
Introduction to FRP and Yampa
through Games and Music

Henrik Nilsson, Ivan Perez, and George Giorgidze

School of Computer Science

University of Nottingham, UK

Introduction to FRP and Yampa through Games and Music – p.1/47

Aims and Overview (1)

• Introduction to Functional Reactive Programming

• Demonstrating that a pure, declarative,
reactive approach covers more applications
areas than what one might think.

• Through the above, give you a hopefully
somewhat different and useful perspective on
the reactive programming technologies that
you are already using.

Introduction to FRP and Yampa through Games and Music – p.2/47

Aims and Overview (2)

Much will be familiar from reactive frameworks
like Cycle.js or XStream:

• Circuit-like programming metaphor.

• Transforming streams by e.g. mapping or
accumulation.

• Similar primitive streams, e.g. never, periodic.

Introduction to FRP and Yampa through Games and Music – p.3/47

Aims and Overview (3)

However, much is also different:

• Time (notionally) continuous.

• But events (discrete time), also supported,
allowing for hybrid systems.

• Synchronous (no race conditions)

• Declarative (emphasis on what, not how;
fewer operational concerns)

Introduction to FRP and Yampa through Games and Music – p.4/47

Aims and Overview (4)

And specific to Yampa:

• “Stream processors” is the central, first-class,
abstraction, while “streams” are secondary
(very close to the circuit metaphor).

• High-level support for highly dynamic system
structure (generalisation of XStream’s
flatten, no need for low-level
attaching/detaching of listeners).

• Statically typed

Introduction to FRP and Yampa through Games and Music – p.5/47

Example: Feedback

Arranging feedback in XStream necessitates
taking operational concerns, how, into account:

var secondProxy$ = xs.create();

var first$ = secondProxy$.map ...;

var second$ = first$.map ...;

secondProxy$.imitate(second$);

Of course, the intent, what, is really:

var first$ = second$.map ...;

var second$ = first$.map ...;

with “=” denoting equality rather than assignment.

Introduction to FRP and Yampa through Games and Music – p.6/47

Why Program Games Declaratively?

Video games are not a major application area for
declarative programming . . . or even a niche one.

Perhaps not so surprising:

• Many pragmatical reasons: performance,
legacy issues, . . .

• State and effects are pervasive in video
games: Is declarative programming even a
conceptually good fit?

Introduction to FRP and Yampa through Games and Music – p.7/47

But Why NOT, Really?

Many eloquent and compelling cases for
functional programming in general:

• John Backus, 1977 ACM Turing Award
Lecture: Can Programming Be Liberated from
the von Neumann Style?

• John Hughes, recent retrospective: Why
Functional Programming Matters
(on YouTube, recommended)

One key point: Program with whole values, not a
word-at-a-time. Which, of course, is the point
also of frameworks like Cycle.js and XStreams.

Introduction to FRP and Yampa through Games and Music – p.8/47

Possible Gains (1)

With his Keera Studios hat on, Ivan’s top three
reasons:

• Reliability.

• Lower long-term maintenance cost.

• Lower production cost and fast
time-to-prototype.

Introduction to FRP and Yampa through Games and Music – p.9/47

Possible Gains (2)

High profile people in the games industry have
pointed out potential benefits:

• John D. Carmack, id Software:
Wolfenstein 3D, Doom, Quake

• Tim Sweeney, Epic Games:
The Unreal Engine

E.g. pure, declarative code:

• promotes parallelism

• eliminates many sources of errors

Introduction to FRP and Yampa through Games and Music – p.10/47

“Whole Values” for Games?

How should we go about writing video games
“declaratively”?

In particular, what should those “whole values” be?

• Could be conventional entities like vectors,
arrays, lists and aggregates of such.

• Could even be things like pictures.

But we are going to go one step further and consider
programming with time-varying entities.

Introduction to FRP and Yampa through Games and Music – p.11/47

Functional Reactive Programming

• Key idea: Don’t program one-time-step-at-a-time,
but describe an evolving entity as whole.

• FRP originated in Conal Elliott and Paul Hudak’s
work on Functional Reactive Animation (Fran).
Highly cited 1997 ICFP paper; ICFP award for
most influential paper in 2007.

• FRP has evolved in a number of directions
and into different concrete implementations.

• We will use Yampa: an FRP system
embedded in Haskell.

Introduction to FRP and Yampa through Games and Music – p.12/47

Take-home Message # 1

Video games can be programmed declaratively
by describing what entities are over time.

Our whole values are things like:

• The totality of input from the player

• The animated graphics output

• The entire life of a game object

We construct and work with pure functions on these:

• The game: function from input to animation

• In the game: fixed point of function on
collection of game objects

Introduction to FRP and Yampa through Games and Music – p.13/47

Take-home Message # 2

You too can program games declaratively . . . today!

Introduction to FRP and Yampa through Games and Music – p.14/47

Take-home Game!

Or download one for free to your Android device!

Play Store: Pang-a-lambda (Keera Studios)
Introduction to FRP and Yampa through Games and Music – p.15/47

Yampa

• FRP implementation embedded in Haskell

• Key notions:

- Signals: time-varying values (cf. streams)

- Signal Functions: pure functions on signals

- Switching: temporal composition of signal
functions (cf. XStream’s flatten)

• Programming model:

Introduction to FRP and Yampa through Games and Music – p.16/47

Yampa?

Yampa is a river with long calmly flowing sections
and abrupt whitewater transitions in between.

A good metaphor for hybrid systems!
Introduction to FRP and Yampa through Games and Music – p.17/47

Signal Functions

Intuition:

Time ≈ R

Signal a ≈ Time → a
x :: Signal T1
y :: Signal T2
SF a b ≈ Signal a → Signal b
f :: SF T1 T2

Additionally, causality required: output at time t
must be determined by input on interval [0, t].

Introduction to FRP and Yampa through Games and Music – p.18/47

Some Basic Signal Functions

identity :: SF a a

constant :: b → SF a b

integral :: VectorSpace a s ⇒ SF a a

y(t) =

t∫

0

x(τ) dτ

Introduction to FRP and Yampa through Games and Music – p.19/47

Composition

In Yampa, systems are described by combining
signal functions (forming new signal functions).

For example, serial composition:

A combinator that captures this idea:

(≫) :: SF a b → SF b c → SF a c

Signal functions are the primary notion; signals a
secondary one, only existing indirectly.

Introduction to FRP and Yampa through Games and Music – p.20/47

Systems

What about larger, more complicated networks?
How many combinators are needed?

John Hughes’s Arrow framework provides a
good answer!

Introduction to FRP and Yampa through Games and Music – p.21/47

The Arrow framework

arr f f ≫ g

first f loop f

arr :: (a → b)→ SF a b

(≫) :: SF a b → SF b c → SF a c

first :: SF a b → SF (a, c) (b, c)

loop :: SF (a, c) (b, c)→ SF a b
Introduction to FRP and Yampa through Games and Music – p.22/47

Oscillator from Pang-a-lambda

This oscillator determines the movement of
blocks:

osci ampl period = proc → do

rec

let a = −(2.0 ∗ pi / period) ↑ 2 ∗ p

v ← integral−≺ a

p ← (ampl+) <̂< integral−≺ v

returnA−≺ p

Direct transliteration of standard equations.

Introduction to FRP and Yampa through Games and Music – p.23/47

A Bouncing Ball

Lots of bouncing balls in Pang-a-lambda!

y = y0 +

∫
v dt

v = v0 +

∫
−9.81

On impact:

v = −v(t−)

(fully elastic collision)

Introduction to FRP and Yampa through Games and Music – p.24/47

Modelling the Bouncing Ball: Part 1

Free-falling ball:

type Pos = Double

type Vel = Double

fallingBall :: Pos → Vel → SF () (Pos ,Vel)

fallingBall y0 v0 = proc ()→ do

v ← (v0+) <̂< integral−≺ − 9.81

y ← (y0+) <̂< integral−≺ v

returnA−≺ (y , v)

Introduction to FRP and Yampa through Games and Music – p.25/47

Events

Yampa models discrete-time signals by lifting the
co-domain of signals using an option-type:

data Event a = NoEvent | Event a

Discrete-time signal = Signal (Eventα).

Some functions and event sources:

tag :: Event a → b → Event b

after :: Time → b → SF a (Event b)

edge :: SF Bool (Event ())

Introduction to FRP and Yampa through Games and Music – p.26/47

Modelling the Bouncing Ball: Part 2

Detecting when the ball goes through the floor:

fallingBall ′ ::

Pos → Vel → SF () ((Pos ,Vel),Event (Pos ,Vel))

fallingBall ′ y0 v0 = proc ()→ do

yv@(y ,)← fallingBall y0 v0−≺ ()

hit ← edge −≺ y 6 0

returnA−≺ (yv , hit ‘tag ‘ yv)

Introduction to FRP and Yampa through Games and Music – p.27/47

Switching

Q: How and when do signal functions “start”?

A: • Switchers apply a signal functions to its
input signal at some point in time.

• This is temporal composition of signal
functions.

Switchers thus allow systems with varying
structure to be described.

Generalised switches allow composition of
collections of signal functions. Can be used to
model e.g. varying number of objects in a game.

Introduction to FRP and Yampa through Games and Music – p.28/47

The Basic Switch

Idea:

• Allows one signal function to be replaced by
another.

• Switching takes place on the first occurrence
of the switching event source.

switch::
SF a (b,Event c)
→ (c → SF a b)
→ SF a b

Introduction to FRP and Yampa through Games and Music – p.29/47

Modelling the Bouncing Ball: Part 3

Making the ball bounce:

bouncingBall :: Pos → SF () (Pos ,Vel)

bouncingBall y0 = bbAux y0 0.0

where

bbAux y0 v0 =

switch (fallingBall ′ y0 v0) $ λ(y , v)→

bbAux y (−v)

Introduction to FRP and Yampa through Games and Music – p.30/47

Game Objects
data Object = Object {objectName :: ObjectName

, objectKind :: ObjectKind

, objectPos :: Pos2D

, objectVel :: Vel2D

. . .

}

data ObjectKind = Ball . . . | Player . . . | . . .

data ObjectInput = ObjectInput

{userInput :: Controller

, collisions :: Collisions

}
Introduction to FRP and Yampa through Games and Music – p.31/47

Overall Game Structure
gamePlay :: [ListSF ObjectInput Object]

→ SF Controller ([Object],Time)

gamePlay objs = loopPre [] $

proc (input , cs)→ do

let oi = ObjectInput input cs

ol ← dlSwitch objs−≺ oi

let cs ′ = detectCollisions ol

tLeft ← time−≺ ()

returnA−≺ ((ol , tLeft), cs ′)

ListSF and dlSwitch are related abstractions that
allow objects to die or spawn new ones.

Introduction to FRP and Yampa through Games and Music – p.32/47

And now for something different . . .

Switched-on Yampa: Programming Modular
Synthesizers in Haskell

Introduction to FRP and Yampa through Games and Music – p.33/47

Modular synthesizers?

Introduction to FRP and Yampa through Games and Music – p.34/47

Modern Modular Synthesizers

Introduction to FRP and Yampa through Games and Music – p.35/47

Where does Yampa enter the picture?

• Music can be seen as a hybrid phenomenon.
Thus interesting to explore a hybrid approach
to programming music and musical applications.

• Yampa’s programming model is very reminiscent
of programming modular synthesizers:

• Fun application! Useful for teaching?
Introduction to FRP and Yampa through Games and Music – p.36/47

Example 1: Sine oscillator

oscSine f
cv

oscSine :: Frequency → SF CV Sample

oscSine f0 = proc cv → do

let f = f0 ∗ (2 ∗∗ cv)

phi ← integral−≺ 2 ∗ pi ∗ f

returnA−≺ sin phi

constant 0 ≫ oscSine 440

Introduction to FRP and Yampa through Games and Music – p.37/47

Example 2: Vibrato

0
oscSine 5.0 oscSine f*0.05

constant 0

≫ oscSine 5.0

≫ arr (∗0.05)

≫ oscSine 440

Introduction to FRP and Yampa through Games and Music – p.38/47

Example 3: 50’s Sci Fi

0
oscSine 3.0

oscSine f

*0.2

-0.25
+1.0

+

sciFi :: SF () Sample

sciFi = proc ()→ do

und ← arr (∗0.2) ≪ oscSine 3.0−≺ 0

swp ← arr (+1.0) ≪ integral −≺ −0.25

audio ← oscSine 440 −≺ und + swp

returnA−≺ audio
Introduction to FRP and Yampa through Games and Music – p.39/47

Envelope Generators (1)

A D S R

key on key off t

envGen :: CV → [(Time,CV)]→ (Maybe Int)

→ SF (Event ()) (CV ,Event ())

envEx = envGen 0 [(0.5, 1), (0.5, 0.5), (1.0, 0.5), (0.7, 0)]

(Just 3)

Introduction to FRP and Yampa through Games and Music – p.40/47

Envelope Generators (2)

How to implement?

Integration of a step function yields suitable
shapes:

t

∫
−→

A D S R

key on key off t

Introduction to FRP and Yampa through Games and Music – p.41/47

Envelope Generators (3)

t

afterEach :: [(Time, b)]→ SF a (Event b)

hold :: a → SF (Event a) a

steps = afterEach [(0.7, 2), (0.5,−1), (0.5, 0), (1,−0.7), (0.7, 0)]

≫ hold 0

Introduction to FRP and Yampa through Games and Music – p.42/47

Example 4: Bell

0

*
oscSine f*2.0oscSine (f*2.33)

envBell

bell :: Frequency → SF () (Sample,Event)

bell f = proc ()→ do

m ← oscSine (2.33 ∗ f)−≺ 0

audio ← oscSine f −≺ 2.0 ∗m

(ampl , end)← envBell −≺ noEvent

returnA−≺ (audio ∗ ampl , end)

Introduction to FRP and Yampa through Games and Music – p.43/47

Example 5: Tinkling Bell

tinkle :: SF () Sample

tinkle = (repeatedly 0.25 84

≫ constant ()

&&&arr (fmap (bell ◦midiNoteToFreq))

≫ rSwitch (constant 0))

Introduction to FRP and Yampa through Games and Music – p.44/47

Example 6: Playing simultaneous notes

mysterySong :: SF () (Sample,Event ())

mysterySong = proc → do

t ← tinkle −≺ ()

m ← mystery−≺ ()

returnA−≺ (0.4 ∗ t + 0.6 ∗m)

Introduction to FRP and Yampa through Games and Music – p.45/47

Switched-on Yampa?

Software and paper: www.cs.nott.ac.uk/~ggg
Introduction to FRP and Yampa through Games and Music – p.46/47

Conclusions

• FRP offers one way to write interactive games
and similar software in a declarative way.

• It allows systems to be described in terms of
whole values varying over time.

• Not covered in this talk:

- Not everything fit easily into the FRP
paradigm: e.g., interfacing to existing GUI
toolkits, other imperative APIs.

- But also such APIs can be given a “whole-value
treatment” to improve the fit within a declarative
setting. E.g. Reactive Values and Relations.

Introduction to FRP and Yampa through Games and Music – p.47/47

	Aims and Overview (1)
	Aims and Overview (2)
	Aims and Overview (3)
	Aims and Overview (4)
	Example: Feedback
	Why Program Games Declaratively?
	But Why {HLColor NOT}, Really?
	Possible Gains (1)
	Possible Gains (2)
	{}``Whole Values'' for Games?
	Functional Reactive Programming
	Take-home Message # 1
	Take-home Message # 2
	Take-home Game!
	Yampa
	Yampa?
	Signal Functions
	Some Basic Signal Functions
	Composition
	Systems
	The Arrow framework
	Oscillator from Pang-a-lambda
	A Bouncing Ball
	Modelling the Bouncing Ball: Part 1
	Events
	Modelling the Bouncing Ball: Part 2
	Switching
	The Basic Switch
	Modelling the Bouncing Ball: Part 3
	Game Objects
	Overall Game Structure
	And now for something different ldots
	Modular synthesizers?
	Modern Modular Synthesizers
	Where does Yampa enter the picture?
	Example 1: Sine oscillator
	Example 2: Vibrato
	Example 3: 50's Sci Fi
	Envelope Generators (1)
	Envelope Generators (2)
	Envelope Generators (3)
	Example 4: Bell
	Example 5: Tinkling Bell
	Example 6: Playing simultaneous notes
	Switched-on Yampa?
	Conclusions

