Type-Based Structural Analysis for Modular Systems of Equations

Henrik Nilsson

School of Computer Science
University of Nottingham

Type-Based Structural Analysis for Modular Systems of Equations – p.1/23

The Problem (2)

- However, it might be possible to check violations of certain necessary conditions for solvability in a modular way!
- One necssary condition for solvability is that a system must not be structurally singular.
- The paper investigates the extent to which the structural singularity of a system of equations can be checked modularly.

The Problem (1)

- A core aspect of equation-based modelling: modular description of models through composition of equation system fragments.
- Naturally, we are interested in ensuring composition makes sense, catching any mistakes as early as possible.
- Central question: do the equations have a solution?
- Cannot be answered comprehensively before we have a complete model.

Not very modular!

Type-Based Structural Analysis for Modular Systems of Equations – p.2/23

Modular Systems of Equations (1)

We need a notation for modular systems of equations. Note:

- a system of equations specifies a relation among a set of variables
- specifically, our interest is relations on time-varying values or signals
- an equation system fragment needs an interface to distinguish between local variables and variables used for composition with other fragments.

Modular Systems of Equations (2)

These ideas can be captured through a notion of *typed signal relations*:

foo ::
$$SR$$
 (Real, Real, Real)
foo = **sigrel** (x_1, x_2, x_3) **where**
 $f_1 x_1 x_2 x_3 = 0$
 $f_2 x_2 x_3 = 0$

Type-Based Structural Analysis for Modular Systems of Equations – p.5/23

Modular Systems of Equations (4)

Treating signal relations as *first class entities* in a functional setting is a simple way to add essential functionality, such as a way to parameterize the relations:

$$foo2 :: Int \rightarrow Real \rightarrow SR \ (Real, Real, Real)$$

 $foo2 \ n \ k = \mathbf{sigrel} \ (x_1, x_2, x_3) \ \mathbf{where}$
 $f_1 \ n \ x_1 \ x_2 \ x_3 = 0$
 $f_2 \ x_2 \ x_3 = k$

Modular Systems of Equations (3)

Composition can by expressed through *signal relation* application:

$$foo \diamond (u, v, w) foo \diamond (w, u + x, v + y)$$

yields

$$f_1 \ u \ v \ w = 0$$
 $f_2 \ v \ w = 0$
 $f_1 \ w \ (u+x) \ (v+y) = 0$
 $f_2 \ (u+x) \ (v+y) = 0$

Type-Based Structural Analysis for Modular Systems of Equations – p.6/23

Example: Resistor Model

```
twoPin :: SR \ (Pin, Pin, Voltage)

twoPin = \mathbf{sigrel} \ (p, n, u) \ \mathbf{where}

u = p.v - n.v

p.i + n.i = 0

resistor :: Resistance \rightarrow SR \ (Pin, Pin)

resistor \ r = \mathbf{sigrel} \ (p, n) \ \mathbf{where}

twoPin \diamond (p, n, u)

r * p.i = u
```

Tracking Variable/Equation Balance?

Equal number of equations and variables is a necessary condition for solvability. For a modular analysis, one might keep track of the *balance* in the signal relation *type*:

$$SR(\ldots)$$
 n

But very weak assurances:

$$f(x, y, z) = 0$$

$$g(z) = 0$$

$$h(z) = 0$$

Type-Based Structural Analysis for Modular Systems of Equations – p.9/23

A Possible Refinement (2)

Structural singularities can be discovered by studying the *incidence matrix*:

Equations

Incidence Matrix

$$\begin{array}{rcl}
f_1(x,y,z) &=& 0 \\
f_2(z) &=& 0 \\
f_3(z) &=& 0
\end{array}
\qquad
\begin{pmatrix}
x & y & z \\
1 & 1 & 1 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{pmatrix}$$

A Possible Refinement (1)

A system of equations is *structurally singular* iff it is not possible to put the variables and equations in a one-to-one correspondence such that each variable occurs in the equation it is related to.

Type-Based Structural Analysis for Modular Systems of Equations – p.10/23

A Possible Refinement (3)

So maybe we can index signal relations with incidence matrices?

$$foo :: SR (Real, Real, Real) \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

$$foo =$$
sigrel (x_1, x_2, x_3) **where** $f_1 x_1 x_2 x_3 = 0$ $f_2 x_2 x_3 = 0$

Structural Type (1)

- The Structural Type represents information about which variables occur in which equations.
- · Denoted by an incidence matrix.
- Two interrelated instances:
 - Structural type of a system of equations
 - Structural type of a signal relation

Type-Based Structural Analysis for Modular Systems of Equations – p.13/23

Composition of Structural Types (1)

Recall

$$foo :: SR (Real, Real, Real) \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

Consider

$$foo \diamond (u, v, w)$$

 $foo \diamond (w, u + x, v + y)$

in a context with five variables u, v, w, x, y.

Structural Type (2)

- The structural type of a system of equations is obtained by *composition* of the structural types of constituent signal relations. *Straightforward*.
- The structural type of a signal relation is obtained by abstraction over the structural type of a system of equations.
 Less straightforward.

Type-Based Structural Analysis for Modular Systems of Equations – p.14/23

Composition of Structural Types (2)

The structural type for the equations obtained by instantiating foo is simply obtained by Boolean matrix multiplication. For $foo \diamond (u, v, w)$:

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} u & v & w & x & y \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} u & v & w & x & y \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \end{pmatrix}$$

Composition of Structural Types (3)

For $foo \diamond (w, u + x, v + y)$:

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} u & v & w & x & y \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} u & v & w & x & y \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \end{pmatrix}$$

Type-Based Structural Analysis for Modular Systems of Equations – p.17/23

Abstraction over Structural Types (1)

Now consider encapsulating the equations:

$$bar =$$
sigrel (u, y) **where**
 $foo \diamond (u, v, w)$
 $foo \diamond (w, u + x, v + y)$

The equations of the body of bar needs to be partitioned into

- Local Equations: equations used to solve for the local variables
- Interface Equations: equations contributed to the outside

Composition of Structural Types (4)

Complete incidence matrix and corresponding equations:

$$\begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \end{pmatrix} \qquad \begin{array}{c} f_1 \ u \ v \ w & = 0 \\ f_2 \ v \ w & = 0 \\ f_1 \ w \ (u+x) \ (v+y) = 0 \\ f_2 \ (u+x) \ (v+y) & = 0 \end{array}$$

Type-Based Structural Analysis for Modular Systems of Equations – p.18/23

Abstraction over Structural Types (2)

How to partition?

- A priori local equations: equations over local variables only.
- A priori interface equations: equations over interface variables only.
- Mixed equations: equations over local and interface variables.

Note: too few or too many local equations gives an opportunity to catch locally underdetermined or overdeteremined systems of equations.

Abstraction over Structural Types (3)

In our case:

- We have 1 a priori local equation, 3 mixed equations
- We need to choose 3 local equations and 1 interface equation
- Consequently, 3 possibilities, yielding the following possible structural types for bar:

$$\begin{pmatrix}
u & y & & u & y & & u & y \\
1 & 0 & & & & & & & & \\
\end{pmatrix}$$

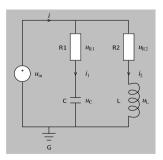
$$\begin{pmatrix}
1 & 1 & & & & & \\
& 1 & 1 & & & & \\
\end{pmatrix}$$

Type-Based Structural Analysis for Modular Systems of Equations – p.21/23

Type-Based Structural Analysis for Modular Systems of Equations - p.23/23

Also in the Paper

 A more realistic modelling example:



- Structural types for components of this model
- Example of error in this model that is caught by the proposed method, but would not have been found by just counting equations and variables.

Abstraction over Structural Types (4)

The two last possibilities are equivalent. But still leaves two distinct possibilities. How to choose?

- Assume the choice is free
- Note that a type with more variable occurrences is "better" as it gives more freedom when pairing equations and variables. Thus discard choices that are subsumed by better choices.
- As a last resort, approximate.

Details in the paper.

Type-Based Structural Analysis for Modular Systems of Equations – p.22/23