
Why Testing Matters in Functional Programming
Position Paper

Manfred Widera

Department of Computer Science, FernUniversität in Hagen, 58084 Hagen, Germany,
Manfred.Widera@fernuni-hagen.de

Abstract

The testing of programs is an approach that has been neglected by a part of the users
and researchers in the area of functional programming for some time. Lately, it has
received a little more attention. In this paper we compare program testing with other
approaches to software quality, and we motivate why testing is important even when
programming in a high level paradigm like functional programming. We discuss
which parts of the testing process are affected by the chosen programming paradigm
and present areas in testing functional programs that are worth some further investi-
gation.

1 MOTIVATION

The functional programming paradigm allows the implementation of programs on
a high abstraction level. The risk of programming errors is reduced by this abstrac-
tion: error-prone tasks like memory management are transfered from the program-
mer to the language, and high level constructs for composing individual modules,
like higher order functions and lazy evaluation [Hug89], help to reduce the com-
plexity of software systems.

The natural error resistance of functional programming languages led to a high
degree of confidence into the correctness of functional programs. For some time,
programmers and researchers expected to reach the correctness of functional pro-
grams by the (more or less) exclusive application of more formal methods than
testing, e.g. powerful type systems and verification approaches. Testing of func-
tional programs was, therefore, not considered.

Indeed, many of the programming errors occurring in functional programs can
be detected by employing these tools and, especially, by using static type checkers.
A smaller number of errors does, however, not affect the type correctness and can
be quite hard to detect. (E.g. in the usual programming languages there is no type
for a sorted list of some typeA. Hence, when assuming a list to be ordered and
violating this property at a distant code section, this error cannot be detected by the
usual type systems.) Furthermore, formal verification tools need an already correct,
formal specification of the expected program properties. They cannot detect errors
that occur in both, this specification and the program in a consistent form.

Up to now, a small number of approaches on testing functional languages ex-
ists [CH00, CH02], [KATP03, KP05], [Wid04a, Wid05b]. Testing has, however,



not reached the full attention it deserves, so far. The aim of this paper is to moti-
vate why testing issues should become a trend in functional programming. We give
an overview over the issues that should be addressed when considering the testing
of functional programs. Based on the special properties of functional program-
ming languages, there are special chances, but also special pitfalls in the testing of
functional programs. We identify these issues, discuss how they are addressed by
existing publications and describe useful directions of future research in the area
of testing functional programs.

In Sec. 2 we discuss the properties of different approaches on improving soft-
ware correctness, and motivate why testing is still an important part of the program
development process, even when using a high level programming paradigm like
functional programming. Section 3 identifies the testing steps that are influenced
by the choice of the programming paradigm. We identify the choice of appropriate
test data and the judgement whether a computed test result is correct as the main
problems arising in testing functional programs. The choice of appropriate test in-
puts is addressed in Sec. 4, focusing on the common problems and differences of
manual and automatic test case generation. In Sec. 5 we analyze the judgement of
test results. Here we identify the potential of functional programs to return func-
tion values and infinite lazy structures as the main problem for both, manual result
inspection and the implementation of test predicates. Section 6 finally contains our
conclusions.

2 WHY FUNCTIONAL PROGRAMS NEED TO BE TESTED

Testing is not the main concern of many users and researchers in the area of func-
tional programming. Some of them see a discrepancy between the high abstraction
level used in functional programs and the low level testing approach.

The aim of this paper is to overcome this aversion of functional programmers
against testing and to show that the testing of functional programs is a worthwhile
area of research.

In this section, testing of functional programs is analyzed from several different
points of view, and the need for testing in the functional programming context is
motivated.

2.1 The Aim of Software Testing

Myers [Mye79] describes the aim of software testing as follows.

Testing is the process of executing a program with the intent of finding
errors.

From this quote we can especially conclude what testing doesnot try to do.

• In contrast to verification techniques, testing does not aim at proving the
correctness of a program.

2



• Testing does not try to identify erroneous pieces of code. This is done using
tracing and debugging approaches (e.g. [Gil00], [Nai97], [Chi01, WCBR01]).

Conversely, the mentioned approaches are of little use in the main domain of test-
ing, i.e. for detecting errors in a software component.

We conclude that testing, tracing and verification approaches are independent
and cannot replace each other. Testing should be applied early to an implemented
software component/software system. It can be followed by tracing and debug-
ging approaches for the error correction, and by verification approaches when the
correctness of the software is assumed.

2.2 Levels of Formalization

Programming is a layered task of specification and formalization of program prop-
erties. The following layers of formalization exist (where the intermediate stages
need not occur in each program development process).

1. An intuitive model of the application scenario and the needed properties of
the new software is developed.

2. The intuitive model is fixed in a textual specification.

3. One or several levels of formal specifications of the program properties are
generated, covering among others the input/output behavior of the program
and the definition of modules and interfaces.

4. The program is implemented based on the most special specification of its
properties.

On each of these levels the program properties are formalized and specified to
a higher degree. With a higher degree of formalization the information is better
suited for the application of formal methods but less understandable by humans.

In different programming methodologies these levels may not be reached in an
sequential order. E.g. extreme programming [XP06] makes heavy use of iterated
tasks. In every iteration step, however, the programmer needs a model of the im-
plementation goal before he starts the implementation, and he may wish to have a
more formal specification, as well.

The common idea of many testing and verification approaches is to compare
the properties of the implementation against the properties stated in one of the
previous stages. The approaches differ in the level of the reference stage to use.

Formal verification and proof methods need a formal specification to act against
(i.e. the formal tools are based on some output of Stage (3)). In contrast, testing
can use the informal specifications written down in Stage (2). For the final testing
stages, that are done by the customer, even the informal model of Stage (1) acts as
basis for the judgement of the testing results.

3



Errors can occur in each stage of specification. These errors usually cumulate
and an error in one stage usually causes all following stages to contain the corre-
sponding error. From this observation we can state that testing cannot be replaced
by more formal methods because it is capable of discovering errors in more of the
specification steps than this is possible for the formal tools.

Furthermore, programming methodologies like extreme programming and rapid
prototyping aim at reducing the amount of formalized specifications generated dur-
ing the development of a prototype or software system. In such cases, the existing
specifications do not suffice for a verification approach. In the absence of a for-
mal specification, a good testing policy is important to reach a sufficient level of
software quality.

2.3 Validation vs Verification

Distinguishing the notions ofverification and validation can be of further help
to understand the importance of testing. According to Rakitin [Rak97, p. 129]
these approaches aim at answering the following questions during the software
development process.

• Verification: “Are we building the product right?”

• Validation: “Did we build the right product?”

Besides the search for errors in the software product, testing can be used for vali-
dation purposes. Especially, this applies to the final testing stages focusing on the
completed software product. Here, the late testing stages can show whether the
completed software fits as expected into the intended application environment.

In general, verification and validation are such different goals, that the usual
verification approaches cannot be used to perform validation as well. In contrast,
testing is a powerful tool for the validation. For this reason, software projects
making use of functional programming should not abandon testing.

3 CHALLENGES IN TESTING FUNCTIONAL PROGRAMS

The testing process during the software development is usually divided into several
stages [Rak97].

1. Theunit or module testingstage is applied to individual units of the software
product early in the software development process. It is used to detect errors
in the logic of the components.

2. Theintegration testingstage applies to a number of integrated units or mod-
ules. Its focus is on the uniform interpretation and implementation of the
interfaces by the individual components.

4



3. Thesystem testingstage focuses on the completed software product. It is
sometimes divided intovalidation testing(test that all of the fixed specifica-
tions are met by the software) andacceptance testing(test that the software
meets the customer requirements).

The dependencies of the testing process on the programming paradigm decrease
when proceeding to later stages of testing. For the acceptance tests, the program-
ming languages used for the tested software product do not matter at all: the cus-
tomer is just interested in the question whether the software product meets all re-
quirements. He usually does not want to consider the underlying programming
concepts. In unit testing one has, however, to cope with different details of testing
that are programming language dependent.

Two main issues arise in unit testing (and also partly in integration testing) that
must be considered with functional programming languages in mind.

• The choice and generation of appropriate test cases.

• The determination whether the generated test outputs are correct.

For the choice of the appropriate test cases one can distinguish black box ap-
proaches not considering the code under testing and white box approaches based
on the structure of the tested code. Especially the white box approaches which are
usually used during the unit testing stage must fit the programming paradigm of
the tested program because of the focus on its structure.

The generation of test cases can be done automatically from the type specifi-
cation of the functions under testing, especially if the input domain of the function
can be described precisely by the underlying type system.

In checking the computation results, special problems arise because of the pos-
sible complexity of values in functional languages. For infinite, lazy data structures
the inspection can just be partial, and for function type result values the check for
correctness must be customized for every individual result function.

For the two main issues, the choice/generation of test sets and the correctness
checking of the results, the following two sections discuss the current situation in
the existing testing approaches and address areas of future investigations.

4 THE CHOICE OF TEST DATA

4.1 Required Properties of Test Sets

Traditionally, test data are selected or judged according to a number of well-known
principles [Lig02]. These principles can be divided into two main groups.

• Black box testingchooses test sets without considering the tested code. It is
just based on the specifications of the intended I/O-behavior.

• White box testingdetermines the appropriateness of a test set based on the
structure of the tested code fragment.

5



4.1.1 Black Box Testing

In black box testing, test cases are chosen without considering the code of the
program part under testing. This approach chooses the test cases solely based on
the specification of the intended behavior of the tested program part. Important
representatives of black box testing known from imperative programming are

• specification based testing: this approach structures the set of valid inputs
into partitions, each of which should be considered by test cases.

• random testing: a number of appropriate test cases is generated on a random
basis. The program specification is just considered to determine the set of
valid input values.

Since black box testing does not take into account the tested code, the effect of the
used programming language or programming paradigm is not very large. There,
however, exists an effect, e.g. regarding the types of the possible test cases. For
instance, in functional programming one has to cope with functions as inputs.

4.1.2 White Box Testing

In contrast,white box testingdoes consider the code of the tested program.Struc-
ture oriented testing(which is the main representative of white box testing) is usu-
ally based on a flow graph representing the control and data flow of the tested code
fragment. It tries to find a test set that covers all (or at least as many as possible)
items of the flow graph. Many different coverage criteria exist, differing in the
choice of these items, e.g. allnodes, all edgesor all definition use pairs.

When considering structure oriented testing, the usual approaches for impera-
tive programs do not carry over easily to functional ones. For imperative programs
the most commonly used coverage criteria are control flow oriented ones.

In functional programming, two main problems arise in applying the usual
structure oriented testing methods.

• The flow graph generation is more complicated due to the existence of higher
order functions: they cause an influence of the data flow on the control flow
in the program. Therefore, data flow analysis is necessary during the flow
graph generation.

• The usual control flow oriented coverage criteria do not carry over to func-
tional programming easily because the control structures in modern func-
tional languages differ from the structures known from imperative languages.
Furthermore, in lazy functional programs it is complicated to predict the con-
trol flow.

At the moment, there exists one approach on structure oriented testing for Erlang
programs [Wid05a, Wid05b]. This approach shows the need for performing data
flow analysis during the flow graph generation. The data flow analysis aims at

6



being as powerful as possible in order to provide the best possible accuracy of
the flow graphs. There are, however, programming constructs in Erlang that force
approximations to take place during the generation of the flow graphs.

4.2 Generation of Test Sets

The generation of test sets can be performed in two ways.

• A test engineer can manually generate the needed tests.

• The tests can be generated automatically by a test case generator.

The manual test set generation is a tedious, time consuming and expensive task.
An automatic tool should, hence, be preferred. This problem has already been ad-
dressed by the tools QuickCheck [CH00, CH02] and GAST [KATP03, KP05] in
the context of functional programming. These approaches use static type infor-
mation to generate members of a function’s input type in a random or systematic
manner.

QuickCheck and GAST are test case generators that address the black box
testing approach. Both tools are essentially guided by the types of the needed input
values. They differ in the employed enumeration strategy for the test cases.

• QuickCheck is a dedicated random testing tool. The predefined generators
work on a random basis and the proposals for writing additional generators
also address the random testing approach.

• GAST applies a mixed approach for the test case generation: it generates
“common border values” and random values of the appropriate types.

The type based, automatic generation of test cases is very helpful in testing func-
tions whose input domain can be described precisely by a type. Both tools have,
however, a number of disadvantages.

• Properties that cannot be expressed by a type must be addressed by subse-
quent filters or by hand written test case generators. While the filters can
cause a large fraction of the generated test cases to be dropped, the user pro-
vided generators increase the complexity of the testing process for the test
engineer.

• Both tools cannot guarantee to generate test cases for specification based
testing. For QuickCheck, any structure in the input domain of the tested
function is out of the scope of the system. GAST tries to generate border
values; it is, however, restricted to borders given by the type information and
cannot take into account special border values according to a further program
specification.

Up to now, an approach which combines the automatic test set generation and the
approaches for judging the quality of test sets is missing.

7



4.3 Research Directions on the Choice of Test Sets

The question how to choose appropriate test sets for functional programs offers a
number of research directions that are worth a further investigation.

In the area of specification based testing some further work is necessary on
partitioning the special inputs occurring in functional programming. Input domains
containing functions cannot be structured in the same straightforward manner as
e.g. numbers. Further investigations should determine, whether the usual form of
specification based testing can be used for function type input domains and how
these domains can be structured.

Future work in the area of structure oriented testing of functional programs
should discover ways of improving the accuracy of the generated flow graphs.
Programming languages with static type checking provide assistance by exclud-
ing programs with ambiguous data flow and by making further useful information
accessible to the data flow analysis process.

Furthermore, excluding some of the programming constructs found e.g. in Er-
lang programs can greatly improve the precision of the data flow analysis. An
identification of problematic programming constructs in different functional pro-
gramming languages is desirable and can lead to instructions on choosing a func-
tional programming language that is well-suited for structure oriented testing.

In the area of the test case generation, further research should address the auto-
matic incorporation of non-type information into the test case generation process.
Candidates for useful information are the following.

• User provided specifications of the input domains of the tested functions
should be taken into account. This can e.g. improve the choice of the correct
border values.

• The patterns occurring at top level of a function can be used to provide ad-
ditional systematics to the test case generation. This applies to case distinc-
tions not completely based on type information and to dynamically typed
languages in order to replace the non-available static type information. Such
an approach can be a first step of considering structure oriented information
for the automatic test case generation.

• The combination of automatic test case generation with structure oriented
judgement of the test cases can improve the test case generation. Further
research is necessary to see how information from the structural testing can
be fed into a test case generator and how they can be used to compute test
cases appropriate for not yet covered program parts.
According to existing publications on generating test cases according to the
edge coverage criterion in imperative languages [ABB+91],[BKM91], the
fully automatic coverage of a program seems to be infeasible. A successful
development in this area must find a trade-off between the fully automatic
coverage of the tested code and the feasibility of the test case generation
process.

8



Although tools with these extensions will no longer be lightweight, as claimed for
the existing approaches on automatic test generation, we expect these directions of
research to lead to more powerful yet easily usable testing tools.

5 CHECKING THE RESULTS FOR CORRECTNESS

When a test case has been evaluated the evaluation result needs to be checked for
correctness. The following main approaches are possible to do this.

• A test engineer manually checks the output and compares it with the output
he/she expects. The test case, the computed result and the judgement of the
result are stored in a data base for future use.

• The test system judges the correctness of the result automatically, based on
a number of predicates that must be fulfilled for the result to be correct.

• In regression testing a piece of code is tested again after changes have been
made. The previously used test cases are reused, and the correctness check
is done by comparing the new results with the previous ones.

Regression testing is a special testing method whose processing depends on the
previously applied testing approach. When automatic predicate analysis has been
used before, this approach can simply be repeated. In case of manual judgement of
the original test results, the succeeding test cases of the former testing can be per-
formed automatically by comparing the current results with the previous ones. The
tester just needs to intervene for the previously failed test cases and for the cases
with discrepancies between the current and the previous result. Since regression
testing does not need a special treatment, it is not considered any further in the rest
of this section.

In all testing situations, a test that is not considered correct gives evidence for
an error, that needs to be discovered, in the tested program.

5.1 Manual versus Automatic Checking

The testing approaches mentioned above have the following advantages and disad-
vantages.

For the manual check the tester directly transforms the informal specification
of the intended program behavior into a mental model, which is used in generat-
ing an expectation on the program result. Either he can check the outcome of the
test directly with his expectation, or he stores all expected outcomes together with
the corresponding test cases and lets the system perform an equality check auto-
matically. The main advantage of the manual check is that the computed result is
directly compared to an intuitive expectation without a formalization (which could
contain errors itself) in-between. The main disadvantage of this approach is its
time consumption and cost.

9



Checking results automatically against formalized predicates has the main ad-
vantage of a reduced time consumption and cost. As a disadvantage, the formal
specification given by the predicates can be erroneous or incomplete. Especially in
the case of incompleteness this problem does not become obvious easily.

In both cases, the testing (checking of the results or providing the necessary
predicates) should be performed by a person different from the programmer. In
this way, misinterpretations of the program specification which caused errors in
the program are less likely to be repeated during the testing.

5.2 Equality of Expected and Computed Results

The approach of providing an expected result with the test input and to check auto-
matically whether the expected and the computed results are equal is a very com-
mon method of checking the correctness of test results. In fact, the use of this
method is common enough to find a special construct for equality checks in testing
frameworks like HUnit [Her02]. The equality check also occurs regularly when
applying regression testing.

In functional programming the situation is complicated by the fact that the
result values can have types not allowing an equality check. Among others this
affects results in the form of

• functions

• infinite lazy structures

For these result types the checking of the correctness is generally problematic. For
both types of results, it is not only impossible to check them for equality, but a full
inspection (either automatically by predicates or manually by a human tester) is
also impossible.

Results of these types can be checked only partially. The checking has to be
performed to an extend that gives enough evidence for the correctness of the result.

Further problems in checking equality occur, when there are several possible
results that are equivalent. E.g. when lists are interpreted as sets, there are several
lists in general that contain the same values and that should all be interpreted as
correct.

User provided equality predicates that are specialized to the expected output
types can be of help here. Some ideas on this topic have already been presented
for testing students’ programs in the teaching context with a specimen program
available [Wid04b].

5.3 Research Directions on Correctness Checking

In checking the testing results for correctness there are two possible directions of
further research.

10



• For the tools providing automatic checking based on predicates: how is the
typical quality of the testing predicates and how can it be improved?

• Can we find some standard methods to test complex outputs like functions
and infinite structures?

For the moment it is up to the test engineer to provide predicates which test all of
the expected properties of the output values. From the author’s experience, how-
ever, some of the properties seem to be less natural than others and are overlooked
more easily. Case studies of testing larger software projects based on predicates
should investigate whether there are certain properties of output values that are for-
gotten frequently and how the process of providing appropriate predicates can be
supported.

The inspection of functions and infinite structures returned as output values
must naturally remain incomplete. For infinite structures the situation is quite sim-
ple as inspecting and comparing a sufficiently large prefix of the structure usually
gives enough evidence for the correctness of the structure. Automatic tool support
for this common situation should be easy to provide.

The situation in checking functions is more complicated. A result functionf
can only be inspected by providing appropriate inputs. To complicate the problem
even more, the types (and further properties) of the new inputs forf depend on
the test case that generatedf . In general, a new test set can be provided for each
of these f . Since f can, however, be a higher order function itself the test sets
can become complex and confusing quite soon. New approaches for a succinct
and understandable management of the test sets are necessary and need further
investigation.

6 CONCLUSION

Testing is an important part of each software development process, no matter which
programming paradigm is used. In functional programming its low level nature
caused missing acceptance of the software testing by parts of the community. Pub-
lications from the last years show that testing of functional programs has (eventu-
ally) received some more attention.

In this work we have described the differences between several approaches
to software quality based on their goals and their applicability. We showed that
none of the other approaches can be used as a full replacement for testing. This
motivated the statement that the approach of software testing should be considered
carefully in the functional programming paradigm.

We have identified the testing of small program fractions as mostly dependent
on the used programming paradigm. Here, the choice of appropriate test data and
the question whether a generated result is correct are the areas that are influenced
by the use of functional programming languages.

For both of these areas, we have identified the main issues related to the test-
ing of functional programs. Based on this identification, an overview over existing

11



work has been presented and we have discussed open problems and possible direc-
tions of future research.

The choice of test cases by structure oriented testing could benefit from im-
provements of the flow graph generation by optimal precision in the data flow
analysis. For the automatic generation of test cases we suggest research on the in-
corporation of non-type information such as precise specifications of the intended
program properties, the top level patterns of the tested functions or information
from a structural coverage test.

For the judgement of test results, two directions of future research have been
identified: information on the implementation of high quality predicates for the au-
tomatic correctness checking of complex functions is missing. Case studies should
investigate common problems and give standard recommendations for implement-
ing such predicates. For all types of correctness checking (manual and automatic)
further research could provide standard methods for the correctness analysis of
complex data structures and especially of functions.

Altogether, testing of functional programs is an area which is worth considera-
tion and which contains several open questions for a further investigation.

REFERENCES

[ABB+91] A. Auzins, J. B̃arzdins, J. Bicevskis, K. Cerans, and A. Kalnins. Automatic
construction of test sets: Theoretical approach. In J. Bardzdins and D. Bjorner,
editors,Baltic Computer Science, pages 286–359. Springer, April 1991.

[BKM91] J. Borzovs, A. Kalnins, and I. Medvedis. Automatic construction of test sets:
Practical approach. In J. Bardzdins and D. Bjorner, editors,Baltic Computer
Science, pages 360–432. Springer, April 1991.

[CH00] Koen Claessen and John Hughes. QuickCheck: a lightweight tool for random
testing of Haskell programs. InProceedings of the ACM Sigplan International
Conference on Functional Programming (ICFP’00), volume 35.9 ofACM
Sigplan Notices, pages 268–279, N.Y., September 18–21 2000. ACM Press.

[CH02] Koen Claessen and John Hughes. Testing monadic code with QuickCheck. In
Haskell ’02: Proceedings of the 2002 ACM SIGPLAN workshop on Haskell,
pages 65–77, New York, NY, USA, 2002. ACM Press.

[Chi01] Olaf Chitil. A semantics for tracing. InDraft Proceedings of the 13th Inter-
national Workshop on Implementation of Functional Languages, IFL, 2001.

[Gil00] Andy Gill. Debugging Haskell by observing intermediate data structures. In
Proceedings of the 4th Haskell Workshop. Technical report of the University
of Nottingham, 2000.

[Her02] Dean Herington.HUnit 1.0 Users Guide, 2002. http://hunit.sourceforge.net.

[Hug89] J. Hughes. Why Functional Programming Matters.Computer Journal,
32(2):98–107, 1989.

[KATP03] Pieter Koopman, Artem Alimarine, Jan Tretmans, and Rinus Plasmeijer.
GAST: Generic automated software testing. InImplementation of Functional
Languages, 14th International Workshop, IFL 2002, Revised Selected Papers,
volume 2670 ofLecture Notes in Computer Science, pages 84–100, 2003.

12



[KP05] Pieter Koopman and Rinus Plasmeijer. Generic generation of elements of
types. In Marko van Eekelen, editor,Proceedings of the Sixth Symposium on
Trends in Functional Programming (TFP’05), September 2005.

[Lig02] Peter Liggesmeyer.Software-Qualiẗat: Testen, Analysieren und Verifizieren
von Software. Spektrum Akademischer Verlag, Heidelberg, Berlin, 2002.

[Mye79] Glenford J. Myers.The Art of Software Testing. John Wiley & Sons, 1979.

[Nai97] Lee Naish. A declarative debugging scheme.Journal of Functional and Logic
Programming, 1997(3), 1997.

[Rak97] Steven R. Rakitin.Software Verification and Validation. Artech House, Inc,
1997.

[WCBR01] Malcolm Wallace, Olaf Chitil, Thorsten Brehm, and Colin Runciman.
Multiple-view tracing for Haskell: a new hat. InPreliminary Proceedings of
the 2001 ACM SIGPLAN Haskell Workshop, Firenze, Italy, pages 151–170,
2001.

[Wid04a] Manfred Widera. Flow graphs for testing sequential Erlang programs. In
Proceedings of the 3rd ACM SIGPLAN Erlang Workshop. ACM Press, 2004.

[Wid04b] Manfred Widera. Testing Scheme programming assignments automatically.
In Stephen Gilmore, editor,Trends in Functional Programming, volume 4.
Intellect, 2004.

[Wid05a] Manfred Widera. Concurrent Erlang flow graphs. InProceedings of the Er-
lang/OTP User Conference 2005, Stockholm, 2005.

[Wid05b] Manfred Widera. Data flow coverage for testing Erlang programs. In Marko
van Eekelen, editor,Proceedings of the Sixth Symposium on Trends in Func-
tional Programming (TFP’05), September 2005.

[XP06] Extreme Programming: A gentle introduction, 2006.
www.extremeprogramming.org.

13


