
Dependent Types for Modelling
and Simulation

Challenges and Opportunities

Henrik Nilsson

School of Computer Science

University of Nottingham

Dependent Types for Modelling and Simulation – p.1/37



This Talk

Dependent Types for Modelling and Simulation – p.2/37



This Talk

Goal:

Tell you a bit about an application area where
(aspects of) Dependent Types would be useful.

Dependent Types for Modelling and Simulation – p.2/37



This Talk

Goal:

Tell you a bit about an application area where
(aspects of) Dependent Types would be useful.

Outline:
• Modelling and modelling languages
• Dependent types in current modelling

languages
• Functional Hybrid Modelling
• Dependent types to help constructing

well-formed models
Dependent Types for Modelling and Simulation – p.2/37



What kind of modeling? (1)

Our interest: Languages for modeling and
simulation of physical systems; for example:

• electrical circuits
• gear boxes
• robot manipulators
• chemical plants
• ...

Significant continuous aspects.

Dependent Types for Modelling and Simulation – p.3/37



What kind of modeling? (2)

Specifically, languages that support:

Dependent Types for Modelling and Simulation – p.4/37



What kind of modeling? (2)

Specifically, languages that support:
• declarative, non-causal modelling: models

expressed as systems of undirected
Differential Algebraic Equations (DAE)

Dependent Types for Modelling and Simulation – p.4/37



What kind of modeling? (2)

Specifically, languages that support:
• declarative, non-causal modelling: models

expressed as systems of undirected
Differential Algebraic Equations (DAE)

• hybrid modeling: models exhibiting both
continuous-time and discrete time behaviour;
e.g., structural changes at discrete points in
time.

Dependent Types for Modelling and Simulation – p.4/37



Causal vs. non-causal modeling (1)

Causal or block-oriented modeling: model is
ODE in explicit form:

x
′ = f(x,u, t)

Causality , i.e. cause-effect relationship, given by
the modeler. Cf. Functional Programming.

Causal modeling is the dominating modeling
paradigm; languages include Simulink.

Dependent Types for Modelling and Simulation – p.5/37



Causal vs. non-causal modeling (2)

Non-causal or “object-oriented ” modeling:
model is DAE in implicit form:

f(x,x′,w,u, t) = 0

Causality inferred by simulation tool from usage
context. Cf. Logic Programming.

Non-causal modeling is a fairly recent
development; languages include Dymola and
Modelica.

Dependent Types for Modelling and Simulation – p.6/37



Causal modeling: example (1)

uR2
= R2i2

uL = uin − uR2

i2
′ =

uL

L
uR1

= uin − uC

i1 =
uR1

R1

uC
′ =

i1

C
i = i1 + i2

Dependent Types for Modelling and Simulation – p.7/37



Causal modeling: example (2)

Or, as a block diagram:

Dependent Types for Modelling and Simulation – p.8/37



Drawbacks of causal modeling

Casual modeling bad fit for fundamentally
non-causal domains like physical modeling:

• Structure of model and modeled system does
not agree.

• Model not simple composition of models of
physical components.

• Fixed causality hampers reuse.
• Burden of deriving a non-causal model rests

with the modeler.

Dependent Types for Modelling and Simulation – p.9/37



Non-causal modeling: example (1)

Non-causal resistor model:

u = vp − vn

ip + in = 0

u = Rip

Non-causal inductor model:

u = vp − vn

ip + in = 0

u = Lip
′

Dependent Types for Modelling and Simulation – p.10/37



Non-causal modeling: example (2)

A non-causal model of the entire circuit is
created by instantiating the component models:
copy the equations and rename the variables.

The instantiated components are then
composed by adding connection equations
according to Kirchhoff’s laws, e.g.:

vR1,n = vC,p

iR1,n + iC,p = 0

Very direct: can be accomplished through a
drag-and-drop GUI.

Dependent Types for Modelling and Simulation – p.11/37



Modelica (1)

• Modelica a current de-facto standard.
• Supported by a number of sophisticated

implementations.
• In widespread use; e.g. in automotive

industry (Ford, Toyota, . . . ).

Dependent Types for Modelling and Simulation – p.12/37



Modelica (2)

Issues:
• “Declarative”, but imperative origins show

(both syntactically and semantically).
• Very complicated, rather ad-hoc type system.
• Limited hybrid modelling capabilities.

Dependent Types for Modelling and Simulation – p.13/37



Modelica (2)

Issues:
• “Declarative”, but imperative origins show

(both syntactically and semantically).
• Very complicated, rather ad-hoc type system.
• Limited hybrid modelling capabilities.

Can we do better (in some ways)?

Dependent Types for Modelling and Simulation – p.13/37



Modelica (2)

Issues:
• “Declarative”, but imperative origins show

(both syntactically and semantically).
• Very complicated, rather ad-hoc type system.
• Limited hybrid modelling capabilities.

Can we do better (in some ways)?

• Let’s have a peek at some Modelica type
system aspects

• Will come back to the other points.
Dependent Types for Modelling and Simulation – p.13/37



Quiz: Spot the Dependent Types!
(No prize, I’m afraid!)

• Modelica provides a rich sublanguage for
expressing and operating on arrays.

• The number of dimensions and their sizes are
considered to be part of the type.

function joinThreeVectors

input Real v1[:],v2[:],v3[:];

output Real v[size(v1,1)+size(v2,1)+size(v3,1)];

algorithm

v := cat(1,v1,v2,v3);

end joinThreeVectors;
Dependent Types for Modelling and Simulation – p.14/37



Array Checking in Modelica

• The Modelica standard promises very little:

Dependent Types for Modelling and Simulation – p.15/37



Array Checking in Modelica

• The Modelica standard promises very little:
- Size constraints will be checked at some point.

Dependent Types for Modelling and Simulation – p.15/37



Array Checking in Modelica

• The Modelica standard promises very little:
- Size constraints will be checked at some point.
- When is a “quality-of-implementation issue”.

Dependent Types for Modelling and Simulation – p.15/37



Array Checking in Modelica

• The Modelica standard promises very little:
- Size constraints will be checked at some point.
- When is a “quality-of-implementation issue”.
- The common approach is to generate an

assertion unless the involved sizes happen
to be known statically.

Dependent Types for Modelling and Simulation – p.15/37



Array Checking in Modelica

• The Modelica standard promises very little:
- Size constraints will be checked at some point.
- When is a “quality-of-implementation issue”.
- The common approach is to generate an

assertion unless the involved sizes happen
to be known statically.

• But at least the need for flexible array sizes
and checking them for consistency is
recognized: the basic scaffolding is there for
doing a better job.

Dependent Types for Modelling and Simulation – p.15/37



Dimensional Types in Modelica (1)

Modelica has some support for “unit types”:

Dependent Types for Modelling and Simulation – p.16/37



Dimensional Types in Modelica (1)

Modelica has some support for “unit types”:
• Units given as annotations (strings), e.g.:

- "N.m"
- "kg.m/s2".
- "kg.m.s-2".

Dependent Types for Modelling and Simulation – p.16/37



Dimensional Types in Modelica (1)

Modelica has some support for “unit types”:
• Units given as annotations (strings), e.g.:

- "N.m"
- "kg.m/s2".
- "kg.m.s-2".

• No guarantees that dimension annotations
will be checked for consistency (but some
tools do do limited checking).

Dependent Types for Modelling and Simulation – p.16/37



Dimensional Types in Modelica (2)

• Clearly a rather ad-hoc treatment.

Dependent Types for Modelling and Simulation – p.17/37



Dimensional Types in Modelica (2)

• Clearly a rather ad-hoc treatment.
• While basic dimensional type checking does

not require dependent types, dependent
types might provide a good framework.

Dependent Types for Modelling and Simulation – p.17/37



Dimensional Types in Modelica (2)

• Clearly a rather ad-hoc treatment.
• While basic dimensional type checking does

not require dependent types, dependent
types might provide a good framework.

• In its full generality, a dimension type may
depend on data; e.g.:

xn

The dimension of the result depends on the
value of n.

Dependent Types for Modelling and Simulation – p.17/37



Challenges (1)

Need to keep the end-users in mind. Type-
checking must be essentially fully automatic.

Dependent Types for Modelling and Simulation – p.18/37



Challenges (1)

Need to keep the end-users in mind. Type-
checking must be essentially fully automatic.

• Power users/library developers do write code
in the traditional sense.

Dependent Types for Modelling and Simulation – p.18/37



Challenges (1)

Need to keep the end-users in mind. Type-
checking must be essentially fully automatic.

• Power users/library developers do write code
in the traditional sense.

• But they are experts in their domains, not
Computer Scientists.

Dependent Types for Modelling and Simulation – p.18/37



Challenges (1)

Need to keep the end-users in mind. Type-
checking must be essentially fully automatic.

• Power users/library developers do write code
in the traditional sense.

• But they are experts in their domains, not
Computer Scientists.

• And they have a job to do.

Dependent Types for Modelling and Simulation – p.18/37



Challenges (1)

Need to keep the end-users in mind. Type-
checking must be essentially fully automatic.

• Power users/library developers do write code
in the traditional sense.

• But they are experts in their domains, not
Computer Scientists.

• And they have a job to do.
• So unlikely to be impressed if asked to prove e.g.

n + m = m + n or m(n + 1) = m + mn

(and might not know how).
Dependent Types for Modelling and Simulation – p.18/37



Challenges (2)
• Ordinary users construct models exclusively

through drag-and-drop GUIs:

Dependent Types for Modelling and Simulation – p.19/37



Challenges (2)
• Ordinary users construct models exclusively

through drag-and-drop GUIs:

• They don’t expect prove things any more than
when they wire real hardware together.

Dependent Types for Modelling and Simulation – p.19/37



Functional Hybrid Modelling (1)

Recap: Modelica Issues
• “Declarative”, but imperative origins show

(both syntactically and semantically).
• Very complicated, rather ad-hoc type system.
• Limited hybrid modelling capabilities

Dependent Types for Modelling and Simulation – p.20/37



Functional Hybrid Modelling (1)

Recap: Modelica Issues
• “Declarative”, but imperative origins show

(both syntactically and semantically).
• Very complicated, rather ad-hoc type system.
• Limited hybrid modelling capabilities

Goal for FHM:

Creating a powerful, fully-declarative
modeling language by integrating key
notions suitable for multi-domain, hybrid
modeling into a functional language.

Dependent Types for Modelling and Simulation – p.20/37



Functional Hybrid Modelling (2)

Why?
• Purely declarative language as a starting

point.
• Semantic simplicity and insight.
• Expressiveness: with a better fundamental

design, it might be possible to handle more
general models.

• In particular, better hybrid capabilities.

Dependent Types for Modelling and Simulation – p.21/37



Functional Hybrid Modelling (3)

Design inspiration: Yampa (Functional Reactive
Programming):

• Yampa (in principle) supports causal
modelling through functions on continuous
signals.

• Such Signal Functions are first class entities
in Yampa, allowing models to be computed
using a functional language (Haskell).

Dependent Types for Modelling and Simulation – p.22/37



Functional Hybrid Modelling (3)

• First class signal functions give:
- (Some) meta modelling for free.
- Very flexible hybrid modelling:

• compute model
• simulate until need to reconfigure
• repeat until done

Dependent Types for Modelling and Simulation – p.23/37



Functional Hybrid Modeling (4)

Same conceptual structure as Yampa, but:

Dependent Types for Modelling and Simulation – p.24/37



Functional Hybrid Modeling (4)

Same conceptual structure as Yampa, but:
• First-class relations on signals instead of

functions on signals to enable non-causal
modeling.

Dependent Types for Modelling and Simulation – p.24/37



Functional Hybrid Modeling (4)

Same conceptual structure as Yampa, but:
• First-class relations on signals instead of

functions on signals to enable non-causal
modeling.

• Employ state-of-the-art symbolic and
numerical methods for sound and efficient
simulation.

Dependent Types for Modelling and Simulation – p.24/37



Functional Hybrid Modeling (4)

Same conceptual structure as Yampa, but:
• First-class relations on signals instead of

functions on signals to enable non-causal
modeling.

• Employ state-of-the-art symbolic and
numerical methods for sound and efficient
simulation.

For the purpose of this talk, think of a signal
relation as a (fragment of) a DAE system of
equations.

Dependent Types for Modelling and Simulation – p.24/37



First class signal relations

The type for e.g. a binary signal relation:
SR (Real, Real)

E.g. the derivative relation:
der :: SR (Real, Real)

Dependent Types for Modelling and Simulation – p.25/37



Defining relations

The following tentative construct denotes a signal
relation:

sigrel pattern where equations

The pattern introduces signal variables which at
each point in time are going to be bound to to a
“sample” of the corresponding signal.

Given p :: t, we have:
sigrel p where . . . :: SR t

Dependent Types for Modelling and Simulation – p.26/37



Modeling electrical components (1)

The type Pin is assumed to be a record type
describing an electrical connection. It has fields v

for voltage and i for current.
twoPin :: SR (Pin, Pin, Voltage)
twoPin = sigrel (p, n, v) where

v = p.v − n.v

p.i + n.i = 0

Dependent Types for Modelling and Simulation – p.27/37



Modeling electrical components (2)

resistor :: Resistance→ SR (Pin, Pin)
resistor(r) = sigrel (p, n) where

twoPin ⋄ (p, n, v)
r · p.i = v

inductor :: Inductance→ SR (Pin, Pin)
inductor(l) = sigrel (p, n) where

twoPin ⋄ (p, n, v)
l · der(p.i) = v

Dependent Types for Modelling and Simulation – p.28/37



A Problem . . .

How can we ensure that the DAEs we “glue
together” actually can be solved?

Dependent Types for Modelling and Simulation – p.29/37



A Problem . . .

How can we ensure that the DAEs we “glue
together” actually can be solved?

The most basic, necessary but not sufficient
condition: the number of variables (unknowns)
and equations must agree.

Dependent Types for Modelling and Simulation – p.29/37



. . . and a first cut at a solution

Idea: index SR by the number of equations it
provides for the variables of its interface:

foo :: SR (Real ,Real ,Real) 2
foo = sigrel (x, y, z) where

f1(x, y, z) = 0
f2(x, y, z) = 0

fie :: SR Real 1
fie = sigrel w where

foo ⋄ (u, v, w)
g(u, v, w) = 0

Dependent Types for Modelling and Simulation – p.30/37



A possible refinement (1)
Counting variables and equations is rather blunt:

x + y + z = 0

z = 0

z = 0

The equations are not linearly independent; i.e.,
the determinant of the matrix of coefficients is 0.

Dependent Types for Modelling and Simulation – p.31/37



A possible refinement (1)
Counting variables and equations is rather blunt:

x + y + z = 0

z = 0

z = 0

The equations are not linearly independent; i.e.,
the determinant of the matrix of coefficients is 0.

But we cannot in general hope to be able to
compute the determinants statically. And the
DAEs are in general not going to be linear anyway.

Dependent Types for Modelling and Simulation – p.31/37



A possible refinement (2)
We can do the second best thing: look at the
incidence matrix :

Equations Incidence Matrix

f1(x, y, z) = 0

f2(z) = 0

f3(z) = 0

x y z






1 1 1

0 0 1

0 0 1







Dependent Types for Modelling and Simulation – p.32/37



A possible refinement (2)
We can do the second best thing: look at the
incidence matrix :

Equations Incidence Matrix

f1(x, y, z) = 0

f2(z) = 0

f3(z) = 0

x y z






1 1 1

0 0 1

0 0 1







Unless each variable can be paired with an
equation in which it occurs, there is no hope of
solving the equations.

Dependent Types for Modelling and Simulation – p.32/37



A possible refinement (3)

So maybe we can index signal relations with
incidence matrices?

foo :: SR (Real ,Real ,Real)

(

1 1 1

0 1 1

)

foo = sigrel (x, y, z) where
f1(x, y, z) = 0
f2(y, z) = 0

Dependent Types for Modelling and Simulation – p.33/37



A possible refinement (4)
Incidence matrices are joined in the obvious way:

foo :: SR (Real ,Real ,Real)

(

1 1 1

0 1 1

)

Equations Incidence Matrix

foo ⋄ (u, v, w)

foo ⋄ (w, x, y)

u v w x y










1 1 1 0 0

0 1 1 0 0

0 0 1 1 1

0 0 0 1 1











Dependent Types for Modelling and Simulation – p.34/37



A possible refinement (5)

The difficult bit is when we need to choose which
equations to pair with local variables:

bar :: SR (Real ,Real) ???
bar = sigrel (u, y) where

foo ⋄ (u, v, w)
foo ⋄ (w, x, y)

Depending on how the four available equations
are paired with v, w, y, we get two possible
incidence matrices for u and y: (1 0), (0 1).

Dependent Types for Modelling and Simulation – p.35/37



A possible refinement (6)

• The ultimate choice depends on properties of
the final, global system of equations, and
numerical considerations.

• Somehow it is necessary to abstract away
from that choice by some form of
approximation.

• Note that (1 1) is a safe approximation (we’re
back at basic variable and equation counting).

Dependent Types for Modelling and Simulation – p.36/37



Summary

• Dependent types can help enforce useful
model invariants.

• The type systems of existing modelling
languages like Modelica already have
dependent aspects and could benefit from a
more principled treatment of those aspects.

Dependent Types for Modelling and Simulation – p.37/37


	This Talk
	What kind of modeling? (1)
	What kind of modeling? (2)
	Causal vs. non-causal modeling (1)
	Causal vs. non-causal modeling (2)
	Causal modeling: example (1)
	Causal modeling: example (2)
	Drawbacks of causal modeling
	Non-causal modeling: example (1)
	Non-causal modeling: example (2)
	Modelica (1)
	Modelica (2)
	Quiz: Spot the Dependent Types!
	Array Checking in Modelica
	Dimensional Types in Modelica (1)
	Dimensional Types in Modelica (2)
	Challenges (1)
	Challenges (2)
	Functional Hybrid Modelling (1)
	Functional Hybrid Modelling (2)
	Functional Hybrid Modelling (3)
	Functional Hybrid Modelling (3)
	Functional Hybrid Modeling (4)
	First class signal relations
	Defining relations
	Modeling electrical components (1)
	Modeling electrical components (2)
	A Problem ldots 
	ldots and a first cut at a solution
	A possible refinement (1)
	A possible refinement (2)
	A possible refinement (3)
	A possible refinement (4)
	A possible refinement (5)
	A possible refinement (6)
	Summary

