
Functional Hybrid Modeling from
an Object-Oriented Perspective

Henrik Nilsson (University of Nottingham),

John Peterson (Western State College),

and Paul Hudak (Yale University)

Functional Hybrid Modeling from an Object-Oriented Perspective – p.1/27



Background (1)

• Functional Reactive Programming (FRP)
integrates notions suitable for causal hybrid
modelling with functional programming.

Functional Hybrid Modeling from an Object-Oriented Perspective – p.2/27



Background (1)

• Functional Reactive Programming (FRP)
integrates notions suitable for causal hybrid
modelling with functional programming.

• Yampa is an instance of FRP embedded in
Haskell.

Functional Hybrid Modeling from an Object-Oriented Perspective – p.2/27



Background (1)

• Functional Reactive Programming (FRP)
integrates notions suitable for causal hybrid
modelling with functional programming.

• Yampa is an instance of FRP embedded in
Haskell.

• One central idea: first-class reactive
components (or models):
- enables highly structurally dynamic

systems to be described declaratively;
- opens up for meta-modelling without

additional language layers.
Functional Hybrid Modeling from an Object-Oriented Perspective – p.2/27



Background (2)

• Additional interesting aspects:
- full power of a modern functional language

available;
- polymorphic type system;
- well-understood underlying semantics.

Functional Hybrid Modeling from an Object-Oriented Perspective – p.3/27



Functional Hybrid Modelling (1)

• Our goal with Functional Hybrid Modelling
(FHM) is to combine an FRP-approach with
non-causal modelling yielding:

Functional Hybrid Modeling from an Object-Oriented Perspective – p.4/27



Functional Hybrid Modelling (1)

• Our goal with Functional Hybrid Modelling
(FHM) is to combine an FRP-approach with
non-causal modelling yielding:
- a powerful, fully-declarative, non-causal

modelling language supporting highly
structurally dynamic systems;

Functional Hybrid Modeling from an Object-Oriented Perspective – p.4/27



Functional Hybrid Modelling (1)

• Our goal with Functional Hybrid Modelling
(FHM) is to combine an FRP-approach with
non-causal modelling yielding:
- a powerful, fully-declarative, non-causal

modelling language supporting highly
structurally dynamic systems;

- a semantic framework for studying
modelling and simulation languages
supporting structural dynamism.

Functional Hybrid Modeling from an Object-Oriented Perspective – p.4/27



Functional Hybrid Modelling (2)

• The idea of FHM goes back a few years
(PADL 2003). UK research funding (EPSRC)
secured very recently. Thus still work in very
early stages.

Functional Hybrid Modeling from an Object-Oriented Perspective – p.5/27



The Rest of the Talk

• A brief introduction to FRP/Yampa as a
background.

• Sketch the key ideas of how this may be
generalized to a non-causal setting.

Functional Hybrid Modeling from an Object-Oriented Perspective – p.6/27



Signal functions

Key concept: functions on signals (first class).

Functional Hybrid Modeling from an Object-Oriented Perspective – p.7/27



Signal functions

Key concept: functions on signals (first class).

Intuition:

Signal α ≈ Time → α

x :: Signal T1
y :: Signal T2
SF α β ≈ Signal α → Signal β

f :: SF T1 T2

Functional Hybrid Modeling from an Object-Oriented Perspective – p.7/27



Signal functions

Key concept: functions on signals (first class).

Intuition:

Signal α ≈ Time → α

x :: Signal T1
y :: Signal T2
SF α β ≈ Signal α → Signal β

f :: SF T1 T2

Additionally, causality required: output at time t

must be determined by input on interval [0, t].
Functional Hybrid Modeling from an Object-Oriented Perspective – p.7/27



Signal functions and state

Alternative view:

Functional Hybrid Modeling from an Object-Oriented Perspective – p.8/27



Signal functions and state

Alternative view:

Signal functions can encapsulate state .

state(t) summarizes input history x(t′), t′ ∈ [0, t].

Functional Hybrid Modeling from an Object-Oriented Perspective – p.8/27



Signal functions and state

Alternative view:

Signal functions can encapsulate state .

state(t) summarizes input history x(t′), t′ ∈ [0, t].

From this perspective, signal functions are:
• stateful if y(t) depends on x(t) and state(t)

• stateless if y(t) depends only on x(t)

Integral is an example of a stateful signal function.
Functional Hybrid Modeling from an Object-Oriented Perspective – p.8/27



Programming with signal functions
In Yampa, systems are described by combining
signal functions (forming new signal functions).

Functional Hybrid Modeling from an Object-Oriented Perspective – p.9/27



Programming with signal functions
In Yampa, systems are described by combining
signal functions (forming new signal functions).

For example, serial composition:

Functional Hybrid Modeling from an Object-Oriented Perspective – p.9/27



Programming with signal functions
In Yampa, systems are described by combining
signal functions (forming new signal functions).

For example, serial composition:

A combinator can be defined that captures this:

(≫) :: SF a b → SF b c → SF a c

Note: plain function operating on first-class signal

function.
Functional Hybrid Modeling from an Object-Oriented Perspective – p.9/27



The Arrow framework (1)

These diagrams convey the general idea:

arrf
≫

firstf loopf

first :: SF a b → SF (a, c) (b, c)

loop :: SF (a, c) (b, c)→ SF a b

Functional Hybrid Modeling from an Object-Oriented Perspective – p.10/27



The Arrow framework (2)

Some derived combinators:

secondf
f ∗∗∗ g

f&&&g
Functional Hybrid Modeling from an Object-Oriented Perspective – p.11/27



Example: Constructing a network

Functional Hybrid Modeling from an Object-Oriented Perspective – p.12/27



Example: Constructing a network

Functional Hybrid Modeling from an Object-Oriented Perspective – p.12/27



Example: Constructing a network

loop (arr (λ(x , y)→ ((x , y), x ))

≫ (fst f

≫ (arr (λ(x , y)→ (x , (x , y))) ≫ (g ∗∗∗ h))))

Functional Hybrid Modeling from an Object-Oriented Perspective – p.12/27



The Arrow notation

Functional Hybrid Modeling from an Object-Oriented Perspective – p.13/27



The Arrow notation

Functional Hybrid Modeling from an Object-Oriented Perspective – p.13/27



The Arrow notation

proc x → do

rec

u ← f −≺ (x , v)

y ← g−≺ u

v ← h−≺ (u, x )

returnA−≺ y

Functional Hybrid Modeling from an Object-Oriented Perspective – p.13/27



Switching

Some switching combinators:

• switch :: SF a (b,Event c)→ (c → SF a b)

→ SF a b

• pSwitchB :: Functor col ⇒

col (SF a b)

→ SF (a, col b) (Event c)

→ (col (SF a b)→ c → SF a (col b))

→ SF a (col b)

Functional Hybrid Modeling from an Object-Oriented Perspective – p.14/27



What makes Yampa different?

• First class reactive components (signal
functions).

Functional Hybrid Modeling from an Object-Oriented Perspective – p.15/27



What makes Yampa different?

• First class reactive components (signal
functions).

• Supports hybrid (mixed continuous and
discrete time) systems: option type Event
represents discrete-time signals.

Functional Hybrid Modeling from an Object-Oriented Perspective – p.15/27



What makes Yampa different?

• First class reactive components (signal
functions).

• Supports hybrid (mixed continuous and
discrete time) systems: option type Event
represents discrete-time signals.

• Supports dynamic system structure through
switching combinators :

Functional Hybrid Modeling from an Object-Oriented Perspective – p.15/27



Example: Space Invaders

Functional Hybrid Modeling from an Object-Oriented Perspective – p.16/27



Functional Hybrid Modeling

Same conceptual structure as Yampa, but:

Functional Hybrid Modeling from an Object-Oriented Perspective – p.17/27



Functional Hybrid Modeling

Same conceptual structure as Yampa, but:
• First-class relations on signals instead of

functions on signals to enable non-causal
modeling.

Functional Hybrid Modeling from an Object-Oriented Perspective – p.17/27



Functional Hybrid Modeling

Same conceptual structure as Yampa, but:
• First-class relations on signals instead of

functions on signals to enable non-causal
modeling.

• Employ state-of-the-art symbolic and
numerical methods for sound and efficient
simulation.

Functional Hybrid Modeling from an Object-Oriented Perspective – p.17/27



Functional Hybrid Modeling

Same conceptual structure as Yampa, but:
• First-class relations on signals instead of

functions on signals to enable non-causal
modeling.

• Employ state-of-the-art symbolic and
numerical methods for sound and efficient
simulation.

• Adapted switch constructs.

Functional Hybrid Modeling from an Object-Oriented Perspective – p.17/27



First class signal relations

The type for a relation on a signal of type
Signal α:

SR α

Specific relations use a more refined type; e.g.
the derivative relation:

der :: SR (Real, Real)

Since a signal carrying pairs is isomorphic to a
pair of signals, der can be understood as a
binary relation on two signals.

Functional Hybrid Modeling from an Object-Oriented Perspective – p.18/27



Defining relations

The following tentative construct denotes a signal
relation:

sigrel pattern where equations

The pattern introduces signal variables which at
each point in time are going to be bound to to a
“sample” of the corresponding signal.

Given p :: t, we have:
sigrel p where . . . :: SR t

Functional Hybrid Modeling from an Object-Oriented Perspective – p.19/27



Equations

Let ei :: ti be non-relational expressions possibly
introducing new signal variables.

Point-wise equality; the equality must hold for all
points in time:

e1 = e2

Relation “application”; the relation must hold for
all points in time:

sr ⋄ e3

Here, sr is an expression having type SR t3.

Functional Hybrid Modeling from an Object-Oriented Perspective – p.20/27



Equations: examples

Consider a differential equation like x′ = f(x, y).
This equation could be written:

der ⋄ (x, f(x, y))

For convenience, syntactic sugar closer to
standard mathematical notation could be
considered:

der(x) = f(x, y)

Here, der is not a pure function operating only
on instantaneous signal values since it depends
on the history of the signal.

Functional Hybrid Modeling from an Object-Oriented Perspective – p.21/27



Modeling electrical components (1)

The type Pin is assumed to be a record type
describing an electrical connection. It has fields v

for voltage and i for current.
twoPin :: SR (Pin, Pin, Voltage)
twoPin = sigrel (p, n, v) where

v = p.v − n.v
p.i + n.i = 0

Functional Hybrid Modeling from an Object-Oriented Perspective – p.22/27



Modeling electrical components (2)

resistor :: Resistance→ SR (Pin, Pin)
resistor(r) = sigrel (p, n) where

twoPin ⋄ (p, n, v)
r · p.i = v

inductor :: Inductance→ SR (Pin, Pin)
inductor(l) = sigrel (p, n) where

twoPin ⋄ (p, n, v)
l · der(p.i) = v

Functional Hybrid Modeling from an Object-Oriented Perspective – p.23/27



Modeling electrical components (3)

capacitor :: Capacitance→ SR (Pin, Pin)
capacitor(c) = sigrel (p, n) where

twoPin ⋄ (p, n, v)
c · der(v) = p.i

Functional Hybrid Modeling from an Object-Oriented Perspective – p.24/27



Modeling an electrical circuit (1)

simpleCircuit :: SR Current
simpleCircuit = sigrel i where

resistor(1000) ⋄ (r1p, r1n)
resistor(2200) ⋄ (r2p, r2n)
capacitor(0.00047) ⋄ (cp, cn)
inductor(0.01) ⋄ (lp, ln)
vSourceAC (12) ⋄ (acp, acn)
ground ⋄ gp

. . .

Functional Hybrid Modeling from an Object-Oriented Perspective – p.25/27



Modeling an electrical circuit (2)

. . .
connect acp, r1p, r2p
connect r1n, cp

connect r2n, lp

connect acn, cn, ln, gp

i = r1p.i + r2p.i

Functional Hybrid Modeling from an Object-Oriented Perspective – p.26/27



Central Research Questions

• Adaptating Yampa’s switching constructs,
including handling initialization issues.

Functional Hybrid Modeling from an Object-Oriented Perspective – p.27/27



Central Research Questions

• Adaptating Yampa’s switching constructs,
including handling initialization issues.

• Adapting non-causal modelling and simulation
methods to a setting with first class signal
relations: causality analysis, symbolic processing,
code generation after each switch.

Functional Hybrid Modeling from an Object-Oriented Perspective – p.27/27



Central Research Questions

• Adaptating Yampa’s switching constructs,
including handling initialization issues.

• Adapting non-causal modelling and simulation
methods to a setting with first class signal
relations: causality analysis, symbolic processing,
code generation after each switch.

• Guaranteeing compositional correctness
statically through the type system to the
extent possible; e.g. employing dependent
types to keep track of variable/equation
balance.

Functional Hybrid Modeling from an Object-Oriented Perspective – p.27/27


	Background (1)
	Background (2)
	Functional Hybrid Modelling (1)
	Functional Hybrid Modelling (2)
	The Rest of the Talk
	Signal functions
	Signal functions and state
	Programming with signal functions
	The Arrow framework (1)
	The Arrow framework (2)
	Example: Constructing a network
	The Arrow notation
	Switching
	What makes Yampa different?
	Example: Space Invaders
	Functional Hybrid Modeling
	First class signal relations
	Defining relations
	Equations
	Equations: examples
	Modeling electrical components (1)
	Modeling electrical components (2)
	Modeling electrical components (3)
	Modeling an electrical circuit (1)
	Modeling an electrical circuit (2)
	Central Research Questions

