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Background (1)

• Functional Reactive Programming (FRP)
integrates notions suitable for causal hybrid
modelling with functional programming.
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Background (1)

• Functional Reactive Programming (FRP)
integrates notions suitable for causal hybrid
modelling with functional programming.

• Yampa is an instance of FRP embedded in
Haskell.

• One central idea: first-class reactive
components (or models):
- enables highly structurally dynamic

systems to be described declaratively;
- opens up for meta-modelling without

additional language layers.
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Background (2)

• Additional interesting aspects:
- full power of a modern functional language

available;
- polymorphic type system;
- well-understood underlying semantics.
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Functional Hybrid Modelling (1)

• Our goal with Functional Hybrid Modelling
(FHM) is to combine an FRP-approach with
non-causal modelling yielding:
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Functional Hybrid Modelling (1)

• Our goal with Functional Hybrid Modelling
(FHM) is to combine an FRP-approach with
non-causal modelling yielding:
- a powerful, fully-declarative, non-causal

modelling language supporting highly
structurally dynamic systems;

- a semantic framework for studying
modelling and simulation languages
supporting structural dynamism.
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Functional Hybrid Modelling (2)

• The idea of FHM goes back a few years
(PADL 2003). UK research funding (EPSRC)
secured very recently. Thus still work in very
early stages.
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The Rest of the Talk

• A brief introduction to FRP/Yampa as a
background.

• Sketch the key ideas of how this may be
generalized to a non-causal setting.
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Signal functions

Key concept: functions on signals (first class).
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Signal functions

Key concept: functions on signals (first class).

Intuition:

Signal α ≈ Time → α

x :: Signal T1
y :: Signal T2
SF α β ≈ Signal α → Signal β

f :: SF T1 T2
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Signal functions

Key concept: functions on signals (first class).

Intuition:

Signal α ≈ Time → α

x :: Signal T1
y :: Signal T2
SF α β ≈ Signal α → Signal β

f :: SF T1 T2

Additionally, causality required: output at time t

must be determined by input on interval [0, t].
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Signal functions and state

Alternative view:
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state(t) summarizes input history x(t′), t′ ∈ [0, t].
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Signal functions and state

Alternative view:

Signal functions can encapsulate state .

state(t) summarizes input history x(t′), t′ ∈ [0, t].

From this perspective, signal functions are:
• stateful if y(t) depends on x(t) and state(t)

• stateless if y(t) depends only on x(t)

Integral is an example of a stateful signal function.
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Programming with signal functions
In Yampa, systems are described by combining
signal functions (forming new signal functions).
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Programming with signal functions
In Yampa, systems are described by combining
signal functions (forming new signal functions).

For example, serial composition:

A combinator can be defined that captures this:

(≫) :: SF a b → SF b c → SF a c

Note: plain function operating on first-class signal

function.
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The Arrow framework (1)

These diagrams convey the general idea:

arrf
≫

firstf loopf

first :: SF a b → SF (a, c) (b, c)

loop :: SF (a, c) (b, c)→ SF a b
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The Arrow framework (2)

Some derived combinators:

secondf
f ∗∗∗ g

f&&&g
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Example: Constructing a network
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Example: Constructing a network

loop (arr (λ(x , y)→ ((x , y), x ))

≫ (fst f

≫ (arr (λ(x , y)→ (x , (x , y))) ≫ (g ∗∗∗ h))))
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The Arrow notation
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The Arrow notation
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The Arrow notation

proc x → do

rec

u ← f −≺ (x , v)

y ← g−≺ u

v ← h−≺ (u, x )

returnA−≺ y

Functional Hybrid Modeling from an Object-Oriented Perspective – p.13/27



Switching

Some switching combinators:

• switch :: SF a (b,Event c)→ (c → SF a b)

→ SF a b

• pSwitchB :: Functor col ⇒

col (SF a b)

→ SF (a, col b) (Event c)

→ (col (SF a b)→ c → SF a (col b))

→ SF a (col b)
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What makes Yampa different?

• First class reactive components (signal
functions).
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What makes Yampa different?

• First class reactive components (signal
functions).

• Supports hybrid (mixed continuous and
discrete time) systems: option type Event
represents discrete-time signals.

• Supports dynamic system structure through
switching combinators :
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Example: Space Invaders
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Functional Hybrid Modeling

Same conceptual structure as Yampa, but:
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Functional Hybrid Modeling

Same conceptual structure as Yampa, but:
• First-class relations on signals instead of

functions on signals to enable non-causal
modeling.
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Functional Hybrid Modeling

Same conceptual structure as Yampa, but:
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functions on signals to enable non-causal
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• Employ state-of-the-art symbolic and
numerical methods for sound and efficient
simulation.
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Functional Hybrid Modeling

Same conceptual structure as Yampa, but:
• First-class relations on signals instead of

functions on signals to enable non-causal
modeling.

• Employ state-of-the-art symbolic and
numerical methods for sound and efficient
simulation.

• Adapted switch constructs.
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First class signal relations

The type for a relation on a signal of type
Signal α:

SR α

Specific relations use a more refined type; e.g.
the derivative relation:

der :: SR (Real, Real)

Since a signal carrying pairs is isomorphic to a
pair of signals, der can be understood as a
binary relation on two signals.
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Defining relations

The following tentative construct denotes a signal
relation:

sigrel pattern where equations

The pattern introduces signal variables which at
each point in time are going to be bound to to a
“sample” of the corresponding signal.

Given p :: t, we have:
sigrel p where . . . :: SR t
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Equations

Let ei :: ti be non-relational expressions possibly
introducing new signal variables.

Point-wise equality; the equality must hold for all
points in time:

e1 = e2

Relation “application”; the relation must hold for
all points in time:

sr ⋄ e3

Here, sr is an expression having type SR t3.
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Equations: examples

Consider a differential equation like x′ = f(x, y).
This equation could be written:

der ⋄ (x, f(x, y))

For convenience, syntactic sugar closer to
standard mathematical notation could be
considered:

der(x) = f(x, y)

Here, der is not a pure function operating only
on instantaneous signal values since it depends
on the history of the signal.
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Modeling electrical components (1)

The type Pin is assumed to be a record type
describing an electrical connection. It has fields v

for voltage and i for current.
twoPin :: SR (Pin, Pin, Voltage)
twoPin = sigrel (p, n, v) where

v = p.v − n.v
p.i + n.i = 0
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Modeling electrical components (2)

resistor :: Resistance→ SR (Pin, Pin)
resistor(r) = sigrel (p, n) where

twoPin ⋄ (p, n, v)
r · p.i = v

inductor :: Inductance→ SR (Pin, Pin)
inductor(l) = sigrel (p, n) where

twoPin ⋄ (p, n, v)
l · der(p.i) = v
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Modeling electrical components (3)

capacitor :: Capacitance→ SR (Pin, Pin)
capacitor(c) = sigrel (p, n) where

twoPin ⋄ (p, n, v)
c · der(v) = p.i
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Modeling an electrical circuit (1)

simpleCircuit :: SR Current
simpleCircuit = sigrel i where

resistor(1000) ⋄ (r1p, r1n)
resistor(2200) ⋄ (r2p, r2n)
capacitor(0.00047) ⋄ (cp, cn)
inductor(0.01) ⋄ (lp, ln)
vSourceAC (12) ⋄ (acp, acn)
ground ⋄ gp

. . .

Functional Hybrid Modeling from an Object-Oriented Perspective – p.25/27



Modeling an electrical circuit (2)

. . .
connect acp, r1p, r2p
connect r1n, cp

connect r2n, lp

connect acn, cn, ln, gp

i = r1p.i + r2p.i
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Central Research Questions

• Adaptating Yampa’s switching constructs,
including handling initialization issues.
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Central Research Questions

• Adaptating Yampa’s switching constructs,
including handling initialization issues.

• Adapting non-causal modelling and simulation
methods to a setting with first class signal
relations: causality analysis, symbolic processing,
code generation after each switch.
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Central Research Questions

• Adaptating Yampa’s switching constructs,
including handling initialization issues.

• Adapting non-causal modelling and simulation
methods to a setting with first class signal
relations: causality analysis, symbolic processing,
code generation after each switch.

• Guaranteeing compositional correctness
statically through the type system to the
extent possible; e.g. employing dependent
types to keep track of variable/equation
balance.
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