getArgs (mkProp "-intent") argSet
>]

12 Bas van Gijzel and Henrik Nilsson

filter (‘applicable‘caes) $ getArgs (mkProp "intent") argSet
> [["witness"] = "intent"]

However, despite the applicable argument arg2 for intent, murder should not
be acceptable, because the weight of arg2 < a. Interestingly, note that we can’t
reach the opposite conclusion either:

acceptable (mkProp "murder") caes
> False

acceptable (mkProp "-murder") caes
> False

As a further extension, one could for example imagine giving an argumenta-
tion theorist the means to see a trace of the derivation of acceptability. It would
be straightforward to add further primitives to the DSL and keeping track of
intermediate results for acceptability and applicability to achieve this.

4 Related Work

In this section we consider related work of direct relevance to our interests in
DSLs for argumentation theory, specifically efforts in the field of computational
argumentation theory to implement argumentation frameworks, and DSLs in
closely related areas with similar design goals to ours.

For a general overview of implementations and a discussion of limitations re-
garding experimental testing, see Bryant and Krause [4]. Most closely related to
the work presented in this paper is likely the well-developed implementation [14]
of Carneades in Clojure3. However, the main aim of that implementation is to
provide efficient tools, GUIs, and so on for non-specialists, not to express the im-
plementation in a way that directly relates it to the formal model. Consequently,
the connection between the implementation and the model is not immediate.
This means that the implementation, while great for argumentation theorists
only interested in modelling argumentation problems, is not directly useful to a
computational argumentation theorist interested in relating models and imple-
mentations, or in verifying definitions. The Clojure implementation is thus in
sharp contrast to our work, and reinforces our belief in the value of a high-level,
principled approach to formalising argumentation theory frameworks.

One of the main attempts to unify work in argumentation theory, encompass-
ing arguments from the computational, philosophical and the linguistic domains,
is the Argument Interchange Format (AIF) [6,26]. The AIF aims to capture argu-
ments stated in the above mentioned domains, while providing a common core
ontology for expressing argumentative information and relations. Very recent
work has given a logical specification of AIF [1], providing foundations for in-
terrelating argumentation semantics of computational models of argumentation,
thereby remedying a previous weaknesses of AIF. Our implementation tackles

3 http://carneades.berlios.de/

Haskell Gets Argumentative 13

the problem from another direction, starting with a formal and computationally
oriented language instead.

Walkingshaw and Erwig [29,10] have developed an EDSL for neuron di-
agrams [21], a formalism in philosophy that can model complex causal rela-
tionships between events, similar to how premises and exceptions determine a
conclusion in an argument. Walkingshaw and Erwig extend this model to work
on non-Boolean values, while at the same time providing an implementation,
thereby unifying formal description and actual implementation. This particular
goal is very similar to ours. Furthermore, the actual formalisms of neuron dia-
grams and the Carneades argumentation model are technically related: while an
argument on its own is a simple graph, the dependency graph corresponding to
the whole Carneades argument evaluation structure is much more complex and
has a structure similar to a full neuron diagram. Arguments in Carneades could
thus be seen as an easy notation for a specific kind of complex neuron diagrams
for which manual encoding would be unfeasible in practice. However, due to the
complexity of the resulting encoding, this also means that for an argumentation
theorist, neuron diagrams do not offer directly relevant abstractions. That said,
Walkingshaw’s and Erwig’s EDSL itself could offer valuable input on the design
for a DSL for argumentation.

Similarly, causal diagrams are a special case of Bayesian networks [22] with
additional constraints on the semantics, restricting the relations between nodes
to a causal relation (causal diagrams are a graphic and restricted version of
Bayesian networks). Building on the already existing relation between Carneades
and Bayesian networks [19], we can view the neuron diagrams generalised to non-
Boolean values in Carneades by generalising the negation relation and proof
standards to non-Boolean values in the obvious way, and picking scintilla of
evidence as the proof standard for all propositions. So, in a way, neuron diagrams
are a specific case of arguments, using scintilla of evidence as the proof standard.
Finally, to compute an output for every combination of inputs, as is done for
neuron diagrams, we can vary the set of assumptions accordingly.

However, formal connections between Bayesian networks and (dialectical)
argumentation are still in its infancy; most of the work such as Grabmair [19],
Keppens [20] and Vreeswijk [28] are high level relations or comparisons, contain-
ing no formal proofs.

5 Conclusions and Future Work

In this paper we have discussed the Carneades argumentation model and an
implementation of it in Haskell. This paper should be seen as a case study and
a step towards a generic DSL for argumentation theory, providing a unifying
framework in which various argumentation models can be implemented and their
relationships studied. We have seen that the original mathematical definitions
can be captured at a similar level of abstraction by Haskell code, thereby allowing
for greater understanding of the implementation. At the same time we obtained a
domain specific language for the Carneades argumentation framework, allowing

14 Bas van Gijzel and Henrik Nilsson

argumentation theorists to realise arguments essentially only using a vocabulary
with which they are already familiar.

The initial experience from our work has been largely positive. Comments
from Tom Gordon [15], one of the authors and implementers of the Carneades
argumentation model, suggest that our implementation is intuitive and would
even work as an executable specification, which is an innovative approach in
argumentation theory as a field. However, our implementation was not seen as
usable to non-argumentation theorists, because of the lack of additional tools.
We do not perceive this as a worrying conclusion; our framework’s focus is on
computational argumentation theorists. We rather envision our implementation
being used as a testing framework for computational argumentation theorists
and as an intermediate language between implementations, providing a much
more formal alternative to the existing Argument Interchange Format [26].

One avenue of future work is the generalisation of our DSL to other related
argumentation models. It is relatively common in argumentation theory to define
an entirely new model to realise a small extension. However, this hurts the meta-
theory as lots of results will have to be re-established from scratch. By reducing
such an extension to an existing implementation/DSL such as ours, for instance
by providing an implementation of an existing formal translation such as [13,
23], we effectively formalise a translation between both models, while gaining an
implementation of this generalisation at the same time.

This could be taken even further by transferring the functional definitions of
an argumentation model into an interactive theorem prover, such as Agda. First
of all, the formalisation of the model itself would be more precise. While the
Haskell model might seem exact, note that properties such as the acyclicity of
arguments, or that premises and exceptions must not overlap, are not inherently
part of this model. Second, this would enable formal, machine-checked, reasoning
about the model, such as establishing desirable properties like consistency of the
set of derivable conclusions.

Then, if multiple argumentation models were to be realised in a theorem
prover, relations between those models, such as translations, could be formalised.
As mentioned in the introduction, there has recently been much work on formal-
isation of translations between conceptually very different argumentation mod-
els [2,13,23,18]. But such a translation can be very difficult to verify if done by
hand. Using a theorem prover, the complex proofs could be machine-checked,
guaranteeing that the translations preserve key properties of the models. An
argumentation theorist might also make use of this connection by inputting an
argumentation case into one model and, through the formal translation, retrieve
a specification in another argumentation model, allowing the use of established
properties (such as rationality postulates [5]) of the latter model.

Finally, we are interested in the possibility of mechanised argumentation
as such; e.g., as a component of autonomous agents. We thus intend to look
into realising various argumentation models efficiently by considering suitable
ways to implement the underlying graph structure and exploiting sharing to
avoid unnecessarily duplicated work. Ultimately we hope this would allow us to

Haskell Gets Argumentative 15

establish results regarding the asymptotic time and space complexity inherent
in various argumentation models, while providing a framework for empirical
evaluations and testing problems sets at the same time. Especially the latter
is an area that has only recently received attention [4,2], due to the lack of
implementations and automated conversion of problem sets.

Acknowledgments

The authors would like to thank the anonymous reviewer from the initial TFP
feedback round whose very constructive comments helped to significantly im-
prove this paper. We would furthermore like to thank Tom Gordon and the
anonymous reviewers of the second feedback round for their helpful suggestions.

References

1. Floris Bex, Sanjay Modgil, Henry Prakken, and Chris Reed. On logical specifi-
cations of the Argument Interchange Format. Journal of Logic and Computation,
2012.

2. Gerhard Brewka, Paul E. Dunne, and Stefan Woltran. Relating the semantics
of abstract dialectical frameworks and standard AFs. In Proceedings of the 22nd
International Joint Conference on Artificial Intelligence (IJCAI-11), pages 780
785, 2011.

3. Gerhard Brewka and Thomas F. Gordon. Carneades and abstract dialectical frame-
works: a reconstruction. In Massimiliano Giacomin and Guillermo R. Simari, ed-
itors, Computational Models of Argument. Proceedings of COMMA 2010, pages
3-12, Amsterdam etc, 2010a. IOS Press 2010.

4. Daniel Bryant and Paul Krause. A review of current defeasible reasoning imple-
mentations. Knowl. Eng. Rev., 23:227-260, September 2008.

5. Martin Caminada and Leila Amgoud. On the evaluation of argumentation for-
malisms. Artificial Intelligence, 171:286-310, April 2007.

6. Carlos Chesnievar, Jarred McGinnis, Sanjay Modgil, [yad Rahwan, Chris Reed,
Guillermo Simari, Matthew South, Gerard Vreeswijk, and Steven Willmott. To-
wards an argument interchange format. The Knowledge Engineering Review,
21(4):293-316, 2006.

7. Carlos Ivan Chesfievar, Ana Gabriela Maguitman, and Ronald Prescott Loui. Log-
ical models of argument. ACM Comput. Surv., 32(4):337-383, December 2000.

8. Phan Minh Dung. On the acceptability of arguments and its fundamental role
in nonmonotonic reasoning, logic programming and n-person games. Artificial
Intelligence, 77(2):321-357, 1995.

9. Martin Erwig. Inductive graphs and functional graph algorithms. Journal Func-
tional Programming, 11(5):467-492, September 2001.

10. Martin Erwig and Eric Walkingshaw. Causal Reasoning with Neuron Diagrams.
In IEEE Int. Symp. on Visual Languages and Human-Centric Computing, pages
101-108, 2010.

11. Arthur M. Farley and Kathleen Freeman. Burden of proof in legal argumentation.
In Proceedings of the 5th International Conference on Artificial Intelligence and
Law (ICAIL-05), pages 156-164, New York, NY, USA, 1995. ACM.

16

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Bas van Gijzel and Henrik Nilsson

Kathleen Freeman and Arthur M. Farley. A model of argumentation and its
application to legal reasoning. Artificial Intelligence and Law, 4:163-197, 1996.
10.1007/BF00118492.

Bas van Gijzel and Henry Prakken. Relating Carneades with abstract argumen-
tation via the ASPICT framework for structured argumentation. Argument &
Computation, 3(1):21-47, 2012.

Thomas F. Gordon. An overview of the Carneades argumentation support system.
In Chris Tindale and Chris Reed, editors, Dialectics, Dialogue and Argumenta-
tion. An Examination of Douglas Walton’s Theories of Reasoning, pages 145—156.
College Publications, 2010.

Thomas F. Gordon. Personal communication, 2012.

Thomas F. Gordon, Henry Prakken, and Douglas Walton. The Carneades model
of argument and burden of proof. Artificial Intelligence, 171(10-15):875-896, 2007.
Thomas F. Gordon and Douglas Walton. Proof burdens and standards. In
Guillermo Simari and Iyad Rahwan, editors, Argumentation in Artificial Intelli-
gence, pages 239-258. Springer US, 2009.

Guido Governatori. On the relationship between carneades and defeasible logic.
In Tom van Engers, editor, Proceedings of the 13th International Conference on
Artificial Intelligence and Law (ICAIL 2011). ACM Press, 2011.

Matthias Grabmair, Thomas F. Gordon, and Douglas Walton. Probabilistic se-
mantics for the carneades argument model using bayesian networks. In Proceed-
ings of the 2010 conference on Computational Models of Argument: Proceedings of
COMMA 2010, pages 255266, Amsterdam, The Netherlands, The Netherlands,
2010. IOS Press.

Jeroen Keppens. Argument diagram extraction from evidential bayesian networks.
Artificial Intelligence and Law, 20:109-143, 2012.

David Lewis. Postscripts to ‘Causation’. In Philosphical Papers, Vol. II, pages
196-210. Oxford University Press, 1986.

Judea Pearl. Bayesian networks: A model of self-activated memory for evidential
reasoning. In Proceedings of the 7th Conference of the Cognitive Science Society,
University of California, Irvine, pages 329-334, 1985.

Henry Prakken. An abstract framework for argumentation with structured argu-
ments. Argument & Computation, 1:93-124, 2010.

Henry Prakken and Gerard A W Vreeswijk. Logics for defeasible argumentation.
Handbook of Philosophical Logic, 4(5):219-318, 2002.

Iyad Rahwan, Sarvapali D. Ramchurn, Nicholas R. Jennings, Peter Mcburney,
Simon Parsons, and Liz Sonenberg. Argumentation-based negotiation. Knowl.
Eng. Rev., 18(4):343-375, December 2003.

Iyad Rahwan and Chris Reed. The argument interchange format. In Guillermo
Simari and Iyad Rahwan, editors, Argumentation in Artificial Intelligence, pages
383-402. Springer US, 2009.

Chris Reed and Glenn Rowe. Araucaria: software for argument analysis, diagram-
ming and representation. International Journal of AI Tools, 13(4):961-980, 2004.
Gerard A. W. Vreeswijk. Argumentation in bayesian belief networks. In Proceedings
of the First international conference on Argumentation in Multi-Agent Systems,
ArgMAS’04, pages 111-129, Berlin, Heidelberg, 2005. Springer-Verlag.

E. Walkingshaw and M. Erwig. A DSEL for Studying and Explaining Causation.
In IFIP Working Conference on Domain Specific Languages (DSL’11), pages 143—
167, 2011.

