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Modelling and Simulation (1)

Developing models and studying their properties
and behaviour are of immense theoretical and
practical importance. Some examples:

• Science:
- Weather forecasting
- Biological cell models (e.g. neurons,

neocortical column)
- Galaxy formation
- and many, many more . . .
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Modelling and Simulation (2)

• Engineering, from nanotechnology to
skyscrapers and space shuttles:
- initial development
- performance optimisation
- safety engineering
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Early Mechanical Simulation Efforts

British wooden mechanical horse simulator
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Computer Modelling and Simulation

• Modelling and simulation has been a main
application of digital computers from the start:
Monte Carlo simulation of nuclear detonation
(Manhattan project, Los Alamos)

• Recent examples:
- Los Alamos molecular ribosome model:

2.64 million atoms.
- The Blue Brain Project: Simulation of

10000-neuron, biologically accurate
neocortical column on 8192-processor IBM
Blue Gene super computer.
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DSLs and Modelling (1)

The need for Domain-Specific languages to allow
scientists and engineers to develop models is
evident:

• Domain-experts are usually not programmers
• The scale of the problems is such that

high-level, domain-specific notation and tools
are essential to get the work done.
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DSLs and Modelling (2)

Some examples:

• Spice (analogue circuits)
• VHDL-AMS (mixed digital/analogue circuits)
• NEURON (neuron modelling)
• gPROMS (process industries)
• Simulink (domain-neutral, continuous-time)
• Stateflow (event-driven simulation)
• Modelica (domain-neutral, hybrid)
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DSLs and Modelling (3)

Quote from NEURON site (www.neuron.yale.edu):

Instead of forcing users to reformulate their conceptual

models to fit the requirements of a general purpose

simulator, NEURON is designed to let them deal directly

with familiar neuroscience concepts. Consequently,

users can think in terms of the biophysical properties of

membrane and cytoplasm, the branched architecture of

neurons, and the effects of synaptic communication

between cells.
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Reflection

Modelling and simulation constitute a big,
diverse, and very important application area with
a clear need for DSLs. But it is also “crowded”:
there are plenty of successful DSLs already, both

• multi-(modelling-)domain
• (modelling-)domain-specific

Question: What can Computer Science and
specifically Programming Language
Research contribute?
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The Rest of This Talk

• Declarative, non-causal, hybrid modelling of
physical systems:
- electrical circuits
- robot manipulators
- chemical plants
- . . .

• Modelica
• Functional Hybrid Modelling
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Non-Causal, Hybrid Modelling?
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Non-Causal, Hybrid Modelling?

• Declarative, non-causal : models expressed
as systems of undirected Differential
Algebraic Equations (DAE)
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Non-Causal, Hybrid Modelling?

• Declarative, non-causal : models expressed
as systems of undirected Differential
Algebraic Equations (DAE)

• Multi-domain : models spanning multiple
physical domains
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Non-Causal, Hybrid Modelling?

• Declarative, non-causal : models expressed
as systems of undirected Differential
Algebraic Equations (DAE)

• Multi-domain : models spanning multiple
physical domains

• Hybrid : models exhibiting both continuous-
time and discrete time behaviour; e.g.,
structural changes at discrete points in time:
- model simplifications
- structural changes
- discrete subsystems
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Causal vs. Non-Causal Modelling (1)

Causal or block-oriented modelling: model is
ODE in explicit form:

x
′ = f(x,u, t)

Causality , i.e. cause-effect relationship, given by
the modeller. Cf. Functional Programming.

Causal modelling is the dominating modelling
paradigm; languages include Simulink.
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Causal vs. Non-Causal Modelling (2)

Non-causal or “object-oriented ” modelling:
model is DAE in implicit form:

f(x,x′,w,u, t) = 0

Causality inferred by simulation tool from usage
context. Cf. Logic Programming.

Non-causal modelling is a fairly recent
development; languages include Dymola and
Modelica.
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Causal Modelling: Example (1)

uR2
= R2i2

uL = uin − uR2

i2
′ =

uL

L
uR1

= uin − uC

i1 =
uR1

R1

uC
′ =

i1

C
i = i1 + i2
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Causal Modelling: Example (2)

Or, as a block diagram:
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Drawbacks of Causal Modelling

Causal modelling bad fit for fundamentally
non-causal domains like physical modelling:

• Structure of model and modelled system
does not agree.

• Model not simple composition of models of
physical components.

• Fixed causality hampers reuse.
• Burden of deriving a non-causal model rests

with the modeller.
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Non-Causal Modelling: Example (1)

Non-causal resistor model:

u = vp − vn

ip + in = 0

u = Rip

Non-causal inductor model:

u = vp − vn

ip + in = 0

u = Lip
′

Functional Programming Gets Physical: Pushing the Boundaries of Non-Causal Modelling Languages – p.17/53



Non-Causal Modelling: Example (2)

A non-causal model of the entire circuit is
created by instantiating the component models:
copy the equations and rename the variables.

The instantiated components are then
composed by adding connection equations
according to Kirchhoff’s laws, e.g.:

vR1,n = vC,p

iR1,n + iC,p = 0

Very direct: can be accomplished through a
drag-and-drop GUI.
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Modelica (1)

Modelica:

• non-causal
• declarative
• domain-neutral; supports e.g.

- mechanical
- electrical
- hydraulic
- thermal

modelling and multi-modelling.
Functional Programming Gets Physical: Pushing the Boundaries of Non-Causal Modelling Languages – p.19/53



Modelica (2)

• Being developed since late 1990s.
• Supported by a number of sophisticated

implementations (e.g. from Dynasim (part of
Dassault, using Modelica with CAD system
CATIA), Maplesoft, ITI GmbH).

• Standard library with 780 generic model
components, 550 functions.

• In widespread use; e.g. in automotive
industry (Ford, GM, Toyota, . . . ).
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Modelica (3)

• Integrated language support for GUI
modelling and simulation:
- Models can be decorated with graphical

annotations to specify the graphical view.
- Ways to associate model parameters and

variables with textual descriptions.

(However, not all language constructs have a
graphical representation.)
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Modelica (4)

Modelling and simulation through typical GUI
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Simple Circuit in Modelica (1)

connector Pin
Voltage v;
flow Current i;

end Pin;

partial model TwoPin
Pin p, n;
Voltage u;

equation
u = p.v - n.v;
p.i + n.i = 0;

end TwoPin
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Simple Circuit in Modelica (2)

model Resistor
extends TwoPin;
parameter Resistance R;

equation
R * p.i = u;

end Resistor;

model Inductor
extends TwoPin;
parameter Inductance L;

equation
L * der(p.i) = u;

end Inductor;
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Simple Circuit in Modelica (3)

model SimpleCircuit
Resistor R1(R=1000), R2(R=2200);
Capacitor C(C=0.00047);
Inductor L(L=0.01);
VsourceAC AC(AC=12);
Ground G;

equation
connect(AC.p, R1.p);
connect(R1.n, C.p);
connect(C.n, AC.n);
connect(R1.p, R2.p);
connect(R2.n, L.p);
connect(L.n, C.n);
connect(AC.n, G.p);

end;
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Any Issues? (1)
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Any Issues? (1)

• Modelica representative of many DSLs in
being designed with strong input from domain
experts, i.e. people with in depth
understanding of
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Any Issues? (1)

• Modelica representative of many DSLs in
being designed with strong input from domain
experts, i.e. people with in depth
understanding of
- what the needs are
- how to meet those needs using current

technology.
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Any Issues? (1)

• Modelica representative of many DSLs in
being designed with strong input from domain
experts, i.e. people with in depth
understanding of
- what the needs are
- how to meet those needs using current

technology.
• As a result, Modelica is a great language for

“getting the job done”.
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Any Issues? (2)

But, Modelica has recognised limitations, and,
from a CS perspective, the Modelica design
arguably cuts a few corners. For example:
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Any Issues? (2)
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from a CS perspective, the Modelica design
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• Limited hybrid modelling capabilities.
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Any Issues? (2)

But, Modelica has recognised limitations, and,
from a CS perspective, the Modelica design
arguably cuts a few corners. For example:

• Limited hybrid modelling capabilities.
• “Declarative”, but imperative origins show

(both syntactically and semantically).

Functional Programming Gets Physical: Pushing the Boundaries of Non-Causal Modelling Languages – p.27/53



Any Issues? (2)

But, Modelica has recognised limitations, and,
from a CS perspective, the Modelica design
arguably cuts a few corners. For example:

• Limited hybrid modelling capabilities.
• “Declarative”, but imperative origins show

(both syntactically and semantically).
• Very complicated, rather ad-hoc type system.

Functional Programming Gets Physical: Pushing the Boundaries of Non-Causal Modelling Languages – p.27/53



Any Issues? (2)

But, Modelica has recognised limitations, and,
from a CS perspective, the Modelica design
arguably cuts a few corners. For example:

• Limited hybrid modelling capabilities.
• “Declarative”, but imperative origins show

(both syntactically and semantically).
• Very complicated, rather ad-hoc type system.

I believe Programming Language Research
can provide useful input to address some of
these concerns.
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The Breaking Pendulum (1)

Pendulum modelled as
point mass fixed at the
end of rigid, mass-less
rod, subject to gravity
and applied torque. Rod
breaks at given point in
time, allowing mass to fall
freely.
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The Breaking Pendulum (2)

model BreakingPendulum

parameter Real m=1, g=9.81, L=0.5;

parameter Boolean Broken;

input Real u;

Real pos[2], vel[2];

Real phi(start=PI/4), phid;

...
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The Breaking Pendulum (3)
...

equation

vel = der(pos);

if not Broken then

// Equations for pendulum.

pos = {L*sin(phi), -L*cos(phi)};

phid = der(phi);

m*L*L*der(phid) + m*g*L*sin(phi) = u;

else

// Equations for mass falling freely.

m*der(vel) = m*{0, -g};

end if;

end BreakingPendulum;
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The Breaking Pendulum (3)

Unfortunately, Modelica does not allow Broken
to change during simulation in this case, as the
implied structural changes are too radical.
What are the reasons?

• Lots of hard simulation problems in the
general case.

• Language design decision: Modelica
designed to allow compilation of simulation
code prior to simulation.
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Quiz: Spot the Dependent Types!
(No prize, I’m afraid!)

• Modelica provides a rich sublanguage for
expressing and operating on arrays.

• The number of dimensions and their sizes are
considered to be part of the type.

function joinThreeVectors

input Real v1[:],v2[:],v3[:];

output Real v[size(v1,1)+size(v2,1)+size(v3,1)];

algorithm

v := cat(1,v1,v2,v3);

end joinThreeVectors;
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Array Checking in Modelica

• The Modelica standard promises very little:
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- Size constraints will be checked at some point.
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Array Checking in Modelica

• The Modelica standard promises very little:
- Size constraints will be checked at some point.
- When is a “quality-of-implementation issue”.
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Array Checking in Modelica

• The Modelica standard promises very little:
- Size constraints will be checked at some point.
- When is a “quality-of-implementation issue”.
- The common approach is to generate an

assertion unless the involved sizes happen
to be known statically.

Functional Programming Gets Physical: Pushing the Boundaries of Non-Causal Modelling Languages – p.33/53



Array Checking in Modelica

• The Modelica standard promises very little:
- Size constraints will be checked at some point.
- When is a “quality-of-implementation issue”.
- The common approach is to generate an

assertion unless the involved sizes happen
to be known statically.

• But at least the need for flexible array sizes
and checking them for consistency is
recognised.
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An Opportunity?

An opportunity for using e.g. “proper” dependent
types?
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An Opportunity?

An opportunity for using e.g. “proper” dependent
types?

Possibly, but need to keep the end-users in mind:
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An opportunity for using e.g. “proper” dependent
types?

Possibly, but need to keep the end-users in mind:
• They are experts in their domains, not

Computer Scientists.
• And they have a job to do.
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An Opportunity?

An opportunity for using e.g. “proper” dependent
types?

Possibly, but need to keep the end-users in mind:
• They are experts in their domains, not

Computer Scientists.
• And they have a job to do.
• So unlikely to be impressed if asked to prove e.g.

n + m = m + n or m(n + 1) = m + mn

(and might not know how).
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Functional Hybrid Modelling (1)

Functional Hybrid Modelling (FHM):
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Functional Hybrid Modelling (1)

Functional Hybrid Modelling (FHM):
• Novel approach to designing purely

declarative languages for non-causal
modelling and simulation.

Functional Programming Gets Physical: Pushing the Boundaries of Non-Causal Modelling Languages – p.35/53



Functional Hybrid Modelling (1)

Functional Hybrid Modelling (FHM):
• Novel approach to designing purely

declarative languages for non-causal
modelling and simulation.

• Vehicle for research into semantic
foundations with a view to
- improve hybrid capabilities
- designing domain-specific type systems
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Functional Hybrid Modelling (1)

Functional Hybrid Modelling (FHM):
• Novel approach to designing purely

declarative languages for non-causal
modelling and simulation.

• Vehicle for research into semantic
foundations with a view to
- improve hybrid capabilities
- designing domain-specific type systems

• Modelling language in its own right, as well as
a “back-end” for more traditional languages.
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Functional Hybrid Modelling (2)

• FHM was inspired by Functional Reactive
Programming, in particular Yampa.

• Initially joint work with Paul Hudak and John
Peterson.

• Currently working with George Giorgidze.
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Yampa in a Nutshell (1)

• Yampa (in principle) supports causal
modelling through functions on
time-continuous signals , so called Signal
Functions . Conceptually:
Signal α ≈ Time→α

SF α β ≈ Signal α →Signal β

• Think block diagrams:
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Yampa in a Nutshell (2)

• Yampa has two “layers”:
- The functional layer , or host language

(Haskell)
- The reactive layer : signal functions and

related constructs
• Signal Functions are first class entities in

the functional layer. As a result:
- (Some) meta modelling capabilities for free.
- Very flexible hybrid modelling as new

models can be computed dynamically,
during simulation.
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Yampa in a Nutshell (3)

• In typical hybrid fashion, execution alternates
between:
- event processing at discrete points in time,

possibly resulting in structural
reconfigurations (functional layer)

- processing of (conceptually) continuous
signals in between events (reactive layer).
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Example: Space Invaders
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Back to FHM

FHM attempts to combine the advantages of
FRP with non-causal modelling:

Functional Programming Gets Physical: Pushing the Boundaries of Non-Causal Modelling Languages – p.41/53



Back to FHM
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• First-class relations on signals instead of
functions on signals to enable non-causal
modelling.

Functional Programming Gets Physical: Pushing the Boundaries of Non-Causal Modelling Languages – p.41/53



Back to FHM

FHM attempts to combine the advantages of
FRP with non-causal modelling:

• First-class relations on signals instead of
functions on signals to enable non-causal
modelling.

• Employ state-of-the-art symbolic and
numerical methods for sound and efficient
simulation.
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Back to FHM

FHM attempts to combine the advantages of
FRP with non-causal modelling:

• First-class relations on signals instead of
functions on signals to enable non-causal
modelling.

• Employ state-of-the-art symbolic and
numerical methods for sound and efficient
simulation.

Think of a signal relation as a (fragment of) a
DAE system.
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First class signal relations

The type for e.g. a binary signal relation:
SR (Real, Real)

E.g. the derivative relation:
der :: SR (Real, Real)
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Defining Relations

The following construct denotes a signal relation:

sigrel pattern where equations

The pattern introduces signal variables that at
each point in time are going to be bound to to a
“sample” of the corresponding signal.

Given p :: t, we have:
sigrel p where . . . :: SR t
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Equations

Let ei :: ti be non-relational expressions possibly
introducing new signal variables.

Point-wise equality; the equality must hold for all
points in time:

e1 = e2

Relation application ; the relation must hold for
all points in time:

sr ⋄ e3

Here, sr is an expression having type SR t3.
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Modelling Electrical Components (1)

The type Pin is assumed to be a record type
describing an electrical connection. It has fields v

for voltage and i for current.
twoPin :: SR (Pin, Pin, Voltage)
twoPin = sigrel (p, n, v) where

v = p.v − n.v
p.i + n.i = 0
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Modelling Electrical Components (2)

resistor :: Resistance→ SR (Pin, Pin)
resistor r = sigrel (p, n) where

twoPin ⋄ (p, n, v)
r · p.i = v

inductor :: Inductance→ SR (Pin, Pin)
inductor l = sigrel (p, n) where

twoPin ⋄ (p, n, v)
l · der(p.i) = v
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Modelling an Electrical Circuit (1)

simpleCircuit :: SR Current
simpleCircuit = sigrel i where

resistor(1000) ⋄ (r1p, r1n)
resistor(2200) ⋄ (r2p, r2n)
capacitor(0.00047) ⋄ (cp, cn)
inductor(0.01) ⋄ (lp, ln)
vSourceAC (12) ⋄ (acp, acn)
ground ⋄ gp

. . .
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Modelling an Electrical Circuit (2)

. . .
connect acp, r1p, r2p
connect r1n, cp

connect r2n, lp

connect acn, cn, ln, gp

i = r1p.i + r2p.i
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Prototype Hydra Implementation (1)
Our current FHM instance is called Hydra :

• Embedding in Haskell using quasiquoting .
• Model transformed to form suitable for

simulation by an embedded compiler.
• The resulting system function and event

detection functions are compiled to native
code using the Low-Level Virtual Machine
(LLVM) JIT compiler.

• System function and event detector passed to
state-of-the art numerical solvers from
SUNDIALS suite (from LLNL).
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Prototype Hydra Implementation (2)

• At events:
- Continuous integration stops.
- Event-related information propagated back

to the functional layer.
- A new signal relation is computed.
- The new relation is compiled into a new

system function and a new event detection
function.

- Continuous integration resumes.
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Prototype Hydra Implementation (3)

f (~y, d~y
dt

, t) = 0

SR a

fllvm(~y, d~y
dt

, t) = 0

Simulation Result

Embedded Compiler

LLVM JIT

Numerical Solver
Event Detector

Event Handler

Event
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Prototype Hydra Implementation (4)

Status:
• Can simulate breaking pendulum and other

models that undergo drastic structural
changes.

• Have not yet looked in earnest at issues like
state transfer across structural changes.
Currently done explicitly.

• Have looked at some aspects of a suitable
domain-specific type system.
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Final Thoughts
• The area of modelling and simulation offers

many opportunities for DSLs.
• Programming language research has a lot to

offer.
• However, not always an “easy sell”:

- Deep understanding of the domain needed.
- Keeping things sufficiently simple can be a

challenge.
- Ideally, an inside accomplice who

understands the benefits of principled,
modern, language design is needed.
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