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Abstract

Monads, applicative functors, and related notions of computation have been instrumental both for
the theoretical study of effects and for practical programming with effects in a pure setting. Some
languages, notably Haskell, even provide dedicated support for programming with such notions.
Over time, practical needs as well as theoretical investigations have given rise to a number of
generalisations. Examples include constrained and indexed monads. These generalisations may seem
modest and obvious, but there are significant differences in terms of the categorical foundations.
Further, language support is lacking, leading to mutually incompatible implementations with negative
consequences for practical use. This raises the question exactly how these generalisations are related,
and if there are unifying notions that can serve as a common foundation for implementation. In
earlier work, as a partial answer, we introduced supermonads, a unifying notion for several popular
generalisations of monads, along with language support for Haskell in the form of libraries and a
type-checker extension. Building on that, this paper aims to provide a comprehensive answer by
also introducing superapplicatives, extending the language support accordingly, and providing a
detailed study of the categorical foundations for the various notions, culminating in unifying notions
that show that supermonads and superapplicatives rest on sound theoretical foundations. The paper
further provides examples and case studies illustrating the use of supermonads and superapplicatives
in practice.

1 Introduction

A number of different notions of computation have been introduced to study effects and to
structure effectful programming in a pure setting, notably monads (Moggi, 1988; Moggi,
1991; Wadler, 1992), arrows (Hughes, 2000), and applicative functors or simply applica-
tives (McBride & Paterson, 2008). Monads in particular are an integral part of Haskell and
enjoy dedicated syntactic support in the form of the do-notation. Applicatives and arrows
are also widely used, and extensions of the do-notation have been introduced in support
(Paterson, 2001; Marlow et al., 2016) confirming their growing importance.

Standard monads, arrows and applicatives cover a lot of ground. Nevertheless, a range of
generalisations have been proposed, driven by both theoretical investigations and practical
needs, generally in a quest for improved static correctness guarantees by adding type in-
dices or constraints. Examples include session-types (Pucella & Tov, 2008), effect systems
(Orchard & Petricek, 2014; McBride, 2011), and information flow control (Devriese &
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Piessens, 2011). The practical development of these generalisations have generally taken
place in the context of Haskell with GHC extensions. Indeed, some of the generalisations
have been enabled by, or become more useful thanks to, recent type system extensions.

Unfortunately, as presently realised, these generalisations do not interoperate smoothly
leading to a number of usability problems. In Haskell, computational notions such as
monads or applicatives are each embodied by a type class allowing the programmer to
use specific instances through a common API, including the do-notation. The generalised
notions, however, beacuse of the type indices and constraints, require new classes, separate
from the standard ones, and as a consequence also separate versions of standard library
functions. This makes it harder both to read and write code and hampers code reuse.
Further, if more than one variation of a computational notion is used within a module, it
often becomes necessary to write the code in a way that makes it manifest which variation
is used where, adding significant clutter.

These shortcomings are arguably Haskell-specific, but they point at a deeper problem:
there are significant differences between the categorical foundations of the different gen-
eralisations. Consequently it is hardly surprising that direct realisations of the various
variations, however done, are quite disparate, leading to issues like what was discussed
above. Thus, while the programming language context for the present work is Haskell,
the problem is general. It is therefore of interest to look for a single notion that captures
as many of the monadic generalisations as possible in a uniform manner, along with a
concrete realisation that fits with existing monadic support in the language in question.
And for the same reasons, it is of interest to look for a unifying notion for applicatives.

In prior work (Bracker & Nilsson, 2015), we successfully integrated polymonads (Hicks
et al., 2014) into Haskell in an effort to mitigate the above problems. Polymonads are
very general and have the benefit of being compositional. In its current form, however, the
polymonad theory does not allow non-phantom indices or constraints on result types. Both
of these restrictions exclude important use cases. Further, the polymonad laws are complex
and less intuitive than the standard monad laws, creating an additional hurdle for end users.

More recently we explored a different approach we call supermonads (Bracker & Nils-
son, 2016). Supermonads provide a unified representation covering a broad range of gener-
alised monads in Haskell. The prototype implementation consists of a GHC type-checker
plugin to assist with constraint solving and supporting class definitions and libraries. While
supermonads are less general than polymonads in some respects, they do not have the
specific limitations regarding indices and constraints discussed above, and they do cover all
use cases that we found through a comprehensive literature survey and a survey of readily
available Haskell libraries (Section 3). Moreover, the supermonad laws are straightforward
generalisations of the standard monad laws.

The present article takes the work on supermonads further in two ways: we show that
the approach also works for applicative functors by introducing superapplicatives, and
we provide theoretical foundations for both supermonads and superapplicatives. To make
this article reasonably self-contained, the material on supermonads draws from our earlier
work. The specific contributions of this article in more detail are:

e Superapplicatives: a generalisation of applicative functors mirroring supermonads.

e Extensions of the supermonad plugin and libraries to support superapplicatives.
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e (Categorical models for a range of monadic and applicative notions of computation,
with full formalisation of models and theorems in the proof assistant Agda.

e Work towards a unified categorical model to provide semantics and formal structure
to supeapplicatives and supermonads.

The article also provides detailed examples and case studies as motivation and for illustra-
tion.

The rest of the article is structured as follows. Section 2 provides technical preliminar-
ies, while sections 3 and 4 introduce and discuss various generalisations of monads and
applicatives. Supermonads and superapplicatives are then introduced as unifying notions
in Section 5, with Section 6 illustrating with a range of examples. Section 7 studies the
categorical foundations of the various generalisations and their relationships, culminating
in unifying categorical notions that provide a theoretical foundation for superapplicatives
and supermonads. The implementation of the plugin for the GHC type checker, which helps
resolving the constraints associated with superapplicatives and supermonads, is discussed
in Section 8, while Section 9 evaluates our approach as presently implemented through a
couple of case studies. Related work is discussed in Section 10 and, finally, Section 11
concludes and outlines future work.

2 Preliminaries
2.1 Nomenclature

Let us first fix the terminology for the generalised monadic notions under consideration as
the terminology is somewhat varying both in our previous work (Bracker & Nilsson, 2015;
Bracker & Nilsson, 2016) and the literature more broadly. We opt for what we consider to
be consistent and well-established terms.

Used name | Other names

standard monad | classical monad
graded monad | effect monad
indexed monad | parametrised or Hoare monad

constrained monad | restricted monad

We will use the term parametrised monad collectively for standard, graded, and indexed
monads.

The term “applicative functor” can be very unwieldy. Therefore, we will use the phrase
“applicative” or “applicatives” synonymously with it from this point onward.

2.2 Haskell extensions
The Haskell code discussed and presented in this work requires several extensions of the

language to compile. Therefore, we use the Glasgow Haskell Compiler! (GHC). The plugin

U The Glasgow Haskell Compiler - https://www.haskell.org/ghc
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mechanism and language extensions used to implement supermonads or superapplicatives
are only available in GHC.

The following list contains the most important language extensions our library and
examples require. Each extension gives reference to the section of the GHC user’s guide”
that covers it.

RebindableSyntax: Allows syntactic sugar, such as the do-notation, to be translated in
terms of user-specified functions, such as custom bind and sequence operations (Section
9.3.15).

MultiParamTypeClasses: Allows defining type classes with more than one argument
(Section 9.8.1.1).

TypeFamilies: Facilitates type-level programming by effectively providing type-level
functions. We require this extension to use associated type synonyms (Chakravarty et al.,
2005) for defining instance specific type-level information (Section 9.9).

DataKinds: Allows data types to be used on the type/kind level instead of just the value/type
level (Section 9.10).

PolyKinds: Allows kinds that are polymorphic in the used kind and generalises kind
inference to support polymorphic kinds (Section 9.11).

ConstraintKinds: Allows types to contain constraints by introducing a kind for con-
straints®. Together with associated type synonyms, this allows instance specific con-
straints (Section 9.14.5).

KindSignatures: Implied by TypeFamilies. Adds syntactic support for specifying the
kind of a type; e.g., in the head of type class declarations or in the arguments of associ-
ated type synonyms (Section 9.15.4).

3 Monadic notions

To create a unified representation and theory of different generalisations of monads we
need to decide which notions we aim to support. In this section we will introduce the three
popular generalisations of monads that we aim to support alongside with standard monads:
indexed, graded and constrained monads. Each notions will be introduced as it is usually
represented and formulated in Haskell.

When we talk about monadic notions, we will often work with n-ary type constructors K
and their arguments ay, ..., a,. We will refer to K as the base constructor and ay,...,a,—|
as the indices of K. The result type of our monadic computation is a;,.

An overview of all the different operations and laws from the notions we will present is
given in Figure 1 and Figure 2 respectively. We provide these tables as a reference point to
directly compare different monadic notions with each other. All parts of the table will be
discussed and explained in the following sections.

2 Glasgow Haskell Compiler User’s Guide (8.2.1) - http: //downloads.haskell.org/~ghc/8.
2.1/docs/html/users_guide

3 Constraint Kinds for GHC (10. September 2011) - http://blog.omega-prime.co.uk/2011/
09/10/constraint-kinds-for-ghc/
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Monad Type constructor | bind:V a 8. | return:V a.
Standard M : % — x Ma—(a—-MB)—MpB o—-Ma
Constrained | M : % — x (BindCts ax B) = (ReturnCts o) =
Ma—(a—-MB)—MpB o—Ma
Indexed M:IT—>T—x—x% | Vijk. Vi
Mija—=(c—>MjkB)—>MikB | a—=>Miia
Graded M:E — % — % YVij.
Micg—(ac—=MjB)=M(Gioj)B | a—-Mea

I - Kind of the indices.

E - Kind of the elements of a monoid.

¢ - Operation of the monoid E.
€ - Neutral element of the monoid E.

Fig. 1. Types of the operators of different generalisations of monads.

Standard | Constrained | Indexed Graded
Left identity: returna >>= f = fa
(BindCts; a B, ReturnCts; o) =
a: | o o a o
frloa—-MB oa—MpB a—MjkB a—=Mjp
Right identity: m >>= return = m
(BindCts; a o, ReturnCts; a) =
m: | Ma M «a Mija Mio
Associativity: (m >>= f) >>=g = m >>= (Ax— fx >>=g)
( BindCts; a 8,BindCts;, B v
, BindCts, a y) =
m: | Ma M «a Mija Mio
a—MpB a—MpB a—MjkB a—Mjp
g: | =My B—My B—Mkly B—Mky

; - Constraint originates from the left-hand side of the equation.
- Constraint originates from the right-hand side of the equation.

Fig. 2. Laws of different generalisations of monads.

3.1 Standard monads

To highlight the differences of the generalisations, we first reintroduce standard monads
(Moggi, 1988). In Haskell they are represented by a type class containing the bind and
return operation:

* -> %) where
->mb

class (Functor m) => Monad (m ::
(>>=) ::ma->(a->mb)

return :: a -> m a

Instances of this class are expected to obey the monad laws (Figure 3) with suitable a, f,
g and m. As indicated by the superclass, each standard monad has an underlying functor
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returna >>=f = fa (Left identity)
m >>=return = m (Right identity)
(m>=f)>>=g = m>=(Ax— fx>>=g) (Associativity)

Fig. 3. The monad laws.

that provides the fmap function to map the result type of a monadic computation with a
function:

class Functor (m :: * -> %) where
fmap :: (a ->b) ->ma ->mb

Section 5.7 will explain why we do not mention the recently added* Applicative
superclass for Monad in Haskell.

The versatility of standard monads is well known. Monads are used to structure state,
exceptions, parsing, non-determinism, concurrency, continuations and many other side-
effects (Moggi, 1991; Wadler, 1992) as well as embedded domain specific languages (ED-
SLs) (Bracker & Gill, 2014).

3.2 Indexed monads

Session types are one application where the need for indexed monads arises (Pucella &
Tov, 2008). The goal of session types is to verify the proper execution of a communica-
tion protocol on the type level. Lets assume we use the following types to express our
communication protocol:

data Read a p

data Write a p

data Done

-- First read an integer, then write a string and
-- finally close communication.

type SomeProtocol = Read Int (Write String Done)

As we can see in SomeProtocol we can express simple protocols on the type level using
the Read, Write and Done type. If we want to provide operations that execute this protocol
we need to know what the executed protocol looks like and how much of the protocol is
executed. A popular way to do this is using Hoare logic (Hoare, 1969) to show the state
of the protocol before and after a operation. Thus, we can provide a type Session i j a
that encodes the execution of a protocol: i and j represent the protocol before an after the
computation and a is the result type of the computation. For example, the read and write
operation could look as follows:

read :: Session (Read a i) i a
write :: a -> Session (Write a i) i ()
4 Functor-Applicative-Monad Proposal - https://wiki.haskell.org/

Functor-Applicative-Monad_Proposal
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Since Session represents a side-effect it would be convenient if it formed a monad to allow
us to sequence operations and utilise the do-notation. The bind operation for Session has
the following type that encodes the law of composition in Hoare logic:

(>>=) :: Session i j a -> (a -> Session j k b) -> Session i k b

The return operation does not execute the protocol and therefore represents the law for
empty statements:

return :: a -> Session i i a

Due to the additional two indices Session cannot form a standard monad, but it does form
an indexed monad.

As demonstrated above indexed monads (Atkey, 2009; Wadler, 1994) add two indices to
the type constructor. They respectively encode information about the internal state before
and after the monadic computation is executed. Representations of indexed monads in
Haskell usually have the following form:

class IndexedMonad (m :: k -> k -> * -> %) where
(>>=) ::mija->(@->mjkb) ->mikb
return :: a ->miia

Note, the kind of m uses the polymorphic kind variable k to specify the kind of the indices.
A kind variable is used, because it can be instantiated with any kind, allowing instances
to choose their indices freely. The bind operation can only compose two computations
if their respective post- and precondition match. The result of the bind operation has
the precondition of the first computation and the postcondition of the second. The return
operation has no side-effects. Therefore, pre- and postcondition can be anything, but are
required to match.

The laws for indexed monads are exactly the same as for standard monads (Figure 3).
Only the type of the involved variables a, f, g and m change. An overview of the types of
the involved variables for each generalisation is given in Figure 2.

In contrast to standard monads, indexed monads have a family of underlying functors:
One for each possible pair of indices. If we provide a generalised functor class, we would
be able to express this as a superclass for IndexedMonad. The generalised functor class
would have the following form:

class IndexedFunctor (f : k -> k -> * -> *) where
fmap :: (a ->b) >fija->fijb

If we reuse the standard functor class it is also possible to give suitable instances, but due to
the requirement to have functor instance for all pairs of indices it is not possible to express
this requirement as a superclass constraint anymore. If we have an indexed monad V, the
family of associated functors can be given through the following instance of the standard
Functor class:

instance Functor (M i j) where fmap =

Wadler demonstrated the usefulness of indexed monads for composable continuations
(Wadler, 1994). Other applications of indexed monads include the above session types’

5 Hackage: simple-sessions - http://hackage .haskell.org/package/simple-sessions
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(Pucella & Tov, 2008) and typed state (Atkey, 2009). Several packages on Hackage pro-
vide implementations of indexed monads®7-3. The indexed package provides the above
examples of the indexed monad and functor type class.

3.3 Graded monads

To give an example of where the need for graded monads arises, we will look at vectors
that encode their length as part of their type. A vector has the type Vector n a where n is
the number of elements in the vector and a is the type of the elements. We can supply all of
the functions that are well-known from lists for Vector, but once we try to give a monad
instance for Vector a problem arises. For lists we can use concatMap to implement the
bind operation:

concatMap :: [a] -> (a -> [b]) -> [b]
For vectors the type of concatMap has a similar but slightly different shape:
concatMap :: Vector n a -> (a -> Vector m b) -> Vector (n * m) b

Note that there are two different lengths that need to be multiplied in the resulting vector.
Therefore, the version of concatMap for Vector cannot be used to implement a bind
operation, although its type is similar to that of the bind operation.

A similar issue arises if we try to write down the type of return for Vector:

return :: a -> Vector 1 a

If we try to give an instance of Monad for (Vector 1) we do not get the generality we
expect the resulting bind operation to have.

There are many more examples where the same problem arises: information flow control
(Devriese & Piessens, 2011), heterogeneous state and fine-grained composable control of
side-effects (Orchard & Petricek, 2014). All of them intend to encode certain information
or invariants (vector length) about their computation in an additional index and then require
to compose said index in the result type of the bind operation.

Graded monads (Wadler, 1998; Katsumata, 2014; Orchard & Petricek, 2014) introduce
said additional index in their type constructor. This index contains a monoidal type that is
used to encode all of the information or invariants of a computation. When two compu-
tations are composed using the bind operation their effects are merged together using the
monoid operation (multiplication). The return operation has no side-effects and therefore
always has the neutral element of the monoid as index (1).

The monoidal structure cannot be captured at the type level in standard Haskell. There-
fore, many implementations”:'° use associated type synonyms to express the neutral ele-
ment (Unit) and the monoid operation (Plus):

© Hackage: indexed - http://hackage .haskell.org/package/indexed

7 Hackage: monad-param - http://hackage .haskell.org/package/monad-param
8 Hackage: index-core - http://hackage.haskell.org/package/index- core

9 Hackage: effect-monad - http: //hackage .haskell.org/package/effect-monad
10" Hackage: monad-param - http: //hackage .haskell.org/package/monad-param
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http://hackage.haskell.org/package/monad-param
http://hackage.haskell.org/package/index-core
http://hackage.haskell.org/package/effect-monad
http://hackage.haskell.org/package/monad-param
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class GradedMonad (m :: k -> * -> %) where
type Unit m :: k
type Plus m (i :: k) (j :: k) :: k
type Inv m (i :: k) (j :: k) :: Constraint

>>=) :: (Invmij)=>mia->(@->mjb) ->m Plusmij)b
return :: a -> m (Unit m) a

Again, the kind variable k determines the kind of the monoid values. A polymorphic kind
variable is required, because, as with indexed monads, this gives the user a choice to use
values lifted to the kind level, e.g. lists or natural numbers, as monoid. Depending on the
monoid, constraints on the indices may be required to ensure that the instance works as
expected. These constraints can be specified through associated constraint Inv.

Just like indexed monads, graded monads also have an underlying family of functors:
One for each element of the monoid. Whether we can specify a superclass constraint for
those functors again depends on whether we want to specify a generalised functor class
or use the standard one. The arguments for either case are analogous to those made for
indexed monads.

The laws, again, are exactly the same as for standard monads (Figure 3) with a, f, g and
m of appropriate type.

3.4 Constrained monads

The final generalisation we want to support introduces constraints on the result types of the
monadic computations.

A well-known example of this generalisation is Haskells representation of unordered
finite sets Set!! (Hughes, 1999). Set would forms a standard monad just like lists do, but
cannot because it requires an ordering (Ord) on its elements to allow an efficient internal
representation (Adams, 1993). This leads to the following types for fmap, >>= and return:

fmap :: Ord b => (a -> b) -> Set a -> Set b
return :: a -> Set a
(>>=) :: Ord b => Set a -> (a -> Set b) -> Set b

In Haskell we can allow this through associated constraints:

class ConstrainedMonad (m :: * -> %) where
type BindCts m (a :: %) (b :: %) :: Constraint
type ReturnCts m (a :: *) :: Constraint
(>>=) :: (BindCts mab) =>ma -> (a ->mb) ->mb
return :: (ReturnCts m a) => a -> m a

Again the laws are the same as for standard monads (Figure 3).
Constrained monads necessitate the introduction of constrained functors to implement
their underlying functor:

'l Hackage: containers - http://hackage.haskell.org/package/containers
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class Functor (f :: * -> %) where
type FunctorCts f (a :: %) (b :: *) :: Constraint

fmap :: (FunctorCts f a b) => (a ->b) ->f a->fb

The introduction of this new functor type class is necessary, because unlike for indexed or
graded monads that just introduce additional indices the standard functor type class cannot
express constraints.

There are other examples of constrained monads, e.g., finite quantum vectors (Vizzotto
et al., 2006). Domain specific languages (Persson et al., 2012; Bracker & Gill, 2014)
provide a recurring need for constrained monads as well.

We are aware of the two packages rmonad!? and constraint-classes!'? that provide
support for constrained or restricted monads. A deep embedding together with normalisa-
tion can provide an alternative way to work with constrained monads without going beyond
the standard monad class (Sculthorpe et al., 2013).

4 Applicative notions

In Haskell a thorough discussion of functors and monads usually also includes applicatives.
We will now develop and introduce the associated generalised applicatives of the monadic
notions discussed in the previous section.

We are not aware of any literature or project that uses or requires the generalised ap-
plicatives we discuss in the following sections. However, we can derive the generalised
applicative from each monadic notion. To do so, we look at how a standard applicative
can be derived from a standard monad and use the same process on indexed, graded and
constrained monads to get their corresponding applicatives. Each of the derivations refer to
their formalisation in Agda. Further information on the Agda formalisation can be found
in Section 7.1.

As in the previous section we provide an overview of all the different applicative op-
erations and laws in Figure 4 and Figure 5 respectively. Both tables are discussed in
the following sections and provide a reference point to compare the different applicative
notions with each other.

4.1 Standard applicatives

Drawing from work on parser combinators by Swierstra and Duponcheel (1996), standard
applicatives were introduced by McBride and Paterson in 2008. They consists of the ap
(<*>) and pure operation. The ap operation applies an encapsulated function to an encap-
sulated value and pure simply lifts a value into the applicative:

class Applicative (f :: * -> %) where
(<¥>) :: f (a->b) >fa->fhb
pure :: a ->f a

12 Hackage: rmonad - http://hackage .haskell.org/package/rmonad
13 Hackage: constraint-classes - http://hackage.haskell.org/package/
constraint-classes
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Applicative | Type constructor | ap:Voaf. | pure:V a.
Standard M : % — x M(a—=B)—>Maoa—MpB o—-Ma
Constrained | M : % — x (ApCts a B) = (PureCts @) =
M(a—=B)—>Maoa—MpB o—Ma
Indexed M:IT—>T—x—x% | Vijk. Vi
Mij(a—=B)=>Mjka—-MikB | a—=>Miia
Graded M:E — % — % YVij.
Mi(ao—=B)-Mja—-M(Gio¢j)B | a—-Mea

I - Kind of the indices.

E - Kind of the elements of a monoid.

¢ - Operation of the monoid E.

€ - Neutral element of the monoid E.

Fig. 4. Types of the operators of different generalisations of applicatives.

Standard | Constrained Indexed Graded

Identity: pure id <*> u = u

(ApCts; a o, PureCts; (@ — a)) =
u: | Ma M a Mija Mia
Composition: pure (.) <*> u <>y <x>w = u <> (v <> w)

(ApCts; (B —7) (= B) = (@ —7))

s ApCts; (= B) (¢ —7) , ApCts; at y

, PureCts; (B—7) = (= B) = (aa—7))

, ApCts, B v, ApCts, o B ) =
u: | M(B—=y) | M(B—=7) Mij(B—=7v) | Mi(B—7)
vi| M(a—=B) | M(a—B) Mjk(a—B) | Mj(a—pB)
wil Ma M «a Mkl o Mk o
Homomorphism: pure f <*> pure a = pure (f a)

(ApCtSl a ﬁ

, PureCts; (o¢ — ), PureCts; o

, PureCts, B) =

a—f a—f oa—f oa—f

a:| a o o a
Interchange: u <*> pure a = pure ($a) <*> u

(ApCts; o B, PureCts; o

, ApCts, (o — B) B

, PureCts, ((a — B) = B)) =
u: | M(a—=p) | M(ac—pB) Mij(a—B) | Mi(a—p)
a:| «a o o o

; - Constraint originates from the left-hand side of the equation.

- Constraint originates from the right-hand side of the equation.

Fig. 5. Laws of different generalisations of applicatives.
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pureid <*>u = u (Identity)
pure () <k> u <>y <k>w = u <> (v <k> W) (Composition)
pure f <*> purea = pure (fa) (Homomorphism)
u<x>purea = pure ($a)<*x>u (Interchange)

Fig. 6. The applicative laws.

Just as monads, applicatives need to fulfil as set of laws (Figure 6) and they also have a
variety of use cases. The many popular applications include parsers, concurrency (Marlow
et al., 2014), database query languages (Giorgidze et al., 2011) and other EDSLs.

For every standard monad m we can derive its applicative in the following way:

(<¥>) ::m(a->b) ->ma->mb

mf <*> ma = mf >>= \f -> fmap f ma

pure :: a ->m a
pure = return

The monad laws then imply the applicative laws. We can use this derivation as a technique
to derive generalised applicatives from the corresponding generalised monads.

4.2 Indexed applicatives

Deriving the applicative of an indexed monad delivers the expected result!#:

class IndexedApplicative (f :: p -> p -> * -> *) where
(<#>) :: fij(@->b) >fjka->fikhb
pure :: a ->f iia
Notice, that the ap and pure operation resemble the composition and empty statement law
of Hoare logic in exactly the same way as bind and return did.

4.3 Graded applicatives

The graded applicative can also be derived as expected!”:

class GradedApplicative (f :: k -> * -> *) where
type Unit f :: k
type Plus £ (i :: k) (j :: k) :: k
type Inv f (i :: k) (j :: k) :: Constraint

(<¥>) :: (Inv £ i j)=>fi(a->b) >fja->f (Plusfiij)hb
pure :: a -> f (Unit f) a

As for graded monads, we have to provide associated type synonyms and constraints to
allow the declaration of the type-level monoid to be used by an instance.

14 Agda proof: Haskell.Parameterized.Indexed.Applicative.FromIndexedMonad
15 Agda proof: Haskell.Parameterized.Graded. Applicative.FromGradedMonad
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4.4 Constrained applicatives

As for the previous two generalised applicatives, we can derive the constrained applicative
from the notion of a constrained monad':

class ConstrainedApplicative (f :: * -> *) where
type ApCts £ (a :: *) (b :: *) :: Constraint
type PureCts f (a :: %) :: Constraint

(<¥>) :: (ApCts f ab) =>f (a ->Db) ->fa->fhb
pure :: (PureCts f a) => a -> f a

We introduce a new set of associated constraints for two reasons. First, depending on the
implementation a set of constraints different from those on the bind or return operation may
be required. Second, we do not require our applicatives to be a superclass of our monads
as we will explain in Section 5.7.

The formalised derivation'® is working with the categorical representation of constrained
monads and constrained applicatives. Therefore, reading Section 7.2.8, 7.3.5 and 7.4 may
be helpful to understand the formalisation and why it applies.

5 Supermonads and superapplicatives

In the previous section we have seen several different generalisations of monads and ap-
plicatives. Although each notions can be represented and utilised in Haskell, problems arise
once we try to use them in conjunction with each other. Each notion has a separate type
class. Therefore, standard library functionality has to be duplicated for each type class.
In addition, using several notions side by side in the same module can be tedious and
error prone, especially when it comes to the do-notation. Although it is possible to use the
do-notion with different implementations of the bind and return operation, the presence
of several different bind and return operations requires manual disambiguation for each
do-block or the use of qualified names.

Supermonads and superapplicatives have the goal to foster code reuse by obviating
the need to give custom class definitions and adapted versions of the standard library
functions for each separate monadic and applicative notion. In addition, supermonads and
superapplicatives remove the need for manual disambiguation when working with more
than one notion at a time.

In the following sections, we will first explore the general idea of how to represent each
of the different generalisation with a fixed set of type classes (Section 5.1). We will then
investigate why Haskell’s type inference is insufficient when confronted with said set of
type classes (Section 5.2). Based on the insights of that investigation, we will discuss how
to remedy this shortcoming of the encoding (Section 5.3). Then, we present the type classes
in their current form with and without support for constrained monads and applicatives
(Section 5.4 and 5.5). Afterwards, we will explain why we opt for an additional encoding
without support for constrained monads and applicatives (Section 5.6). Finally, we close

16 Agda proof: Theory.Functor .Monoidal.Properties.FromRelativeMonad
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this section with a discussion of why we do not make superapplicatives a superclass of
supermonads (Section 5.7).

A categorical classification of supermonads and superapplicatives is deferred to Section
7.3. Until then, it suffices to be aware the laws are exactly the same as for the notions
that they intend to capture (Figure 2 and Figure 5); only the type of the involved variables
changes.

5.1 Separate type classes for the bind, ap and return operation

First we need to understand why each notion covered in Section 3 and 4 requires a separate
type class in Haskell. Their type classes follow this scheme:

class SomeNotion m where

Here, m is the type constructor that is used throughout the monadic or applicative oper-
ations. It is impossible to give a single type class of this shape that captures all of the
mentioned monadic notions, because the associated type constructor has a different arity
in each case and thus a different kind. However, the above type class only allows a type
constructor of one specific kind and arity.

Solutions to this problem can be found in the work by Kmett'”-!8 and the work on
polymonads (Hicks et al., 2014). Both introduce a type class for the bind operation that is
similar to the following:

class Bind m n p where
(>>=) ::ma->(->nb) ->pb

In this generalised type class, when defining an instance, m, n and p can be partially applied
versions of the type constructor in the instance head. Thus, the number of indices does not
matter anymore, because after partial application all type constructors are unary.

With this approach, we are forced to put the monadic operations into two separate type
classes, because it would be unclear which of the three type constructors, m, n or p, to
use for the return operation. It may even be the case that non of the partially applied
constructors suit the return operation.

class Return m where
return :: a -=>mb

The same technique can be used to provide a type class for the <*> operation:

class Applicative m n p where
(<¥>) ::m(a->b) ->na->pb

Again, the pure operation now requires a separate type class. Since the pure and return
operation coincide, we can reuse the Return type class for this purpose.

Examples of how instances for the different monadic notions can be given are presented
in Section 6.

17 Hackage: monad-param - http: //hackage .haskell.org/package/monad-param
18 Parameterized Monads in Haskell (13. July 2007) - http://comonad.com/reader/2007/
parameterized-monads-in-haskell/


http://hackage.haskell.org/package/monad-param
http://comonad.com/reader/2007/parameterized-monads-in-haskell/
http://comonad.com/reader/2007/parameterized-monads-in-haskell/

ZU064-05-FPR paper 12 December 2017 15:21

Supermonads and superapplicatives 15

5.2 Insufficient type inference

Although these new type classes allow us to express all of the different monadic notions
mentioned before, GHC’s type inference does not suffice to resolve their constraints in
most situations.

In Haskell 2010'°, type inference is guaranteed for almost all features of the language.
However, to implement the Bind and Applicative class we require GHC’s language
extension MultiParamTypeClasses. Since both classes have three distinct, unrelated
arguments, GHC’s type inference has no way of knowing that we intend them all to
be partial applications of the same base constructor. Therefore, when inferring the type
of an operation involving Bind or Applicative, GHC may consider some of the type
constructors variables ambiguous.

Additionally, the separation of the operations into several different classes often means
that it is unclear which Return instance to use, because the use of a bind or ap operation
no longer determines a corresponding return or pure operation.

Let us illustrate the type inference problem with a simple example using the Maybe type:

plus3 :: Int -> Maybe Int
plus3 i = (Just 3) >>= \j -> return (i + j)

The function plus3 adds three to a given integer and wraps the process into the Maybe
monad. GHC’s type inference will infer the following type from the body of the function:

(Bind Maybe m Maybe, Return m) => Int -> Maybe Int

The first Maybe of the Bind constraint can be inferred from the expression Just 3 and
the second can be inferred through unification with the type signature. However, the type
system has no clue as to which Return instance is meant and therefore infers the most
general type possible (m). The inferred type m is ambiguous, because it does not occur on
the right-hand side of =>. Therefore, the compiler aborts with an error message: there is no
unambiguous way of instantiating m without jeopardizing the runtime behaviour of plus3.

Our case studies in Section 9 show that this issue is commonplace in programs involving
the above generalised representation. In addition, they show that if our monadic notion is
parametrised, we cannot infer the type of the indices either. The indices were previously
inferred through unification with the type signature of the bind or return operation but that
is not possible anymore, because the ambiguity prevents us from choosing an appropriate
instance to base this inference on.

5.3 Enhancing type inference and constraint solving.

To address the insufficient type inference capabilities for the Bind, Applicative and
Return constraints Kmett adds a functional dependency and a specialised version of the
return operation that always operates on the Identity monad:

return :: a -> Identity a
return a = Identity a

19 Haskell 2010 Language Report - https://www.haskell.org/onlinereport/haske112010


https://www.haskell.org/onlinereport/haskell2010
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class Return m where
returnM :: a -> m a

class (Functor m, Functor n, Functor p)
=>Bindmnp | mn -> p where
(>>=) ::ma->(a->nb) >pb

The right choice of return operation restores type inference in some, but not all, cases.

To see how well Kmett’s approach works we retrofitted our first case study (Section 9.1)
to use his library?°. There were still many situations that required manual type annotations
to solve ambiguous variables. In addition, we also had to choose the correct return op-
eration (return or returnM) depending on the context. Both of these tasks are tedious.
What is actually required, instead of a functional dependency, is the ability to deduce any
two of the type constructors from the third remaining constructor. If we were to add more
functional dependencies to address this issue, they would quickly become so restrictive
that only standard monad instances are possible.

We now have an understanding of which capabilities were lost by introducing the new
type classes:

e We lost the connection between the bind and return operation as well as the ap and
return operation. Both connections were previously encoded through the single type
class that contained either pair of operations.

e We also lost the knowledge that all three type constructors in the Bind or Applicative
class are partial applications of the same type constructor.

o Finally, we lost the ability to infer the indices through unification with the different
operations type signature, because this is only possible if we know which instance
we are working with.

To our knowledge it is only possible to address these issues inside Haskell itself, if we
add manual type annotation. Our case studies in Section 9 show that providing these
annotations is a tedious and extensive task. Therefore, we introduce the unifying notions
of a supermonad and superapplicative as a language extension.

5.4 The supermonad and superapplicative type classes

We embody the notion of a supermonad through the Bind and Return classes along the
lines seen above. Superapplicatives are represented through the Applicative and Return
classes. We then extend the type system by incorporating knowledge about supermonads
and superapplicatives. Concretely, this is realised by teaching GHC’s type checker about
the new classes and their underlying assumptions. GHC offers a plugin mechanism which
is well suited to this end, allowing the GHC constraint solver to ask for help when ambi-
guities, such as the ones mentioned above, arise. The goal of our plugin is to allow GHC
to infer the types of any supermonad or superapplicative computation that it would have

20 Hackage: monad-param - http: //hackage .haskell .org/package/monad-param


http://hackage.haskell.org/package/monad-param
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been able to infer if that computation was using one of the specialised type classes from
Section 3 or Section 4, thus restoring any type inference capabilities lost in the process of
generalisation.

Our new classes, Bind, Applicative and Return, are declared as follows:

class (Functor m, Functor n, Functor p) => Bind m n p where
type BindCts m n p :: Constraint
type BindCts m n p = ()
(>>=) :: (BindCts mn p) =>ma ->(a->nb) ->pb

class (Functor m, Functor n, Functor p) => Applicative m n p where
type ApplicativeCts m n p :: Constraint
type ApplicativeCts mn p = ()
(<x>) :: (ApplicativeCts mn p) =>m (a ->b) ->na ->pb

class (Functor m) => Return m where

type ReturnCts m :: Constraint
type ReturnCts m = ()
return :: (ReturnCts m) => a ->m a

Generalizing from standard monads and applicatives, we also introduce Functor con-
straints on each of the partially applied type constructors. As we discussed in Section 3 and
4 each notion has an associated functor or family of functors.

The associated type synonyms BindCts, ApplicativeCts and ReturnCts are added
to allow for custom constraints on the indices of the type constructor. These constraints are
especially important to support graded monads and applicatives. We default all associated
constraints to the empty constraint to ease instantiation. Due to the default empty con-
straint, programmers only need to implement custom constraints when these are actually
required for their instances.

The above type classes do not support constraints on the result types and thus cannot
be instantiated for constrained monads and applicatives. We will describe the integration
of result type constraints in the following section. Their integration is simple and does
not require changes to the plugin, but there are some practical implications. Therefore, we
discuss it separately.

Not all instantiations of the type classes constitute valid supermonads or superapplica-
tives. Therefore, we require some contextual constraints that give guidance and ensure that
our type checker plugin can restore type inference:

e For every base constructor of a supermonad or superapplicative there is exactly one
Return instance and exactly one Bind or Applicative instance (or both).

e The constructors of a Bind or Applicative instance are all partial applications of
the same base constructor.

These contextual constraints are enforced by our plugin. The programmer is still required
to ensure that their instances follow the monad and applicative laws and that all associated
functor instances exist.

It might be argued that it is unfortunate that a couple of classes have been imbued
with special meaning, as opposed to the relevant constraints being stated manifestly in the
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source code. However, firstly, the notion of supermonads or superapplicatives as such just
refers to our particular implementation of generalised monads and applicatives in Haskell.
There may be different ways to realise a generalised notion or some essentially equivalent
notion in the future. What we have established is that there is at least one practical way
of integrating a unified representation of monadic and applicative notions into Haskell.
Secondly, the approach we have taken is not without precedent. For example, the deriving
mechanism is, in its basic form, limited to a handful of classes with meaning known to the
compiler, and a situation where additional instances can invalidate contextual constraints
occurs also for language extensions such as overlapping instances.

All source code of our implementation and library is available as open source?!.

5.5 Adding constraints

To support constrained monads and applicatives, we need to make the Bind, Applicative
and Return class even more general by adding the result types a and b as additional
arguments to the associated constraints.

class (Functor m, Functor n, Functor p) => Bind m n p where
type BindCts mn p (a :: *) (b :: *) :: Constraint
type BindCts mn p a b = QO
(>>=) :: (BindCts mnpab) =>ma->(a->nb) >pb

class (Functor m, Functor n, Functor p) => Applicative m n p where

type ApplicativeCts mn p (a :: *) (b :: *) :: Constraint
type ApplicativeCts mn p a b = ()
(<*>) :: (ApplicativeCts mn p ab) =>m (a ->b) ->na ->pb

class (Functor m) => Return m where

type ReturnCts m (a :: *) :: Constraint
type ReturnCts m a = ()
return :: (ReturnCts m a) => a ->m a

Without the constrained notions we could simply reuse the Functor type class from the
standard library, but constrained monads and applicatives also require constrained functors.
Therefore, we also need to introduce a replacement for the standard functor class.

class Functor f where
type FunctorCts f (a :: %) (b :: *) :: Constraint
type FunctorCts f a b = ()
fmap :: (FunctorCts f a b) => (a ->b) ->f a->fb

5.6 Practical implications of associated constraints

The associated constraints of each new type class have some practical implications, espe-
cially if they include constraints on the result types.

21 GitHub: jbracker/supermonad - https://github.com/jbracker/supermonad
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The evaluation of associated type synonyms is only possible if all arguments are known.
This limitation becomes an issue when writing code that is polymorphic in the used super-
monad. Type checking such polymorphic code may not be possible, because it is impos-
sible to determine the necessary constraints and therefore the programmer is required to
list all of the BindCts, ApplicativeCts, ReturnCts and FunctorCts constraints that
occur inside of the code. For example:

1iftM2 :: ( Bind m p p, Bind n p p
, BindCts m p p a ¢, BindCts n p p b ¢
, Return p, ReturnCts p c)
=> (a->b->c) ->ma->nb->pc
1iftM2 f ma nb = do
a <- ma
b <- nb
return (f a b)

This is a simple conversion of the 1iftM2 function from the base library to allow for
supermonads with constrained result types. The programmer needs to list BindCts con-
straints for all the possible result types of the bind operations that occur in the function
body. Especially for long polymorphic functions this can become irritating quickly. This
can still be an issue even without constraints on the result types, as all of the different bind
operations that are involved in the function need to be listed in the constraints.

This problem is exacerbated for classes and instances that are polymorphic in the used
supermonad. For example, consider a naive adaptation of MonadPlus for unconstrained
monads:

class (Bind d 4 d, Return d) => MonadPlus d where
mzero :: (BindCts d d d, ReturnCts d) => d a
mplus :: (BindCts d d d, ReturnCts d) =>d a ->d a ->d a

During the class definition it is unclear if the given constraints will be sufficient to imple-
ment the member functions in a given instance. It is especially unclear which constrained
result types will be involved, if we were to extend the above definition for constrained
monads. Therefore, we need to allow custom individual constraints for every function in
the class:

class (Bind d 4 d, Return d) => MonadPlus d where
type MZeroCts d :: * -> Constraint
type MPlusCts d :: * -> Constraint
mzero :: (MZeroCts d a) => d a
mplus :: (MPlusCts d a) =>d a ->d a ->d a

An instance might then look as follows:

instance MonadPlus M where

type MZeroCts M a = (BindCts M M M a String, ReturnCts M a, ...)
type MPlusCts M a = (BindCts M M M Int a, FunctorCts M a Bool,
mzero = ...

mplus = ...
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The process of adding these constraints and associated type synonyms is mechanical and
it should be possible to automate it provided the right technology, but without automation
this process remains error prone and tedious.

The described problem vanishes in code that is not polymorphic in the used supermonad
or applicative, because, in that case, all arguments to BindCts, ApplicativeCts and
ReturnCts are known, meaning they can be evaluated and the constraints they produce
checked.

To mitigate the issues related to polymorphic functions and classes, our library offers two
representations of supermonads and applicatives: one that supports constraints on the result
types and one that does not. Thus the programmer is given a choice: if constraints on result
types are needed, this is possible, but a bit of extra care is required; if not, programming
can be streamlined by opting for the version without constraints on the result types.

We are aware that this approach may lead to code duplication, because libraries that
support one notion need to be copied and adjusted to also suite the other notion. However,
we think the benefit of allowing programmers to work with supermonads in a more conve-
nient fashion to gain experience with them, especially while they are new, outweighs this
disadvantage.

We noticed another implication while implementing the standard library functions based
on our new type classes. Type signatures that only involve two type constructors can have
different sets of constraints depending on their implementation. For example

Bind m n n, BindCts m n n a (), Return n, ReturnCts n ()
=>ma ->n ()
void ma = ma >>= (\_ -> return ())

void ::

(
)

can also be written as

Bind m m n, BindCts m m n a (), Return m, ReturnCts m ()
=>ma ->n ()
void ma = ma >>= (\_ -> return ())

void ::

(
)

This means that sometimes there is a choice of which constraints to use and there is no
apparent advantage or disadvantage to either set of constraints. Our library makes an effort
to be systematic when it comes to this choice.

5.7 Why Applicativeis not a superclass of Bind

Note that our Applicative class is not a superclass of our bind class. The reason for
this is that the representation of applicatives in Haskell is different (but equivalent) to their
representation in category theory (see Section 7.4). In Haskell we have two operations that
fully characterise an applicative:

(<¥>) :: f (a->b) >fa->fhb
pure :: a ->f a

In contrast, in category theory an applicative is usually modelled as a lax monoidal functor
(see Section 7.2.4). Translating the categorical representation to Haskell results in the
following set of operations:
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tensor :: fa->fb->f (a, b)
unit R Q)
fmap :: (a ->b) >fa->fb

Without constraints on the result types, both representations are equivalent. However, con-
straints on the result types can make one representation more useful than the other depend-
ing on the use case.

To exemplify, we will instantiate each of these functions for the Set data type from the
previous section (6.4).

(<x>) :: (Ord b) => Set (a -> b) -> Set a -> Set b
ff <x> fa = S.foldr (\f fb -> S.union (S.map f fa) fb) S.empty ff

pure :: a -> Set a
pure = S.singleton

tensor :: (Ord a, Ord b) => Set a -> Set b -> Set (a , b)
tensor fa fb = S.foldr unionMap S.empty fa
where unionMap a fab = S.union (S.map (\b -> (a,b)) fb) fab

unit :: Set ()
unit = S.singleton ()

fmap :: (Ord b) => (a -> b) -> (Set a -> Set b)
fmap = S.map

The above <*> function provides a valid Applicative instance for Set. However, notice
that one of the arguments (Set (a -> b)) is a set of functions. In Haskell, it is not
possible to define a total ordering on general functions (a -> b), at least not in the form
that the Ord class requires. Hence, the only way to create a set of functions is by either
creating an empty set or by creating a singleton set with exactly one function, because all
of the other functions to create or combine Set values require an ordering on the elements.
Therefore, the practical relevance of <*> is limited in the context of Set.

On the other hand, the interface consisting of tensor, unit and fmap does not have the
above limitation. Thus, for Set, a representation of applicatives as lax monoidal functors
in Haskell would be more useful and practical than the classical representation.

However, when looking at other examples, e.g., parser combinators, the classical repre-
sentation with <*> is useful and practical in contrast to the lax monoidal functor represen-
tation (Swierstra & Duponcheel, 1996; McBride & Paterson, 2008).

We cannot put both interfaces into one type class for two reasons. Firstly, combining the
interfaces would force the user to always implement both interfaces, although this may not
be possible or useful depending on the involved constraints. Secondly, functions defined in
terms of a combined interface may use any of the above functions and therefore are only
useful in certain contexts without this being obvious to the caller immediately.

Therefore, we decide to give the programmer the freedom not to implement the applica-
tive interface by not making it a superclass of Bind. This also opens the possibility to offer
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the lax monoidal representation as an optional alternative to the Applicative class at
some point in the future.

6 Examples of supermonads and superapplicatives

In Section 3 and Section 4 we presented the monadic and applicative notions that super-
monads aim to support. In this section, we demonstrate how the motivating examples from
the above sections instantiate supermonads and superapplicatives.

6.1 Maybe and the state transformer: Standard monads
A standard monad, e.g., Maybe, can instantiate our interface as follows:

instance Return Maybe where
return = P.return

instance Applicative Maybe Maybe Maybe where
(<x>) = (P.<x*x>)

instance Bind Maybe Maybe Maybe where
(>>=) = (P.>>=)

The qualifier P refers to the standard Prelude. The instances were implemented directly
in terms of the original Maybe monad above. The Return instance together with the
Applicative instance forms the superapplicative and the Return instance together with
the Monad instance forms the supermonad.

Unfortunately, a direct implementation in terms of the original notion does not always
work: if we have a standard monad that is defined in terms of another monad, e.g., a monad
transformers, it is necessary to reimplement the bind and return function to ensure that the
nested monadic notion is also a supermonad. As an example we give the implementation
of the StateT monad transformer.

newtype StateT s m a = StateT { runStateT :: s -> m (a,s) }

instance (Return m) => Return (StateT s m) where
type ReturnCts (StateT s m) = ReturnCts m
return x = StateT ( \s -> return (x, s) )

instance ( Bind m n p
) => Bind (StateT s m) (StateT s n) (StateT s p) where
type BindCts (StateT s m) (StateT s n) (StateT s p)
= (BindCts m n p)
m >>= k = StateT ( \s -> runStateT m s >>=
\(a, s’) -> runStateT (k a) s’ )

We have to define constraints using BindCts and ReturnCts, which could be left empty
in our previous example. These constraints ensure that the bind and return operation of the
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nested monad exist. We also generalise the state monad transformer to allow for any kind
of nested supermonad by using the three separate type constructors m, n and p instead of
the same. We omit the Applicative instance for brevity.

Although we can give monad transformer Bind and Return instances, using the stan-
dard definition of functions like 1ift, get or put with supermonads is not possible, be-
cause they still have a Monad constraint that requires standard monads instead of supermon-
ads. There is no problem implementing these functions for supermonads, but generalizing
their type class abstractions to use supermonads has the practical implications that we
discussed in Section 5.6.

6.2 Fixed-length vectors: a graded monad

To demonstrate how a graded monad instantiates the supermonad interface, we revisit
the Vector data type from the introduction of graded monads in Section 3.3. For com-
parison we will present the graded monad type class and instance that is provided by
the effect-monad package??. We will then implement the supermonad in terms of the
representation from that package to highlight the changes when transitioning from one
representation to the other.

Before we can implement the instances for Vector we need to introduce type-level
natural numbers and the associated type-level function to multiply them:

data Nat = Z | S Nat

type family Mult (n :: Nat) (m :: Nat) :: Nat where

Note that Nat is lifted from the type/value level to the kind/type level via the language
extension DataKinds. The Vector data type provides the following interface:

data Vector (n :: Nat) a where

map :: (a -> b) -> Vector n a -> Vector n b

map f v =

concatMap :: Vector n a -> (a -> Vector m b) -> Vector (Mult n m) b

concatMap v £ =

singleton :: a -> Vector (’S ’Z) a
singleton a =

The quotes in front of constructors, e.g. >S, are GHC notation for lifting a value-level
constructor to the type level. We omit the details of the implementation for brevity?>.
The effect-monad package provides the following type class for graded monads:

22 Hackage: effect-monad - http://hackage .haskell.org/package/effect-monad
23 Implementation of Vector - https://github.com/jbracker/supermonad/blob/master/
examples/monad/effect/Vector.hs
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class Effect (m :: k -> * -> %) where
type Unit m :: k
type Plus m (f :: k) (g :: k) :: k
type Invm (f :: k) (g :: k) :: Constraint

type Invm £ g = ()
return :: a -> m (Unit m) a
(>>=) :: (Invmf g

=>mfa->(@->mgb) >m (Plusmfg b

The associated type synonyms Unit and Plus together with the kind variable k represent
the type-level monoid of the graded monad. The variable k is the carrier of the monoid,
Unit provides the neutral element and Plus defines the binary operation to combine
two elements. The constraints specified with Inv are necessary to ensure that the monoid
elements have all properties necessary to perform the Plus operation. Given this interface
we can implement the Effect instance for Vector:

instance Effect Vector where
type Unit Vector = ’S ’Z
type Plus Vector nm = Mult n m
type Inv Vector n m = ()

return = singleton
(>>=) = concatMap

The supermonad can now be given in terms of the functions provided by the Effect type
class (qualified with E to prevent name clashes):

instance Functor (Vector n) where
fmap f xs = map f xs

instance ( nm ~ Plus Vector nm
) => Bind (Vector n) (Vector m) (Vector nm) where
type BindCts (Vector n) (Vector m) (Vector nm) = Inv Vector n m
(>>=) = (E.>>=)

instance Return (Vector (’S ’Z)) where
return = E.return

instance ( nm ~ Plus Vector n m
) => Applicative (Vector n) (Vector m) (Vector nm) where
type ApplicativeCts (Vector n) (Vector m) (Vector nm) = Inv Vector n m
mf <*> ma = mf E.>>= \f -> fmap f ma

Again, we can see that the original implementation of bind and return can be reused
without alteration. Note that we cannot replace nm with Plus Vector n min the instance
arguments, because GHC does not allow type synonym applications in the instance ar-
guments. In this example the BindCts are used to represent the Inv constraints. Also
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notice that we are easily able to provide the Applicative instance for Vector. The
effect-monad package does not provide an interface for graded applicatives.

As mentioned in the beginning, we implemented Bind, Applicative and Return in
terms of the interface provided by the Effect instance. This, more abstract implementa-
tion, demonstrates the transition to the supermonad representation and provides a guide
how any graded monad can become a supermonad.

6.3 Sessions types: an indexed monad

For our example involving indexed monads we chose to instantiate supermonad instances
for the Session indexed monad from the simple-sessions package>*. We gave a brief
introduction to the Session type in our motivational example to introduce indexed monads
(Section 3.2). The Session monad implements session types and uses the implementation
of indexed monads provided by the indexed package®. The indexed package provides a
complete type class hierarchy for indexed monads and indexed applicatives.

class IxFunctor f where
imap :: (@ ->b) ->f jka->f jkb
class IxFunctor m => IxPointed m where
ireturn :: a ->mi i a
class IxPointed m => IxApplicative m where

iap ::mij(a->b) ->mjka->mikb
class IxApplicative m => IxMonad m where
ibind :: (a ->m j kb)) ->mija->mikb

The Session type has instances for all of these classes. We can give the supermonad
instances for this notion by partially applying the Session type constructor in the instance
head and reusing the existing instances.

instance Functor (Session i j) where
fmap = imap
instance Applicative (Session i j) (Session j k) (Session i k) where
(<*¥>) = iap
instance Bind (Session i j) (Session j k) (Session i k) where
ma >>= f = ibind f ma
instance Return (Session i i) where
return = ireturn

The implementation of the supermonad and superapplicative instances for Session are
simple and similar to those of our graded monad example.

6.4 The Set constrained monad

To give an example of a constrained monad, we implement the supermonad instances
for the Set data type from the introductory example (Section 3.4). We are required to

24 Hackage: simple-sessions - http: //hackage .haskell.org/package/simple-sessions
25 Hackage: indexed - http://hackage.haskell.org/package/indexed
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use a constrained monad for Set, because many of the operations involving Set require
an ordering constraint (Ord) on the elements. The module Data.Set?® that provides the
implementation and functions is referred to as S in the following instances.

instance Functor Set where
type FunctorCts Set a b = Ord b
fmap = S.map

instance Bind Set Set Set where
type BindCts Set Set Set a b = Ord b
s >>= f = S.foldr S.union S.empty ( S.map f s )

instance Return Set where
return = S.singleton

Both, the Functor and the Bind instance require an Ord constraint on b. In this case,
neither requires any constraints on a, and no constraints are needed for the Return in-
stance either because the singleton function works for any type. In general, however, all
constraints may be needed. We omit the Applicative instance, because, as discussed in
Section 5.6, it is not very useful for Set.

6.5 Tracking resources: an application of graded applicatives and indexed monads

We have seen that applicatives can be generalised in the same ways as monads. As an illus-
tration, this section presents an example where a graded applicative is used in conjunction
with an indexed monad (and applicative) to track maximal resource usage for a set of
concurrent processes. One application is deadlock avoidance using the Banker’s algorithm
(Dijkstra, n.d.).

The Banker’s algorithm can be used in a setting with a fixed set of different kinds of
resources, each with a certain number of instances. If resources are allocated to processes
as they are requested, solely based on availability, processes can easily deadlock. This can
be avoided if allocation is subject to approval by the Banker’s algorithm. The idea is that
each process declares its maximal resource need up-front. A request to allocate resources
is then only approved if, assuming the request is granted, it would still be possible to run
all processes to completion under the worst case scenario of all processes simultaneously
requesting the remainder of their needs.

Of course, this will only work if the stated maximal resource need is an upper bound
on the actual resource need for each process. If the resource needs have to be calculated
manually, and then manually kept up-to-date as the code evolves, it is easy to see that this
might not always be the case due to simple mistakes. However, if the maximal resource
need is part of the type of a process and thus checked automatically, at compile time, this
problem can be avoided.

We illustrate how this can be done for processes expressed monadically using an indexed
monad, where the pre-state is a pair of the maximal resource need and resources held prior

26 Hackage: containers - http://hackage .haskell.org/package/containers
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to a monadic action, and the post-state is a pair of the maximal resource need and the
resources held after the action. The processes are then lifted into a graded applicative,
where the index corresponds to the maximal resource need, allowing processes to be run
concurrently subject to their resource requests being granted.

First, we introduce type-level functions to compute the maximum and to check the order
of type-level naturals:

type family Max (n :: Nat) (m :: Nat) :: Nat where
type family Leq (n :: Nat) (m :: Nat) :: Bool where

We reuse the type-level natural numbers from our graded monad example.

For our example, we are assuming two kinds of resources, A and B. For each process, we
need to keep track of the current maximal use and the current allocation for each resource,
that is four quantities:

data ProcRes = ProcRes Nat Nat Nat Nat

Our convention is that the first two represent the maximum and current allocation for
resource A, and the last two the corresponding quantities for resource B.

The monadic process representation is indexed on this state representation, with the first
index representing the pre-state and the second one the post-state:

data Proc (i :: ProcRes) (j :: ProcRes) a = Proc

We further assume monadic actions to claim and release a resource of a specific kind, with
the type indices tracking the changes in the maximal resource use and current allocation.
The claim operation also returns an identifier for the allocated resource instance:

type Resld = Int

claimA :: Proc (’ProcRes ma ra mb rb)
(’ProcRes (Max ma (’S ra)) (’S ra) mb rb)
ResId
releaseA :: ResId -> Proc (’ProcRes ma (’°S ra) mb rb)
(’ProcRes ma ra mb rb)
O
claimB :: Proc (’ProcRes ma ra mb rb)
(’ProcRes ma ra (Max mb (’S rb)) (’S rb))
ResId
releaseB :: ResId -> Proc (’ProcRes ma ra mb (’S rb))

(’ProcRes ma ra mb rb)

O

The Functor, Return, Applicative, and Bind instances for Proc have the following
outline:
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instance Functor (Proc i j) where
fmap f p =
instance Return (Proc i i) where
return a =
instance Applicative (Proc i j) (Proc j k) (Proc i k) where
pf <*> pa =
instance Bind (Proc i j) (Proc j k) (Proc i k) where
pa >>=f =

Note that Proc forms an indexed applicative as well as indexed monad, but here we are
only concerned with the monadic interface.

The next step is to introduce the notion of an executable process constituting a (possible)
unit of scheduling. We only provide an applicative interface, as the objective is to run these
concurrently to the extent desirable, subject to constraints related to resource allocations. It
is indexed by the maximal resource need and forms a graded applicative as the combined
need of two executable processes is scheduled as a single unit if the maximum of the
constituents’ needs (the representation of the need and the maximum operation forms a
monoid). Whether or not to schedule a single unit or to schedule the constituents concur-
rently is for the scheduler to decide, and we do not concern ourselves further with that.
However, the needs of whichever unit that ends up being scheduled concurrently are what
is communicated to Banker’s algorithm through an underlying scheduler state that also
keeps track of current allocations for each executable process:

data MaxRes = MaxRes Nat Nat
data Exec (i :: MaxRes) a = Exec

instance Functor (Exec i) where
fmap f e =

instance Return (Exec (’MaxRes ’Z ’Z)) where
return a =

instance (’MaxRes mal mbl ~ ml1, ’MaxRes ma2 mb2 ~ m2,
Max mal ma2 ~ maR, Max mbl mb2 ~ mbR,
’MaxRes maR mbR ~ mR)
=> Applicative (Exec ml) (Exec m2) (Exec mR) where
ef <x> ea =

The function for lifting a process to an executable process has the following signature.
It reflects the requirements that a process starts without any allocated resources and must
free all allocated resources prior to terminating:

process :: Proc (’ProcRes ’Z ’Z ’Z °Z) (’ProcRes ma ’Z mb ’Z) a
-> Exec (’MaxRes ma mb) a
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Finally, the function for running an executable process, which potentially spawns a
number of concurrent processes, given specific availability for each kind of resource, has
the following signature:

run :: (ToNatV ma’, ToNatV mb?’,

Leq ma’ ma ~ ’True, Leq mb’ mb ~ ’True)

=> NatV ma -> NatV mb -> Exec (’MaxRes ma’ mb’) a -> I0 a
run ma mb ea =

Note that we need to ensure that the available resources of each kind suffice to satisfy the
maximal need of any one process, reflected by the overall maximal need. The type NatV
and the class ToNatV mediate between value- and type-level naturals, specifically allowing
resource availability to be stated as arguments to run as well as reflecting maximal needs
(ma’ and mb’) back to the value level to enable Banker’s algorithm to only grant claims
when it is safe to do so.

7 Relationship to category theory

The original formalisation of supermonads in our previous work (Bracker & Nilsson, 2016)
was based solely on our unified representation of the different monadic notions in Haskell.
As such, the formalisation did not relate to the common categorical models usually used
to model functors, applicatives and monads in Haskell. We want to disregard our previous
formalisation and replace it with a model for supermonads and superapplicatives that is
founded in category theory.

Consequently, the notion of supermonad and superapplicative should only refer to our
unified encoding and implementation of the different monadic and applicative notions in
Haskell. The semantics and the supported generalisations should be characterised by the
categorical notions presented in this section.

In Section 7.2 we will introduce prerequisite categorical definitions that are required to
understand the following sections. Based on these definitions, we show how the different
monadic and applicative notions in Haskell relate to them and even develop categorical
adaptations that precisely capture them in Section 7.3 and 7.4. The discussion will lead to
categorical structures that capture all of the monadic and applicative notions, respectively.
As aresult we are able to present a hierarchy of monadic and applicative notions that shows
how all of the different notions are related to each other in Section 7.5.

We hope the categorical notions and relationships developed in this section will prove to
be as useful design patterns for future language design as monads and functors have been
thus far.

As the target audience for this work are functional programmers we only expect a basic
understanding of category theory. To understand the following sections we expect the
reader to be familiar with the concepts of categories?’, functors?® and natural transfor-
mations®”. All other required notions will be introduced.

27" Agda formalisation: Theory .Category.Definition
28 Agda formalisation: Theory . Functor.Definition
29 Agda formalisation: Theory . Natural . Transformation
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We will use the following naming conventions:

Categories | C,D,E,...
Functors | F,G,H,...

Natural transformations or isomorphism | 17,0,1,...
Objects or O-cells | a,b,c,d,...

Morphisms or 1-cells | f,g,h,...

2-cells | a,B,7,...

7.1 Proofs in the following sections

Unless noted otherwise all definitions and results in the following sections are formalised
and verified using the proof assistant Agda®® (Norell, 2007) in version 2.5.3. This gives us
confidence in our results, but also implies some limitations.

Many proofs in the following sections relate structures in Haskell to category theory. To
our knowledge there is no complete formal or categorical model of Haskell that we can
base our proofs on. Therefore, we formalised the Haskell structures that we work with in
the category Set of types and total functions. Whenever we speak of Haskell structures
that are equivalent or in one-to-one correspondence to categorical structures our proofs are
based on a formalisation of these structures in Set.

To relate our proofs back to Haskell we need to assume that the Haskell structures we talk
about are terminating, total and do not contain bottom. These assumptions are necessary
because Set and Agda do not reflect any of these properties. We do not think that these
limitations weaken our results, because proper instances of monads or applicatives usually
fulfil all of these requirements.

The Agda source code of our proofs can be found in a public Git repository>'. Whenever
we refer to a proof or formalisation the Agda module containing it will be referenced as a
footnote.

7.2 Introduction of prerequisite categorical structures

We will give an intuition and a full definition for each prerequisite structure here. The
intuition should be enough to understand the following sections using the introduced cate-
gorical structures.

7.2.1 Discrete and codiscrete collections of morphisms
A category is discrete if the identity morphisms for each object are the only morphisms.

Definition 7.2.1 (Discrete category)
Let C be a category. C is called a discrete category iff:

e Homg (a,a) =1 id, } for all a € Obj and

30 The Agda Wiki - http: //wiki.portal.chalmers.se/agda
31 GitHub: jbracker/polymonad-proofs - https://github. com/jbracker/polymonad-proofs
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e Homg (a,b) = 0 for all a,b € Obj¢ such that a # b.
A category is codiscrete if it contains exactly one morphism for each pair of objects.

Definition 7.2.2 (Codiscrete category)
Let C be a category. C is called a codiscrete category iff |[Homc (a,b)| =1 for all a,b €
Obje.

7.2.2 Natural isomorphisms

A natural transformation 1 : F — G is a natural isomorphism>? if its components 7, :
F(a) —G(a) are guaranteed to have an inverse 1, ' : G(a) — F(a). In other words, if a
natural transformation provides a mapping between two functors then a natural isomor-
phism provides a “bijective” mapping between them.

Definition 7.2.3 (Natural isomorphism)

Let C and D be categories and F,G : C — DD functors between them. A natural trans-
formation 1 : F — G is a natural isomorphism if the morphism 1, is invertible for all
a € Objg, i.e., there exists 1, ! for each a € Obj¢: such that

Na °D 11;1 = idg(q) and n;l op Na = idp(a),

Hence, 1, is an isomorphism for all a. We denote 7 to be a natural isomorphism as 7 :
F=G.

7.2.3 Monoidal categories

A category C consists of a collection of objects Objc and a collection of morphisms
Hom¢ (—,—) between these objects. The category laws ensure that certain morphisms
exists and that they behave as expected when composed. In contrast, the objects have
no associated laws or structure. A monoidal category’® (Bénabou, 1963) introduces the
structure of a monoid on the objects of a category. A functor ® : C x C — C called the
tensor product is introduced as the monoidal operation and there needs to be one object
1c called the tensor unit that represents the neutral element of the monoid. There are
three natural isomorphisms that ensure the tensor product is weakly associative and obeys
left and right identity. Finally, two laws ensure that the natural isomorphisms behave as
expected.

Definition 7.2.4 (Monoidal category)
A monoidal category is a category C equipped with

e a functor ® : C x C — C called the tensor product,

e an object 1¢ € Obj¢ called the unit object or tensor unit,

e anatural isomorphism o : ((—® —) ® —) —» (—®(—® —)) with components of the
form 05 1 (a®D) @ c—a@(b®c) called the associator,

32 Agda formalisation: Theory.Natural.Isomorphism
33 Agda formalisation: Theory.Category.Monoidal
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e a natural isomorphism A : (1c®—) = (—) with components of the form A,
1c ® a— a called the left unitor, and

e a natural isomorphism p : (—®1¢) = (=) with components of the form p, :
a® 1c — a called the right unitor,

such that the diagram for the triangle identity

O 10 ,b

Pa m m’lb

and the diagram for the pentagon identity

(a®1(c

®(1c®b)

(a®b)®(c®d)
(a®b)®c)® (a®(be(c®d)))
aa,b‘L‘@iddl Tidu Ry cd

(a®(b®c))@d a®((b®c)@d)

Qab@e,d

both commute for all a,b,c,d € Obj¢.

Example 7.2.1 (Unit)
A trivial example of a monoidal category is the unit category 1 with exactly one object and
morphism.3*

Example 7.2.2 (Monoid)

A monoid (M, ¢,e) forms a monoidal category Mony,. The carrier M provides the objects
and the morphisms are discrete. The tensor product is then provided by the monoidal
operation ¢ and the tensor unit is the neutral element e.3

Example 7.2.3 (Set)
The category Set is another example. The cartesian product provides the tensor product
and unit its tensor unit.3®

Example 7.2.4 (Endofunctors and natural transformations)

Given a category C we can form the monoidal category [C, C],. The objects of this category
are the endofunctors on C and the morphisms are the natural transformations between
them. The tensor product is provided by composition of functors and the tensor unit is the
identity endofunctor on C.3” Note that in the resulting monoidal category the associator
and unitors are all strict, i.e., they are identities.

34 Agda proof: Theory.Category.Monoidal .Examples.Unit

35 Agda proof: Theory.Category.Monoidal .Examples . Monoid

36 Agda proof: Theory.Category.Monoidal .Examples.SetCat

37" Agda proof: Theory.Category.Monoidal . Examples.FunctorWithComposition
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7.2.4 Lax monoidal functors

A lax monoidal functor38 (Bénabou, 1963) is a functor that maps between monoidal cat-
egories instead of non-monoidal categories. This means, in addition to preserving the
categorical structure, it also preserves the monoidal structures on the objects across the
mapping.

Just like the basis of a monoidal category is a category, a lax monoidal functor between
the monoidal categories C and DD is based on a functor F' : C — D between these cate-
gories. The tensor units are connected through a morphism from the tensor unit 1p of D
to the mapping of the tensor unit F(1¢) from C. To relate the tensor products, a natural
transformation maps the tensor product F(a) ®p F(b) in D to the mapped tensor product
F(a®cb) for all a,b € Objc. The laws ensure that these mappings preserve associativity
and the left and right identity.

Definition 7.2.5 (Lax monoidal functor)
Let (C,®c,1¢) and (D,®p,1lp) be two monoidal categories. A lax monoidal functor
between them consists of

e afunctor F : C — D,
e a morphism 7 : 1Ip — F(1¢), and
e a natural transformation U, j, : F(a) ®p F(b) — F(a®cb) for all a,b € Objc,

such that the diagram for associativity

(F(a)@p F (b)) 9p F(c) —2 7%, () @p(F(b)9pF(c))
Ha,b @D idF(g)l rdf(@ O Hp,c
Fla®ch)@pF(c) F(a)®pF(b®cc)
Haee b’(l lﬂa.b@cc
F((a®ch)®cc) . Fla®c(b®cc))
F<aa,b£)

and the diagrams for left and right unitality

N ®pidg ide®p N

1D®DF((I) F(l@)@DF(a) F(a) Rplp —— F(a) ®]DF(]-(C)
x;'?;a)l l.ul(c.a pga)l lﬂa.lc
F(a) T F(lc®ca) F(a) T F(a®c1c)

commute for all a,b,c € Obj¢.

That the monoidal functor is “lax” just indicates that its morphism 1 and natural trans-
formations p_ _ are not isomorphisms. In this article we only require the notion of a lax
monoidal functor, but it should be mentioned that there are other variations such as oplax,
strong or strict monoidal functors.

38 Agda formalisation: Theory . Functor .Monoidal
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7.2.5 Strict 2-categories

Strict 2-categories (Bénabou, 1965; Bénabou, 1967; Kelly & Street, 1974) are a generali-
sations of categories.

A strict 2-category®® C has a collection of objects (0-cells) just like a category, but
instead of a collection of morphisms there is a category for every two objects, the homo-
morphism category C(—,—). Thus, in a 2-category the morphisms (1-cells) are provided
by the objects of the homomorphism categories. The morphisms of the homomorphism
categories represent morphisms between morphisms (2-cells):

fra—=b
/_\ a,b,c | object or O-cell
a ﬂn i f=g b f,g,h | morphism or 1-cell
\_/ n,1 | 2-cell
g:ra—b

The homomorphism categories only provide identity 2-cells. Therefore, the identity 1-cells
1, need to provided separately for all a € Obj:. Composition of homomorphism categories
is given by the composition functor

Comp, ;. : C(b,c) x C(a,b) — C(a,c).
The object mapping of Comp composes 1-cells (morphisms) just as in a category:
gof

a?b?c

Notice that there are two different ways to compose 2-cells. The first is the horizontal
composition provided by the morphism mapping of Comp:

3 00
.f.s. gof

e "> e
nﬂ ﬂl — ﬂlo}ln

e — 6 —— @ e — @
r g gof’

The second is the vertical composition provided in each of the homomorphism categories:

a—b

[l
a—r

[

a—b

b

The laws of strict 2-categories ensure that horizontal composition and composition between
1-cells abide associativity, left identity and right identity. Vertical composition fulfills all
these laws, because it originates from the homomorphism categories.

Definition 7.2.6 (Strict 2-category)

39 Agda formalisation: Theory . TwoCategory.Definition
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A strict 2-category C consists of

e a collection Obj¢ of objects,

e for each pair of objects a,b € Objc a category C(a,b) (homomorphism category),

e for each object a € Objc a object 1, € Objg(, ) (unit) and

e for each triple of object a,b,c € Obj¢ a functor Comp,;, . : C(b,c) x C(a,b) —
C(a,c) (composition functor).

We call the elements in Objc 0-cells and for any a,b € Objc we call the elements in
Objgya,p) I-cells and those in Homcy, ) (—,—) 2-cells. The object-level mapping of Comp
provides composition on 1-cells (denoted as o), the morphism-level mapping of Comp
provides horizontal composition on 2-cells (denoted as o) and the composition provided
by homomorphism categories on 2-cells is vertical composition (denoted as o).

The 1-cell and horizontal composition provided by the composition functor are required
to satisfy the following laws:

e Foralla,b,c,d € Objc, h € Objc(c 4y, & € Objgyp, ) and f € Objg, ) the associativity
of 1-cell composition
(hog)of=ho(gof),
o for all a,b,c,d € Objc, f,f" € Objgy), 88 € Objegpe)» I € Objeq), @ €
Homgc.q) (h,1'), B € Homey, () (g,8) and ¥ € Homgyg ) (f, f') the associativity of
horizontal composition

(o " B) " y=a o (B ),
e forall a,b € Objc and f € Objg, ) the left and right identity of 1-cell composition
lpof=f=fol, and
e foralla,b € Objc, f,g € Objg(,p) and & € Homgy, ) (f, ) the left and right identity
of horizontal composition
idy, o" a=a=a " idy,.

Example 7.2.5 (Unit)
A trivial example is the unit 2-category 1 with exactly one O-cell, one 1-cell and one 2-
cell. 0

Example 7.2.6 (2-Category of categories)
The canonical example is Cat the strict 2-category of (small) categories, functors and natu-
ral transformations, which also provides the intuition behind most of the above notation.*!

Example 7.2.7 (Discrete 2-category)

Another example is the discrete strict 2-category formed by a category C. Here the O-cells
are the objects of C and the 1-cells are the morphisms of C. The only 2-cells are the identity
2-cells for each morphism. We denote this category Discc.*?

40 Agda proof: Theory.TwoCategory .Examples.Unit
41 Agda proof: Theory. TwoCategory.Examples.Functor
42 Agda proof: Theory.TwoCategory .Examples.DiscreteHomCat
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Example 7.2.8 (Monoid 2-category)

Given a monoid (M,o,e) we can form a strict 2-category Mon3, with exactly one 0-
cell. The 1-cells are the elements of the carrier M (endomorphisms) and the 2-cells are
discrete.®?

7.2.6 Lax 2-functors

A lax 2-functor** (Bénabou, 1965; Bénabou, 1967) between strict 2-categories is gener-
alised in a similar way as categories are generalised to 2-categories. Like a functor it has
an object or 0-cell mapping. The mapping of morphisms becomes a functor between the
homomorphism categories of the two involved 2-categories.

A functor has laws to ensure identity and composition is preserved across the mapping.
When generalizing these laws, they may stay equalities or become 2-cell isomorphisms.
Since we are talking about a lax 2-functor these laws reduce to 2-cells without an inverse.
Thus, a lax 2-functor requires the existence of a 2-cell that maps 1-cell identities and
preserves 1-cell composition instead of having the classical laws of a functor.

To make sure that a 2-functor still behaves as expected we need to make sure that it
preserves associativity, left identity and right identity on 1-cells. Therefore, a 2-functor
also has a set of coherence laws.

Definition 7.2.7 (Lax 2-functor)
A lax 2-functor F : C — D from a strict 2-category C to a strict 2-category ID consists of

e a O-cell mapping F : Objc — Objp,

o for each homomorphism category C(a,b) a functor F,, : C(a,b) — D(F(a),F (D))
which provides the 1- and 2-cell mappings,

e for each object a € Objc, a 2-cell 1, : 1p(4) = Faa(ls) in D and

e for each triple of objects a,b,c € Objc a2-cell Uy p o (f,8) : Fpe(8) 0 Fap(f) = Fac(gof)
that is natural in the 1-cells f € Objg, ) and g € Objgyp (-

such that associativity, left unitality and right unitality for horizontal composition are
preserved; this means the following diagrams need to commute:

idFa‘h(f) O]]f) T
Fup(f) op 1p) === Fup(f) oD Faa(la)

idFa.b(f)Jl U'Ha.atb(lavf)

Fa,b(f) < Fmb(f oc 1a)

Fa.h(idf)

M olf idE, (1)
Lr@) op Fap(f) === Fpp(1s) op Fap(f)

idFa.h(f)ﬂ Ufla,b‘,b(f 1p)

Fop(f) < Fup(1p oc f)

Fa.b(idf)

43 Agda proof: Theory.TwoCategory.Examples.Monoid
44 Agda formalisation: Theory . TwoFunctor.Definition
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d(F, g (WopFy o (8)opFy ()

Fc,d(h oD (qu,c(g) oD Fa,b(f)) —_—— (Fc,d(h) °D Fb,c(g)) oD Fa,b(f)
idFL‘,d(h) O% ”a.b,zr(.fv g)ﬂ JJ'.ub,c,d(gv h) O%) idFﬂvb(_f)
F.q(h)op Fac(goc f) Fya(h oc g)op Fua(f)

Hacal(g oc F), h)ﬂ ﬂua,b,m (h o¢ 8))

Faa(h oc (g oc f)) > Faa((h oc g) oc f)

dr, 40hoc g o¢ 1)

for all a,b,c,d € Obj¢, f € Obj(C(a,b)’ gc Obj(C(b,c) and h € Obj(C(c,d)-

Example 7.2.9 (Lax monoidal functors)

Let C be a category and (M,¢,e) a monoid. A lax monoidal functor F : Mony, — [C,C]s
is also a lax 2-functor Monjz\,, — Cat that maps the single O-cells in Monizvl to C. In fact,
these kinds of lax monoidal functors and lax 2-functor are in one-to-one correspondence
with each other.*>

7.2.7 Relative monads

Relative monads*® (Altenkirch et al., 2010) are a generalisation of categorical monads
that replaces the underlying endofunctor with an arbitrary functor, i.e., allowing monads
between different categories.

A monad in a category C is usually defined in terms of an endofunctor 7: C — C and a
morphism p, : T(T(x)) — T (x) natural in x € Obj¢ called join (see Definition 7.3.1). This
definition does not allow generalizing 7' to a non-endofunctor, because the join operation
applies T twice.

Relative monads are instead based on an alternative representation of monads based on
the Kleisli-extension instead of join:

(=) (@=T(b)) = (T(a) =T (b))

(=)* closely resembles the bind operation Haskell programmers are used to, if we swap
the arguments:

(>>=) ::ma->(a->mb) ->mb)

The Kleisli-extension allows replacing the endofunctor 7' with a non-endofunctor 7' : C —
D. However, a— T (b) now requires a way to map the object a € Obj¢ into the codomain
Objp to remain a valid morphism with . Therefore, relative monads introduce an addi-
tional functor J : C — D that only serves the purpose of transferring objects into 7°’s
codomain. Thus, leading to the following Kleisli-extension and return morphism:

(=) :(J(@)=>T(b) = (T(a) > T(b))
Na:J(a)—T(a)

The laws remain the same as for non-relative Kleisli-triples.

= Agda proof: Theory.TwoFunctor.Properties.IsomorphicLaxMonoidalFunctor
46 Agda formalisation: Theory .Monad .Relative
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Definition 7.2.8 (Relative monad)
Let C and D be categories. A relative monad consists of

a functor J : C — D,

a object mapping 7 : Objc — Objp,

for all a € Obj¢ a morphism 1, € Homp (J(a), T (a)) and

for all a,b € Obj¢ and k € Homyy (J(a), T (b)) a morphism k* € Homp (T (a), T (b))

that satisfy the following laws
e forall a,b € Objg, k € Homp (J(a),T (b)) the right unit law
k=k"opna,

e for all a € Obj the left unit law

N, =idp € Homp (T (a),T(a)) and
e foralla,b,c € Objc, k€ Homp (J(a),T (b)), € Homp (J(b), T (c)) the associativity

law
(IFopk)" =1"opk®.

Note that, although the full definition only requires a object mapping 7 : Objc — Objp,
we can define a canonical functor based on 7" through the following morphism mapping

(fza=b) = ((MponJ(f))" : T(a) =T (b))

7.2.8 Categorical representation of constraints
We model constraints categorically through concrete categories:

Definition 7.2.9 (Concrete category)
Let O be a category. O is concrete iff it has an associated functor J : @ — Set and J is
faithful (Definition 7.2.10).

If the associated functor J maps to some category C instead of Set then we call O
concrete on C.

Definition 7.2.10 (Faithful functor)
A functor is faithful iff its morphism mapping is injective.

The faithfulness of a functor does not imply that the object mapping is injective as well.

If there are constraints on the result type a of a functor, applicative or monadic type T
a these have to be modelled in the source category O of the underlying functors. Thus T
becomes T : O — Set. We require O to be concrete so that we can recover the underlying
unconstrained type a in Set through the associated functor J.

We exemplify our approach to model constraints by applying it to the definition of a
constrained functor for the type Set. As explained in Section 3.4, Set provides a rep-
resentation of finite mathematical sets in Haskell. Set is prevented from instantiating a
Functor instance, because its map function imposes an Ord constraint, due to its internal
representation with balanced binary tree.

map :: Ord b => (a -> b) -> Set a -> Set b
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We have formalised an implementation of Set in Agda to give evidence that our sug-
gested categorical model of constrained functors, applicatives and monads is correct. Our
formalisation is not an exact reimplementation of Set in Agda, but rather a morally correct
alternate implementation. We used ordered lists instead of balanced binary trees to remove
complexity from the formalisation. We do not deem this difference in implementation
a problem, because the implementation with ordered lists should be equivalent to the
implementation of Set in Haskell.

Another difference of our formalisation is that we require every result type to be ordered
not just those that require it due to implementation. Notice that, in the above map an
ordering is only required for b, but not a. The morphism mapping resulting from our
formalisation would have the following form instead:

map :: (Ord a , Ord b) => (a -> b) -> Set a -> Set b

We argue that this would be the morally correct way of implementing Set in Haskell,
because practically we can only construct empty or singleton sets if the element type does
not have an ordering. Ideally Set would enforce the ordering on its elements within the
Set data type itself, but standard Haskell lacks the ability to do so.

In our formalisation the constrained source category O has the dependent pairs of sets
(or types) and their instances of Ord as objects. The morphisms are total functions between
these sets.

Objg,,, & { (a,0rd a) | V a € Objg,, that have an instance of 0rd }
def . .
Homgy,, (a,b) = Homse (proj; (a), proj; (b))

The identity morphism and composition from Set will also be used. The associated functor
J0g,, is simply the projection into Set

@Ord — Set
JOgeq © § @+ projy(a)
f=r

which is clearly faithful and therefore Qg4 is concrete. Our formalisation of Set indeed
forms a categorical functor from Qg4 to Set*’ as we would expect. This functor provides
the following morphism mapping

V (a, Ord a), (b, Ord b) € Objg,_,. (a—b) > (Set a—Set b)

which translates to the mapping function we presented above.

To create a Functor instance that exactly matches the map function provided in the
Haskell implementation, we could use a different constraint category where the morphisms
are dependent pairs of the form (f : a— b, Ord b) and the objects are simply sets.

We can see that this technique can be applied to any kind of constraint that can be cap-
tured by the FunctorCts associated constraints of our constrained variant of the Functor
class. We only need to be careful that if different constraints apply to a and b respectively
that they need to abide the category laws and allow for proper composition.

47" Agda proof: Theory.Haskell.Constrained.Examples.SetFunctor
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Monadic . .. .
. Standard GradedVie M. |IndexedVi,j€1l.| Constrained
notion
Underlying
T:C—C T,:C—C I,j:C—C T:0—C
functors ’
Basic model Monad — — Relative monad
1 — [C,C]s | Mony — [C,Co
Lax mon. .
o — T i = T — -?7-
functor . . . .
ide — idp id; — idg,
1 — Cat Mon3, — Cat I — Cat
Lax e — C e — C i — C o
2-functor o —» T i = T (i,j) = T .
ide — idp id; — idT,- id(zﬂ,j) d idTl-_/»

M — The carrier of a monoid.
C - The underlying category of the monadic notion.
O - The category providing the constrained version of C. O is concrete on C.
I — The set of possible indices.
[ — The strict 2-category with I as O-cells, codiscrete 1-cells and discrete 2-cells.

Table 1. Overview of categorical formalisations for monadic notions.

7.3 Monadic notions

We will now discuss how the different monadic notions can be modelled categorically.
Table 1 provides an overview and guide of the categorical models for the different monadic
notions and highlights their common structure. Note that our formalisation of Haskell
functors in Set and Set-based functors in category theory are equivalent*® to each other.
Graded and indexed monads have a whole family of underlying functors instead of just
one.

7.3.1 Standard monads

In Set standard monads as they are encoded in Haskell are equivalent to categorical mon-
ads*® from Set to Set. A categorical monad® is a endofunctor T : Set —» Set with a
natural transformation 1) : 1 — T (return) and 4 : T o T — T (join).

Definition 7.3.1 (Monad)
Let C be a category. A monad consists of

e afunctor F:C — C,
e a natural transformation 1 : idc — F and
e anatural transformation 4 : FoF — F

48 Agda proof: Theory.Functor.Properties.IsomorphicHaskellFunctor
49 Agda proof: Theory.Monad.Properties.IsomorphicHaskellMonad
50 Agda formalisation: Theory.Monad.Definition
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such that the following diagrams for associativity, left identity and right identity commute

F(F(F(c)) 2 F(F(c)) F(c) F(F(c))
#F(C)J( J{Hc \ He
F(F(c)) ——— F(c) F(c)4>F(c)

for all ¢ € Obj¢.

This exactly matches the building blocks of a lax monoidal functor and indeed categorical
monads in a category C are in one-to-one correspondence’! with lax monoidal functors
from the unit category 1 to [C,C],. The object-level mapping selects the functor T in
[C,C], and the morphism-level mapping maps to the identity natural transformation on T'.
The 1 and p,j transformations of the lax monoidal functor are in one-to-one correspon-
dence with the 1 and u transformations of the monad.

7.3.2 Graded monads

Graded monads (Section 3.3) do not have a standard categorical model we can refer to, but
we can generalise®” the categorical definition of standard monads from Definition 7.3.1 in
a straight-forward way.

Definition 7.3.2 (Graded monad)
Let C be a category and (M, ¢,e) be a monoid. A graded monad consists of

e a family of functors F; : C — C for all i € M,
e a natural transformation 7 : idc — F, and
e a family of natural transformations u*/ : F;o F; — Fj,

such that the following diagrams for associativity, left identity and right identity commute

At

Fi(Fj(Fi(c))) Fi(Fjok(c)) Fi(e) — Fi(Fe(c))

e
“;Z(C')l lu[z;,jok l \ LLI e

Fio j(Fi(c)) Fis jok(c) F,(Fi(c)) 4’ Fi(c)

Tacle
for all i, j,k € M and ¢ € Objc.

This generalisation is equivalent>® to the Set-based (and Haskell inspired) definition of
graded monads®*. Just as with standard monads, there is a one-to-one correspondence’
with lax monoidal functors (Katsumata, 2014; Gaboardi et al., 2016). The unit category
1 is exchanged with the monoidal category Mony; based on the monoid of effects M

Agda proof: Theory.Functor.Monoidal.Properties.IsomorphicMonad

Agda formalisation: Theory.Haskell.Parameterized.Graded.Monad

Agda proof: Theory.Haskell.Parameterized.Graded.Monad.Properties.IsomorphicHaskellGradedMonad
Agda formalisation: Haskell .Parameterized.Graded.Monad

Agda proof: Theory.Functor.Monoidal.Properties. IsomorphicGradedMonad

54
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that the graded monad is using. This process yields a lax monoidal functor of the form
Monys — [C,C].. On object-level each element of M is mapped to the functor with that
element as index and the identity morphisms is mapped to the identity transformation on
the corresponding functor.

7.3.3 Indexed monads

Indexed monads (Section 3.2) do not have a standard categorical model either, but as with
graded monads we can generalise>® Definition 7.3.1 to arrive at a suitable definition.

Definition 7.3.3 (Parametrised monad)
Let C and I be a categories. [ is the category of indices. A parametrised monad consists of

e afamily of functors Fy : C — C for all i, j € Objy and f € Homy (i, /),

e a family of natural transformations 1’ : idc — Fyg, for all i € Obj;, and

e a family of natural transformations u/¢ : F, 0Fy — Fyo 5 forall i, j,k € Objy, f €
Homy (i, j) and g € Homg (j, k)

such that the following diagrams for associativity, left identity and right identity commute

(el ;
Fi (F (Ff(C)))MFh(Fgoﬂf(c)) D gy ()

Fy(c)
&h or f. |d
: Ff(”)l l“f o m l \ !

Fhoﬂé’(Ff(c)) W Fhorgorr(c) Fig, (Ff( )) uf—> Fy(c)

for all i, j,k,I € Objy, f € Homy (i, j), g € Homp (j,k) and h € Homy (k,1).

Note, that instead of using a simple set to provide the indices we are using a category
where the morphisms provide the indices. Also notice that this definition has a structure
very similar to that of a graded monad. Indeed, if we use Mony; (for any monoid M) as
the category of indices both definitions are equivalent’’ to each other. We call this new
definition a parametrised monad instead of an indexed monad, because it captures standard
and graded monads, as well as indexed monads.

As before this definition is equivalent®® to the Set-based (and Haskell inspired) defini-
tion’” of indexed monads. Unfortunately, this definition is not in one-to-one correspon-
dence with a lax monoidal functor, because the indices form a general category rather than
having a monoidal structure. We are required to look at the more general structure of a lax
2-functor to find a matching categorical notion. The category of possible indices I needs
to be expanded to a 2-category with discrete 2-cells. It then forms the strict 2-category of
Objy 0-cells, Homy (—, —) 1-cells and discrete 2-cells. The corresponding lax 2-functor of a

56
57

Agda formalisation: Theory.Haskell.Parameterized.Indexed.Monad
Agda proof: Theory.Haskell.Parameterized.Indexed.Monad.
Properties.IsomorphicGradedMonad

Agda proof: Theory.Haskell.Parameterized.Indexed.Monad.
Properties.IsomorphicHaskellIndexedMonad

Agda formalisation: Haskell .Parameterized. Indexed.Monad
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parametrised monad maps 0-cells to the underlying category C of our parametrised monad.
Each 1-cells selects the corresponding functor from the family of underlying functors. The
2-cells are mapped onto the corresponding identity transformations of those functors. Just
as with the lax monoidal functors in the previous paragraphs, the 1, and i, ; . transforma-
tions of the lax 2-functor are in exact correspondence with the return and join operation of
our parametrised monad®’.

We are aware that Atkey (2009) gave a categorical model for indexed monads, but we
have noticed that it does not exactly fit what we expect of an indexed monad. Atkeys work
is discussed in Section 10.1.

7.3.4 Unified categorical representation of parametrised monads

A lax monoidal functor can always be “lifted” into a lax 2-functor, i.e., for any category C
and monoid M, if the monoidal functor goes from Mony, to [C,C], then it is equivalent®!
to a lax 2-functors from Monjzv, to Cat where the 0-cell mapping is constant to C. Since the
lax monoidal functors of standard® and graded®® monads fulfil these conditions they are
in one-to-one correspondence with the lax 2-functors of the corresponding structure.

Due to this correspondence we have found a common categorical representation of
standard, graded and indexed monads as lax 2-functors that use a constant mapping as
their 0-cell mapping.

Note, that by generalizing the categorical definition of monads to graded and indexed
monads we have found a categorical model that is independent of Set and that captures
standard, graded and indexed monads more precisely and intuitively than lax 2-functors.
Although these generalisations are not standard categorical notions we deem them useful,
especially for functional programmers that have limited familiarity with category theory.

7.3.5 Constrained monads

‘We can use relative monads to model constrained monads in the same way as described for
functors in Section 7.2.8. Given a category of constraints O that is concrete on C we can
use the associated functor Jg as the functor J from Definition 7.3.4. Thus, we can define a
constrained monad as a relative monad from O to the underlying category C. For a given
object mapping 7" we then need to define 7, and the Kleisli extension —*.

In our Set example we let underlying category be Set. We can then use Qg4 and Jo,,,
again. This results in the following morphism for 7,

V (a, Ord a) € Objg,_,- Jog,q(a, Ord a) = T(a, Ord a)

V (a, Ord a) € Objq,_,. a—T(a, Ord a)

60 Agda proof: Theory . TwoFunctor .Properties . IsomorphicIndexedMonad

61 Agda proof: Theory.TwoFunctor.Properties.IsomorphicLaxMonoidalFunctor
62 Agda proof: Theory. TwoFunctor.Properties.IsomorphicMonad

63 Agda proof: Theory . TwoFunctor.Properties.IsomorphicGradedMonad
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and the following mapping for the Kleisli extension

V (a, Ord a), (b, Ord b) € Objg, ..
(Jogeq (@, 0rd a) — T (b, 0rd b)) — (T(a, Ord a)—T (b, Ord b))

V (a, Ord a), (b, Ord b) € Objg,_,.
(a—T(b, Ord b)) — (T(a, Ord a)—T (b, Ord b)).

Which reflects a constrained return and bind operation. Our formalisation of Set forms a
relative monad in this way®*.

Note that in our Haskell representation of constrained monads we have separate con-
straints for the return and bind operation, i.e., ReturnCts and BindCts. This is due
to the necessary split of the monad type class into two type classes. When instantiat-
ing a constrained monad instance the programmer needs to make sure that BindCts and
ReturnsCts are consistent according to the definition of a relative monad.

Unfortunately, we have not yet found a categorical structure that captures both lax 2-
functors and relative monads. As pointed out by Altenkirch (2010) there is no obvious way
to form a join operation, i.c., a transformation T oT — T, as would be required by the
lax 2-functors that are equivalent to the parametrised notions. Altenkirchs paper does show
that a relative monads in [J, C] (the category of functors from J to C) can be transformed
into lax monoidal functors in [C,C], if the left Kan extension [J,C] — [C,C] exists. In
future work we may explore if the left Kan extension exists in our model of constrained
monads.

Even though we could not find a standard categorical notion that captures lax 2-functors
and relative monads, we can apply the same technique of generalisation that we used to de-
fine parameterised monads to relative monads. This leads to the notion of a parameterised
relative monad.

Definition 7.3.4 (Parameterised relative monad)
Let C, D and I be categories. [ is the category of indices. A parameterised relative monad
consists of

a functor J : C — D,
a object mapping 7 : Objc — Objp, for all i, j € Objy and f € Homy (i, /),
for all a € Objc and i € Obj; a morphism 1, € Homp (J(a), T4, (a)) and

a morphism k7 , € Homp (Ty(a), Tgoy (b))
that satisfy the following laws

e forall a,b € Objc, i, j € Objy, f € Homy (i, j) and k € Hompy (J(a),Tf(b)) the right
unit law

k= k},idj op 1M,

64 Agda proof: Theory .Haskell.Constrained.Examples.SetMonad

foralla,b € Objc, i, j,k € Objy, f € Homy (i, j), g € Homy (j, k) and k € Homp, (J(a), Ty (b))
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Apph.catlve Standard Graded Vi € M. Indexed Vi, j. Constrained
notion
Underlying
T:C—C T,:C—C Ij:C—C T:0—C
functors '
Lax mon. C—cC Mony x C —s C — 0-—C
functor
Lax mon. 1— [(C,(C}Day MonM — [(C,(C]Day 1— [@,C}Day
functor e — T i — T — e — T
(conjectured) | idy > idy id; — idTi ide — idp
M — A monoid.

C — The underlying category of the applicative notions.
O - The category providing the constrained version of C. O is concrete on C.

Table 2. Overview of categorical formalisations for applicative notions.

e forall a € Objc, i,j € Objy and f € Homy (i, j) the left unit law

(n4):g, ;= i91,(a) € Homp (Ty(a), T (@)  and

e foralla,b,c € Objg, s,t,u,v € Objy, f € Homy (s,), g € Homy (¢,u), h € Homy (u,v),
k € Homp (J(a), T,(b)) and | € Homp (J(b),Ts(c)) the associativity law

(17 ¢ °D K goy £.0 = L hoyg O K -

As expected the notion of a parameterised relative monad is fully equivalent® to that
of a parameterised monad if C and D are the same. If I is the unit category they are
equivalent® to relative monads. Due to their relationship with parameterised monads they
are equivalent®’ to certain lax 2-functors if the C and ID are the same and the 0-cell mapping
of the lax 2-functor is constant. Hence, we have developed a custom categorical notion that
is able to provide a model for all of the monadic notions we set out to model (given their
Set-based representation).

Unpublished work by Orchard and Mycroft (2012) discusses using relative monads as a
categorical model for constrained monads in a similar manner to our work.

7.4 Applicative notions

As can be seen in Table 2, all generalisations of applicatives are based on the same under-
lying functors as the previously presented monadic notions.

65 Agda proof: Theory.Haskell .Parameterized.Relative.Monad.
Properties.IsomorphicIndexedMonad

66 Agda proof: Theory.Haskell.Parameterized.Relative.Monad.
Properties.IsomorphicRelativeMonad

67 Agda proof: Theory. TwoFunctor.Properties. IsomorphicParameterizedRelativeMonad
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7.4.1 Standard applicatives

Standard applicatives in Set are equivalent®® to lax monoidal functors (McBride & Pa-
terson, 2008). The morphism 7 of a the lax monoidal functor F : Set — Set that is
represented by a standard applicative F is given by

0 T—=F(T)
10— pure ()
and the natural transformation L, is given by
_JF(a)xF(b) — F(axb)
Hab: (u,v) = fmap (\x y -> (x,y)) u <*> v.

In contrast to monads, applicatives do not require their underlying functors to be endo-
functors. This is key to model graded and constrained applicatives.

7.4.2 Graded applicatives

To represent a graded applicative (Section 4.3) we only have to “add in” the monoid
(M, e,¢) of effects that it is parametrised over. This can be achieved by using a product
of the monoidal category Mony, and Set as the source category of the monoidal functor:

Mony; x Set — Set
This monoidal functor provides the required operations
n:(e,T)—>F(e,T)
Map: F(i,a) x F(j,b) — F(iej,axb)
to form a graded applicative and is indeed equivalent® to one:

pure :: a -> F (Unit F) a
pure a = fmap (\Q -> a) (n O)

(<#>) :: Fi(a->b) >Fja->F (CompFiij)hb
ff <*> fa = fmap (\(f , x) -> £ x) (Uap (£f , fa))

We can generalise the definition of a lax monoidal functor in a similar manner as we did
for graded monads:

Definition 7.4.1 (Graded lax monoidal functor)
Let (C,1¢,®c) and (D, 1p, ®p) be two monoidal categories. Let (M, <, e) be a monoid. A
graded lax monoidal functor between C and D consists of

e a family of functors F; : C — Cforall i € M,
e amorphism 1 : 1p— F,(1¢), and

68 Agda proof: Theory.Functor.Monoidal.Properties.IsomorphicHaskellApplicative
% Agda proof: Theory.Functor.Monoidal .Properties.IsomorphicGradedApplicative
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e a family of natural transformations ,u;"‘{; : Fi(a)®p Fj(b) — Fio j(a®cb) for all
i,j € M and a,b € Obj¢,
such that the diagram for associativity

o

Fi(a).F(b).Fi(c)
(Fi(a)@p Fj(b)) ®p Fi(c) ————— Fi(a) @p(F;(b) ®p Fi(c))
Wi oo | [ o
Fioj(a®cb) @p Fi(c) Fi(a)®p Fjox(b®cc)
H ;O@/Ck b,cl lﬂ ;IbZ:C c
Fiojyok((@a®cb) ®cc) — Fio(jor)(a®c(b®cc))
onok(aa‘b_c)

and the diagrams for left and right unitality

®Rpidg idg ®
1p @p Fi(a) ——2 F,(1c)@pFla) F(a)®plp ——""1 F(a)@pF(lc)
*E@l l“féa Pga)l lﬂé’flc
i 9 oo i € ioe
F,-(a) W Feoi(l(C ®(Ca) F,-(a) T Fi<>e(0®(c 1<C)

commute for all i, j,k € M and a,b,c € Obj¢.

This definition is in one-to-one correspondence’® with any lax monoidal functor of the
form Mony; x Set — Set.

7.4.3 Constrained applicatives

In case of a constrained applicative (Section 4.4) we use a concrete category that models the
constraints as source for the lax monoidal functor. This works analogous to the modelling
of constrained functors and monads described in previous sections. The difference is that
our concrete category is now also required to be monoidal. This means, that the constraints
need to obey the laws that are expected for a monoidal category. We will exemplify the
implications of this with Qg.4. Firstly, a tensor product has to exist:

©Urd X @Drd — @Drd
®: 4 ((a, 0rd a), (b, 0rd b))+ (ax b, 0rd (a x b))
(fra—=b, g:c—>d)— (Alx, y). (f(x), g(»)) :axc—bxd)

Secondly, a tensor unit is required, i.e., (T, Ord T) is required to be in Objg,_,. Finally,
we need to make sure that the associator, left unitor and right unitor can be defined and obey
triangle and pentagon identity. Our formalisation of Set forms a lax monoidal functor from
Ogrq to Set as expected’!.

70 Agda proof: Theory.Haskell.Parameterized.Graded.LaxMonoidalFunctor.
Properties.IsomorphicLaxMonoidalFunctor
71" Agda proof: Theory.Haskell.Constrained.Examples.SetApplicative
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Given the lax monoidal functor that represents a standard, graded or constrained applica-
tive we conjecture that each representation is equivalent to a lax monoidal functor from an
appropriate indexing category to the monoidal functor category that uses day convolution
as tensor product. This would give them a lax monoidal structure very similar to that of the
monadic notions.

We only conjecture the equivalence between the two different lax monoidal represen-
tations, because the formalisation of day convolution requires more advanced support for
quotient types and equalities in Agda.

7.4.4 Indexed applicatives

Unfortunately, just as their monadic counterpart, indexed applicatives (Section 4.2) do not
match the structure of a lax monoidal functor. We suspect that there is a more abstract
structure similar to that of a lax 2-functor that will capture all of the applicative notions we
have discussed.

As a first approximation of this more general structure we can generalise the definition
of a lax monoidal functor in the same manner as we did for parametrised monads:

Definition 7.4.2 (Parametrised lax monoidal functor)
Let (C,1¢,®c) and (D, 1p, ®p) be two monoidal categories. Let I be a category. A parametrised
lax monoidal functor between C and DD consists of

e afamily of functors F; : C — C for every f € Homy (i, j),

e amorphism 1 : 1p — Fig,(1¢) for every i € Objy, and

e a family of natural transformations /.L('lf % Fp(a)®p Fy(b) — Fyopr(a®c b) for all
i, j,k € Objy, f € Homy (i, j), g € Homy (j,k) and a, b € Objc,

such that the diagram for associativity

D
OF p(a) Fy(b) Fyle)

(Fr(a) @p Fg(b)) ©p Fi(c) ——— Fi(a) @p(Fj(b) ®p Fi(c))

#({f ®p idFk(c)l lidFi(a) ®p ﬂff
Feop(a®cb) @p Fi(c) Fy(a) ®p Fhog(b@c €)
#5%@'2,{ lﬂi’fé@f@

Fho(gof) ((a ®(C b) ®(C C) —C> F'(hog)of(a ®C (b ®(C C))
Fhoé’of<aa.1)7c)

and the diagrams for left and right unitality

o ida iy ©p 1
1p ®p Fr(a) ——2% 5 Fy(1c)®pFrla) Fr(a)®plp ———— Fy(a)®p Fq,(1c)
idi.f fid;
AE;.@)l L lﬂli}{; P}%.(a)l s lu,hlc’
Frla) «1— 2% Foa(1 F Y R, 1
7(a) 709 foid; (e @c a) 7(a) F(0) idjor(a®clc)

commute for all i, j, k,I € Objy, f € Homy (i, j), g € Homp (j, k), h € Homy (k,1) and a,b,c €
Objc.
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This structure is equivalent’? to the Set-based definition of indexed applicatives if we use
a codiscrete category of indices. It is also equivalent’? to standard lax monoidal functors if
I is the unit category and it is equivalent’* to our definition of graded lax monoidal functors
if I is the category Mony, formed by a monoid M. Thus, our definition of parameterised
lax monoidal functors captures all of the different applicative notions that we presented.

Exploring if there is a more mature pre-existing categorical notion that captures standard,
constrained, graded and indexed applicatives at the same time remains future work.

7.5 Conclusion of categorical models

In conclusion, we have made a considerable step towards a unified categorical model for
different generalisations of monads and applicatives.

We have proposed categorical notions that give a unified model for all of the monadic
and applicative notions respectively. Our definition of parameterised relative monads cap-
tures all of the monadic notions and the parameterised lax monoidal functors capture all of
the applicative notions.

As a result of this work we can present a hierarchy of monadic and applicative notions.
Figure 7 contains the hierarchy of models for the monadic notions and Figure 8 contains the
hierarchy of models for the applicative notions. The arrow relationship in these diagrams
states the following relationship:

(A—B) iff (3B". (A=B')A(B'CB))

The =2-symbol is supposed to denote a one-to-one correspondence between A and B'. For
example, the arrow between parameterised monads and lax 2-functors states that a subset of
all possible lax 2-functors is in one-to-one correspondence with all possible parameterised
monads. Hence, lax 2-functors subsume parameterised monads.

Even though we are still missing an overarching pre-existing categorical model for
either notion (as indicated by the question marks in the diagrams), our work contributes
a considerable step towards a unified theory of these notions.

Firstly, we have given an overview of the different notions and put them into context with
each other. We are not aware of any previous work that has provided a detailed categorical
context in this form.

Secondly, we have formalised all of the involved monadic, applicative and categorical
notions in the proof assistant Agda. Based on this formalisation we have given hard evi-
dence of the discussed relationships between the different notions.

72 Agda proof: Theory.Haskell .Parameterized.Indexed.LaxMonoidalFunctor.
Properties.IsomorphicHaskellIndexedApplicative

73 Agda proof: Theory.Haskell .Parameterized.Indexed.LaxMonoidalFunctor.
Properties.IsomorphicLaxMonoidalFunctor

74 Agda proof: Theory.Haskell .Parameterized.Indexed.LaxMonoidalFunctor.
Properties.IsomorphicGradedLaxMonoidalFunctor
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Standard categorical

Lax 2-Functor -7 -
model T
Parameterised
) . Relative Monad
Custom categorical Parameterised
model Monad
Graded / ona
Monad

Standard categorical _ Relative

model MO“{ \\ \ Monad
f :

Approx. of Haskell Standard Graded Indexed Constrained
as Set-based structure Monad Monad Monad Monad

Fig. 7. Hierarchy of categorical models for monadic notions.

Standard categorical o
model .
Custom categorical Parameterised Lax
model Monoidal Functor
Standard categorical Lax Monoidal
model / FunTctor \
Approx. of Haskell Standard Constrained Graded Indexed
as Set-based structure  Applicative Applicative Applicative Applicative

Fig. 8. Hierarchy of categorical models for applicative notions.

8 Implementation and use of the GHC plugin

As explained in Section 5.2, by splitting the bind, ap and return operations into different
classes, and by allowing the use of different partially applied type constructors, the di-
rect connection between the operations and the type constructors has been broken. This
introduces ambiguities. In this section we explain how our plugin for GHC resolves these
ambiguities and aids type inference for the Bind, Applicative and Return type class
by exploiting knowledge about supermonads and additional contextual constraints. As
a result, the plugin is able to infer the type of the any monadic or applicative notion
from Section 3 or 4 that is encoded with supermonads as if they were written with the
corresponding specialised type class.
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Before we discuss the details of the plugin we give a brief overview of the GHC type
checker plugin mechanism. At the time of writing, the supermonad plugin has been tested
using GHC 7.10.3, 8.0.1 and 8.2.1. It will definitely not work with versions of GHC
lower than 7.10, because the plugin infrastructure was still under development prior to
that version.

8.1 GHC Type Checker Plugins

GHC supports a plugin interface to extend its constraint solver. The plugins are provided
to GHC as standard Haskell modules during compilation. Type checker plugins have been
used to implement type system extensions such as type-level natural numbers (Diatchki,
2015) and units of measure (Gundry, 2015). We have previously used a plugin to integrate
polymonads into Haskell (Bracker & Nilsson, 2015). We will content ourselves with a brief
explanation here, referring the reader to the earlier work and Section 11.3.4 of the GHC
user’s guide”’ for details.

GHC type checks code in program fragments, e.g., top-level function definitions. For
each fragment, type checking and inference produce three sets of constraints. These three
sets represent given, derived and wanted constraints: given constraints are provided by
the programmer or inferred as part of a type signature, derived constraints are constraints
that arise from another plugin, and wanted constraints are those constraints that require
solving. The constraint solver solves wanted constraints iteratively. If the constraint solver
is not able to solve a constraint or make progress, it will ask available plugins for help. The
plugin can then process the constraints and either provide evidence to be used for them or
create new constraints to guide the constraint solver.

8.2 Supermonad Plugin

We start the tour of the plugin by recapitulating the type inference capabilities we aim to
support:

e A connection between the bind, ap, and return operation for each supermonad or
applicative.

e Enforcing and using the knowledge that all three type constructors in the head of
Bind or Applicative instances are partial applications of the same base construc-
tor.

e Inference of the indices through unification with the bind or return operations type
signature of specific instances.

When talking about the algorithm, we have to distinguish cases based on the base
constructors that are found in the supermonad constraints. Therefore, we refer to base
constructors that are not type variables as manifest constructors, base constructors that
are ambiguous type variables as ambiguous constructors and base constructors that are
unambiguous type variables as variable constructors.

75 Glasgow Haskell Compiler User’s Guide (8.2.1) - http: //downloads .haskell.org/~ghc/8.
2.1/docs/html/users_guide
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Note that the plugin cannot enforce that the Bind, Applicative and Return instances
actually form valid supermonads or applicatives according to our categorical model. This
especially means that the plugin does not check or enforce that the equational laws associ-
ated with each notion are satisfied. The user still has to confirm the laws and correctness of
their instances for themselves. The plugin only enforces side-conditions that are relevant
to the solving process, as is described in the following sections.

Assumptions. It is assumed that a supermonad or superapplicative in Haskell consists of
exactly one Bind (or Applicative) and one Return instance. This assumption is true for
all of the monadic and applicative notions we aim to support.

Since it is not possible to enforce this assumption directly in Haskell, the plugin checks
that there is only one Bind (or Applicative) and Return instance and that their argu-
ments are applications of the same base constructor. If all instances conform, the plugin
creates an association between each base constructor and its single Bind, Applicative
and Return instance to enable a quick lookup of the appropriate instances for a given base
constructor.

We also make the assumption that a monadic and applicative computation only ever
involves a single supermonad or applicative. For examples, it is not allowed to use several
different supermonads within one do-block. This does not prohibit nesting of computa-
tions: it just means that lifting monadic or applicative computations into each other needs
to be stated explicitly.

Algorithm. After checking these contextual constraints, the actual solving algorithm is
executed. The algorithm is composed out of the following steps:

1. Construct a graph that connects two wanted supermonad or applicative constraints if
and only if they share an ambiguous constructor. We call each connected component
of the graph a constraint group.

2. For each constraint group, solve the ambiguous constructors:

o [f the group only involves one manifest and no variable constructors, all ambigu-
ous constructors are set to that manifest constructor.

e If the group involves no manifest constructor and at least one variable construc-
tor, all possible associations between the ambiguous and the variable construc-
tors are checked. If there is only one satisfiable association, use it. Otherwise,
abort.

e In any other case abort.

3. Check each solved constraint for ambiguous indices. If such indices are found, unify
the constraint that contains them with the associated instance of the used base con-
structor and thereby solve the ambiguous indices.

Explanation of Step 1. The constraints of a program fragment may involve constraints
from different computations or do-blocks. Therefore, the separation of constraints into
groups is necessary to ensure that the constraints that are being solved together belong to
the same computation. We choose to group them by overlapping ambiguous constructors.
These constructors can only overlap between two constraints if they are actually used
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Bind [] m\n Return t
Bind [] p m Bind s t Maybe

Return p Return s

Fig. 9. Graph produced by the separation algorithm from the example.

within the same computation. Not capturing all constraints from a specific computation
is not a problem: smaller groups can always be solved separately. If this solving process
leads to a conflict, e.g., both groups use a different manifest constructor, then GHC will
notice this when conflicting results are produced by the plugin.

For example:

f =do a <- [1,2,5] --1
b <- maybeTolList ( do -2

c <- return (a == 1) --3

if ¢ then return 1 else Nothing ) -- 4

return (a + b) -- 5

The monadic computation in f uses lists and a nested computation with Maybe. The con-
straints inferred from f are:

1: Bind [] m n 3: Bind s t Maybe
2: Bind [] pm 3: Return s
5: Return p 4: Return t

The constraints involve the five ambiguous constructors m, n, p, s, and t. Figure 9 shows
the graph produced by the separation step. We can see that the three constraints on the left
form one connected component and the three constraints on the right form another. These
connected components reflect exactly the outer list computation and the nested Maybe
computation, respectively.

Note that a constraint group may also contain Applicative constraints alongside Bind
and Return constraints.

Explanation of Step 2. If there is just one manifest and no variable constructor within
the constraint group, we can equalise all ambiguous constructors with it, because it des-
ignates the supermonad or applicative this group is working with. Our example from Step
1 demonstrates this. In Figure 9 the ambiguous constructors m, n, and p will be equalised
with manifest constructor [], whereas s and t will be equalised with Maybe.

Finding more than one manifest constructor in a constraint group is nonsensical, because
that would imply that the programmer is using several different supermonads or applica-
tives within the same computation. Therefore, we need to abort in this case.

If there are manifest and variable constructors involved with the constraint group we
also need to abort. Again this situation is nonsensical, because the programmer is already
designating the supermonad or applicative that is used throughout the computation with
the manifest constructors, which means there should not be any variable constructors.
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If there is no manifest constructor and at least one variable constructor in use, the
constraint group originates from a function that is polymorphic in the supermonad and
applicative being used. An example for this would be the monadic function forever:

forever :: (Bind m n n, BindCts mnn) =>ma ->n b
forever ma = ma >>= ( \_ -> forever ma )

To declare this function in the most general form the type needs to involve two different
variable constructors (m and n), because, depending on the supermonad in use, m and n are
not necessarily the same. We cannot be more precise about the partial applications that form
m and n either, because their arity and relationship depends on the instantiating monadic
notion. Thus, we are required to use several variable constructors to express the function’s
type. In this case all of the given Bind and Return constraints form the supermonad we
are working with.

To solve the ambiguous constructors we need to check all of the associations between
ambiguous and variable constructors and see which associations are satisfiable by the given
constraints. If there is only one possible association, we know that is the one intended by
the programmer. If there are several possible associations we need to abort, because the
function’s type is ambiguous and committing to one of them may result in unintended
runtime behaviour.

We can illustrate this process with forever. GHC infers the following constraints:

Bind m s n -- From the use of (>>=).
Bind m s s -- From the use of ’forever’.

The variable constructors m and n of the first constraint are inferred by unification with the
type signature of forever. The recursive call of forever leads to the second constraint,
which contains m due to the application to ma. Since there is no further information avail-
able GHC infers the most general type for the missing constraint arguments, resulting in the
introduction of the ambiguous constructor s. However, due to the shape of the constraints
given by the type signature of forever, GHC can infer that the second and third argument
need to be the same.

From the ambiguous constructor s and the variable constructors m and n the plugin
can construct two possible associations: { s+ m } and { s —n }. As only one of the
associations is satisfiable by the given constraints of forever, i.e., { s — n }, the plugin
will use the second association to solve the ambiguous constructor and ignore the first
association.

The runtime of checking all associations is exponential in the number of ambiguous and
variable constructors. However, our experience from implementing the standard library
functions suggests that this is not a problem in practice as functions that are polymorphic
in the used supermonad tend to be short and their types only contain small numbers of
variables.

We can construct examples with multiple possible associations by adding constraints
that are not necessary to solve the ambiguous constructors. However, in practice we have
not encountered a polymorphic function with several satisfiable associations. We suspect
this is due to the fact that we only provide the minimal amount of constraints necessary to
type the polymorphic functions we wrote.



ZU064-05-FPR paper 12 December 2017 15:21

Supermonads and superapplicatives 55

In cases where the runtime becomes an issue, it can be reduced by giving additional type
annotations throughout the function, thus reducing the number of variables. To support
programmers with this issue, future versions of the plugin may print warnings to show
which computations involve many variables.

Explanation of Step 3. The final step solves indices through unification with the instance
that is supposed to be used. It is motivated by our last observation: if this is not done, there
may be ambiguous type variables left in the indices of partially applied base constructors
that prevent GHC from solving the constraint with an instance.

For example, if a Return (Vector n) constraint resulted from Step 2, we know that
the graded monad Vector is used. Thus, we can lookup the Return instance of the
Vector type constructor and solve n by unifying the instance arguments with the constraint
arguments, which results in n being equalised with 1 (encoded as S Z).

That this process works is ensured by the assumption that there is exactly one Bind
(and/or Applicative) and one Return instance per base constructor. If there were several,
it would be unclear which one to use for this step. If there is no instance we cannot unify
at all. The plugin ensures that both (or all three) instances exist for each base constructor.

In conclusion, the presented arguments and the conducted case studies (Section 9) give
confidence that the plugin restores GHC’s ability to infer the type of supermonad and
applicative computations.

8.3 Using the Plugin
To use the our plugin in a module, the programmer has to do four things:

e To use do-notation for the monadic notions the GHC language extension RebindableSyntax
needs to be enabled. This allows using the bind and return operation provided by the
supermonad library instead of the standard monad versions.

e Import Control.Super.Monad.Prelude. This module provides all the functional-
ity of the standard Prelude, except that the parts of the prelude relating to standard
monads and applicatives are replaced with the appropriate counterparts. By default,
the standard prelude is not imported when rebindable syntax is enabled.

e Activate the type checker plugin by inserting the following line at the top of the
module:

{-# OPTIONS_GHC -fplugin Control.Super.Monad.Plugin #-}

o Finally, the user has to implement instances of the Bind (and/or Applicative) and
Return class for all of their supermonads. Most of the standard library and monad
transformer instances are provided by our library.

An example of a module that performs the first three steps can be seen in Figure 10. The
supermonad library repository’® contains several examples that demonstrate how super-
monads can be used.

76 GitHub: jbracker/supermonad - https://github.com/jbracker/supermonad
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{-# LANGUAGE RebindableSyntax #-}
{-# OPTIONS_GHC -fplugin Control.Super.Monad.Plugin #-}

module ExampleModule where

import Control.Super.Monad.Prelude

Fig. 10. Example of a module header that enables the use of supermonads and applicatives.

A collection of supermonad and superapplicative related functions that are not in the
standard prelude can be found in the module Control . Super.Monad.Functions.

To work with the constrained variant of supermonads and applicatives use the alternative
prelude Control.Super.Monad.Constrained.Prelude. Non-prelude functions of the
constrained variant can be found in Control.Super.Monad.Constrained.Functions.

9 Case studies

We pursued a practically driven approach to develop supermonads, applicatives and the
associated plugin. To provide evidence of the practicality of our approach, and to check
that everything works as intended, we carried out a couple of case studies. The case studies
also constitute a stress test of our plugin on a larger code base. The source code of these
case studies is available in the supermonad library repository’’.

9.1 Teaching Compiler

We chose to apply supermonads and applicatives to a teaching compiler for our first case
study. The compiler is made up of 25 modules containing more than 3800 lines of code
(not counting blank lines and comments). A majority of that code uses the do-notation
to express computations involving standard monads. The code uses a range of custom
and predefined monads and involves monad transformers as well as fixed points, i.e.,
recursive do-notation. Therefore, the compiler provides a good stress test for the plugin and
a possibility to see if there are any problems when using supermonads and applicatives.

To adapt the compiler to use supermonads, we applied the first three steps of Section
8.3 to each module and provided instances of the Bind and Return classes for each of
the custom monads defined in the compiler. To exemplify this, we will look at a monad
transformer that adds the handling of failures:

newtype DFT m a = DFT { unDFT :: m (Maybe a) }
Originally the monad instance had the following form:

instance ( Monad m ) => Monad (DFT m) where
return a = DFT ( return (Just a) )
m >>= f = DFT (
unDFT m >>= \ma -> case ma of
Nothing -> return Nothing

7T GitHub: jbracker/supermonad - https: //github. com/ jbracker/supermonad
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Just a -> unDFT (f a) )

Without changing the implementation we can translate this into the following supermonad
instances:

instance ( Bind m n p, Return n
) => Bind (DFT m) (DFT n) (DFT p) where
type BindCts (DFT m) (DFT n) (DFT p) =
( BindCts m n p, ReturnCts n )
m >>= f = DFT (
unDFT m >>= \ma ->
case ma of
Nothing -> return Nothing
Just a -> unDFT (f a) )

instance (Return m) => Return (DFT m) where
return a = DFT ( return (Just a) )

We also generalised the instance at the same time. This allows arbitrary supermonads to be
wrapped in DFT, because we use the constraint Bind m n p instead of Bind m m m.

In addition, we had to modify functions and classes that are polymorphic in their monad.
We had to replace their Monad m constraints with Bind m m m and Return m constraints
and add the associated bind constraints BindCts m m m to every function involving a bind
operation.

One example where these changes were necessary is the Diagnostic class of the com-
piler.

class ( Applicative d, Monad d
) => Diagnostic d where
emitD :: String -> d ()
(1) ::da->da->da

The class was made applicable to supermonads through the naive mechanical process we
described in Section 5.6.

class ( Applicative d d d, Bind d 4 d, Return d
) => Diagnostic d where
emitD :: (ApplicativeCts d d d, BindCts d d d, ReturnCts d)
=> String -> d O
(I'11) :: (ApplicativeCts d d d, BindCts d d d, ReturnCts d)
=>da->da->da

There was no need to change any of the instances.

Note that we could only apply the naive conversion, because the classes were written
having standard monads specifically in mind. Generalizing them to apply to generalised
monads would require a careful redesign of their use of base constructors and their class
structure. Depending on how general the adjusted classes are, it might be necessary to list
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the required constraints of each class function in an individual associated constraint as
demonstrated in Section 5.6.

As can be seen, porting code from standard to supermonads only involved adjusting for
the Applicative, Bind and Return class and activating the plugin. Type inference was
not affected by the change to supermonads and the adjustments to utilise the supermonad
classes were reasonably mechanical.

9.2 Chat Server and Client

For our second case study, we wanted an example involving generalised as well as standard
monads. Unfortunately, the only examples we found using generalised monads did no
longer compile. Therefore, we decided to implement our own application: a chat server.
It uses session types as presented by Pucella and Tov (Pucella & Tov, 2008) in their
simple-sessions library’®. As the library does not support network communication, our
example uses communication between threads. Other participants in a chat are simulated
using bots.

The chat server is made up of 5 modules containing more than 500 lines of code (not
counting blank lines and comments). A majority of that code uses the do-notation to
express computations involving the standard monads I0 and STM in addition to the gen-
eralised Session monad.

We first implemented the chat server without supermonads to provide a point of refer-
ence for comparison after refactoring to use supermonads.

The non-supermonad implementation only relies on RebindableSyntax and requires
approximately 40 lines (~8%) of additional annotations to specify which bind and return
operation to use in computations involved with the generalised Session monad. If the
bind and return operations used by the generalised Session monad were not named dif-
ferently from the standard operations, the amount of annotation required would have been
considerably higher: In that case, annotations would have been necessary for all of the
monadic computations involving standard monads, in addition to those already present for
computations that involve the Session indexed monad.

The refactoring to use supermonads only required the changes we expected:

o Import of the custom prelude and activation of the plugin in all modules.

e Removal of the additional annotations that were previously necessary to specify
which bind and return operation to use.

e Implementation of supermonad instances for the generalised Session monad.

The removal of annotations made the implementation more concise. For example, when us-
ing nested monadic computations we could not use the where notation to add annotations.
Therefore, we had to use local 1et bindings, which cluttered the code:

do

run ( let (>>=) = (Prelude.>>=)

78 Hackage: simple-sessions - http: //hackage .haskell.org/package/simple-sessions
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(>>) = (Prelude.>>)
in do {- ... -} )

The annotations are necessary, because the RebindableSyntax extension replaces the
operations from the standard monad class with any functions in scope that use the names
>>= >> return and fail. Thus, if there are several different monadic notions in scope,
we need to disambiguate for every monadic computation.

After refactoring to use supermonads, we could remove these local 1et bindings:

do

In conclusion, the refactoring to use supermonads allowed for a more concise imple-
mentation by obviating the need for annotations, thus saving 40 lines (~8%). Additionally,
it also allowed the shared use of standard library functions such as unless, when and void
for standard as well as generalised monads.

Again, we can see how supermonads ease the use of different monadic notions in the
same application and enable the reuse of code.

10 Related Work
10.1 Atkey’s parameterised notions of computation

Atkey (2009) suggested a way of modelling indexed monads categorically. He used a
functor

T:I°°xIxC—C

together with natural transformations for the return and bind operation to model them.

His approach is applicable to our formalisation in Set, but there is one major difference
between Atkey’s and our model. The indexed monads that we draw from Haskell have an
associated functor F; ; : C — C for all indices i, j € Obj;. The homomorphism mapping
of this functor has the following form:

Homg (a,b) — Home (F; j(a),F; (b))

Notice, that i and j are invariant under the functor F; ;. The indices of any parametrised
monad in Haskell are never assumed to be functorial. Therefore, T is a more general model
of indexed monads in Haskell, because in T the indices are functorial. If the index category
I of Atkeys parameterised monad is discrete and the index category of our indexed monad
is its codiscrete counterpart they are in one-to-one correspondence’® with each other.

79 Agda proof: Theory.Haskell.Parameterized.Indexed.Monad.Properties.
IsomorphicAtkeyParameterizedMonad



Z7U064-05-FPR

paper 12 December 2017 15:21

60 Jan Bracker and Henrik Nilsson

10.2 Comparison to Kmett’s approach

The basic idea of the generalised encoding of bind operations that we use was explored
by Kmett®® in 2007. As we explained in Section 5.3, Kmett’s work included a functional
dependency on the Bind class and a specialised return operation. Both were introduced
to aid type inference. We applied Kmett’s approach to our first case study (Section 9.1).
This revealed many cases where manual type annotations and a correct choice of the return
operation were necessary to resolve ambiguous types. Both of these tasks are tedious.

In contrast, our plugin restores type inference. Therefore, including the functional de-
pendency in our encoding does not restrict the Bind or Applicative class in a useful
manner. That said, Kmett’s approach is more flexible than supermonads are as there is
no requirement for a single base constructor. This allows the encoding of implicit lifting
within the bind and ap operations. For example:

instance Bind Maybe [] [] where
-- (>>=) :: Maybe a -> (a -> [b]l) -> [b]
Just a >>=f = f a
Nothing >>= _ = []

Note that a “lifting” from Maybe to list effectively has been integrated into the bind oper-
ation. This leads to the question of why supermonads and applicatives do not allow these
lifting instances?

Implicit lifting can be seen as either convenient or confusing. It may even be uninten-
tional depending on the circumstances. For example, it is not always clear when a lift
should happen. If we have a chain of several bind operations where the first computation
uses the Maybe monad and the last computation uses the list monad, when do we lift into
the list monad? Does the lifting happen as early as possible or as late as possible? There is
no obviously correct answer to this question and arguments can be made for either strategy.

The decision when to lift can also have an impact on the performance and the runtime
behavior of the resulting program. For example, if we provide a bind operation from STM
(software transactional memory) (Harris et al., 2005) to I0, the lifting strategy determines
which operations take place within the same atomic STM computation. Depending on the
circumstances, this can influence the semantics of a parallel program, and could even lead
to deadlocks or other undesirable behavior. What if the lifting decides the instance of a
class that will be used? In that case the lifting can, again, influence the runtime behavior.

There are no obviously correct answers to these questions. Hence, we decided to not
allow lifting bind operations, but to require users of supermonads to express lifting from
one notion to another explicitly.

Our categorical model also supports the decision to only allow single base constructor
instances as it does not allow implicit lifting and mixing different monads or applicatives
together.

However, even if there were no concerns about the semantics of implicit lifting, we still
have to disallow it, because our solving algorithm is based on the assumption that all Bind
instance arguments are partial applications of the same base constructor.

80 Parameterized Monads in Haskell (13. July 2007) - http://comonad.com/reader/2007/
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Kmett did not present any laws or a theory for his approach, though we assume he
intended a generalised version of the standard monads laws just like those our categorical
models provide.

10.3 Comparison to polymonads

Polymonads (Hicks et al., 2014) are similar to supermonads in that they also use a set of
bind operations that allow a different type constructor in each position and that they also
have a set of unary type constructors. The encoding of polymonads is also very similar to
that of supermonads. In our previous work (Bracker & Nilsson, 2015) we implemented a
plugin for GHC that added type inference for polymonads to the compiler.

Though supermonads and polymonads may seem similar at first glance, especially when
looking at their representation in Haskell, there are several differences:

e Polymonads do not have specific return operations. They encode their return opera-
tions through a bind operation with the identity monad in the first two positions.

e There is not necessarily a common base constructor for a given polymonad.

e All polymonads also have to contain a distinguished type constructor that acts like
the identity monad.

e A polymonad can be the union of several different polymonads and it is not imme-
diately clear which bind operation belongs to which original polymonad.

Whether one of the notions subsumes the other, and what the exact relationship between
supermonads and polymonads is, remains future work.

The laws of polymonads are more complex than the laws of our categorical model and
do not as obviously relate to the standard monad laws. Though it can be shown that the that
the standard monad laws can be derived®! from the polymonad laws.

To guarantee the existence of a unique solution to a set of polymonad constraints a
polymonad has to be principal. This property essentially ensures that there always exists a
best solution for any given ambiguous type constructor.

Due to the requirement to have principal polymonads for solving they only support
phantom indices as arguments to their partially applied type constructors. This is a major
disadvantage compared to supermonads, because non-phantom indices allow for many
interesting examples and applications of supermonads and superapplicatives.

The polymonad theory also does not offer support for constraints on result types and
thus does not support constrained monads. The feasibility of integrating such constraints
into the polymonad theory is an open question.

One advantage of polymonads over supermonads is that they allow more than one base
constructor to be used. This opens a design space for monadic notions different from the
ones we have discussed, including the implicit lifting bind operations we mentioned in the
comparison with Kmett’s approach.

81 Agda proof: Haskell.Monad.Polymonad
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10.4 Other approaches to generalisation

There are other generalisations of functors, applicatives and monads.

In unpublished work, McBride (McBride, 2011) presents a generalisation of monads
different from any of the generalisations we have discussed so far. In his generalisation he
proposes a bind and return operation with the following type signature:

C>=)imai—(Vjiaj—=mpBj)—=mpBi

return:: Xi—maoi

He exemplifies the use cases of his generalisation by using it to encode indexed monads and
statically typing the open or closed state of a file handle. Both examples can be modelled
using the range of monadic notions that are supported by supermonads and we are not
aware of any other use cases for his generalisation that could not be expressed using
supermonads. In addition, it is also not obvious how his generalisation can be used within
the do-notation except by encoding indexed monads.

Another generalisation is given in the package rank2classes®?. In this package the
Functor and Applicative classes have been generalised to support functors on the
category of endofunctors on Hask and natural transformations between them. Thus leading
to definitions similar to the following:

newtype Nat f g a = Nat (f a -> g a)

class Functor (p :: (* -> %) -> x) where
fmap :: (forall a. Nat f ga) ->pf ->pg

class Applicative (p :: (¥ -> *) -> %) where
(<x>) :: p WNat £ g) >pf ->pg
pure :: (forall a. f a) -> p £

This generalisation cannot be incorporated by our encoding. We could allow it by adding
additional associated type synonyms to specify the type of arrow with which we are work-
ing. Exploring this design space, and if there is a corresponding monadic notion, remains
future work.

We also found that invertible syntax descriptions (Rendel & Ostermann, 2010) require a
generalised form of functor that uses partial isomorphisms instead of normal functions as
mapping arrow:

newtype Iso a b = Iso (a -> Maybe b) (b -> Maybe a)

class IsoFunctor f where
fmap :: Isoab ->fa->fb

As in the previous example this requires a way to define a custom type for the involved
mapping function.

82 Hackage: rank2classes - http://hackage .haskell.org/package/rank2classes
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10.5 Other related work

There is work on a categorical generalisation of applicatives, monads and arrows by Rivas
and Jaskelioff (Rivas & Jaskelioff, 2017). They exhibit the deeper connections between the
three notions and unify them as monoids in monoidal categories. However, it is unclear
how generalisations of the aforementioned notions relate to their work.

In work preceding their work on polymonads Swamy et al. (Swamy et al., 2011) pre-
sented a way to automatically insert bind and return operations into pure functional pro-
grams. Their work provides a way of writing implicitly monadic programs and also covers
the integration of morphisms between different monads. However, their work does not
solve the problems we described during our discussion of implicit lifting in the context of
Kmett’s approach.

Jones (1995) suggested a possible alternative to the GHC type checker plugins. His
work on custom improvements describes a system to aid constraint solving by associating
patterns of constraints containing open type variables with equations involving those type
variables. Stuckey and Sulzmann (Stuckey & Sulzmann, 2005) developed a theory of
constraint handling rules that applies custom improvements to functional languages. They
also developed a prototype language with constraint handling rules called Chameleon
(Stuckey et al., 2004). Unfortunately, their implementation is not available publicly any-
more and there is no implementation of constraint handling rules for GHC. Therefore, to
our knowledge, GHC plugins are the most practical way of implementing supermonads.

The “rmonad” (restricted monads) package®’ provides an alternative encoding of con-
strained monads and functors. The restricted monads apply the same constraints to every
result type involved with the type of a monadic or functor operation. For example, in the
“rmonad” package fmap has the type signature

fmap :: (FunctorCts f a, FunctorCts f b) => (a ->b) ->f a ->fb
whereas in our encoding it has the following type signature:
fmap :: (FunctorCts f a b) => (a ->b) ->f a ->fb

The “rmonad” approach has the advantage that polymorphic functions involving their
constrained monads are less cluttered with constraints. Our encoding has the advantage
that it is more flexible as it allows for constraints that can distinguish between a and b.

11 Conclusion

We have presented a variety of different generalised monadic notions that are already in use
in many programs today. Based on these notions we developed corresponding generalised
notions of applicatives that, to our knowledge, have not been explored before.

Our unified representation of the generalised monadic notions in Haskell, called super-
monad, has been extended to also support the new applicative notions as superapplicatives.
Alongside the encoding we have also extended the language extension, provided as a
GHC plugin, to add support for superapplicatives. This enables programmers to use and

83 Hackage: rmonad - http://hackage .haskell.org/package/rmonad
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experiment with the generalised notions in a uniform manner, fostering code reuse through
a common standard library and removing the need for tedious annotations when working
with a variety of notions at the same time.

Due to the practical implications of supporting constraints on result types, we offer a
separate prelude that allows programmers to choose whether they want to deal with these
implications or not. However, future work may provide a way to handle constraints on
result types in a more pleasant manner.

The exploration of categorical models for the different generalised notions has shown
that there are abstract structures that connect many of the presented notions. Namely, we
found that lax 2-functors provide a common categorical model for all of the parameterised
monadic notions and lax monoidal functors model all of the applicative notions except
indexed applicatives. In addition, we proposed the custom definitions of parameterised
relative monads and parameterised lax monoidal functors to capture all of the monadic
and applicative notions. Although we did not find a pre-existing categorical notion that
subsumes our proposed definitions, we have made great progress towards a categorical
model that connects all of the different notions discussed. The term supermonad and su-
perapplicative should only refer to the Haskell encoding, since the categorical models
we found already have suitable names. Although we propose categorical notions as the
semantics of supermonads and applicatives, the plugin cannot enforce their laws and proper
implementation, just as GHC cannot ensure that instances of the standard Monad class are
correct.

In future work we will try to apply our technique to generalisation of arrows (Joseph,
2014; Nilsson & Nielsen, 2014). As the supermonad approach is relatively uncomplicated
in many ways, and the generalisation of applicatives to superapplicatives along those lines
proved to be straightforward, we are optimistic that this is feasible. Another line of work in-
volves generalisation of other notions from Haskell’s standard library, such as MonadPlus,
Alternative and Traversable.
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