Henrik Nilsson, Antony Courtney, and John Peterson

Yale University
New Haven, CT, USA

Functional Reactive Programming State

Key concept: functions on signals.

X
—>

f

y

—

Intuition:

Signal aa = Time — «

r .. Signal T1
y . Signal T2

f :: Signal T1 — Signal

Additionally: causality requirement.

Functional Reactive Programming

FRP and Yampa:
* FRP: conceptual framework for programming
with time-varying entities.
» Yampa (formerly AFRP): an implementation
of FRP embedded in Haskell.
Theme of this talk:

Bringing classical FP ideas like first class
continuations to the world of hybrid systems
and reactive programming to make
structurally dynamic systems possible.

et estve Frranin, Contnasdp 23 _ nnnnnnnn ezt Prograning onined 5225

T2

ive Programming, Continued — p.3/23

Alternative view:
Functions on signals can encapsulate state.

f y(t)
state(t) g

x(t) |

state(t) summarizes input history x(t'), t' € [0, t].
Functions on signals are either:

- Stateful: y(¢) depends on z(t) and state(t)

- Stateless: y(t) depends only on x(t)

nctional Reactive Programming, Continued — p.4/23

The Big Picture

Related Languages

Some areas where functions on signals are Lots of languages designed around the idea of
central: functions on signals, e.g.:
- Modelling and simulation of physical systems * Modelling Languages:
- Simulink

 Hybrid systems

. - Ptolemy I
* Reactive systems
« Synchronous languages:
« Embedded systems " Esterel
« Digital Signal Processing _ Lustre

- Lucid Synchrone

Describing Composite Systems
2> F Z>—{ |
Uin i N :1z—>|

-

U,

-
|
!
M

J _‘ « What type of structural changes can be
expressed?

 What about state?

_ FoncinalResae P, Coniues 122 _

Support for Structural Changes Example: Traffic Surveillance

Simulink is fairly typical:

—{control

"enable
J-L ' N
—_— f — // \\
 Blocks can be enabled/disabled dynamically. g S

« State can be preserved or reset. * E:_\"I [a

Tallgating detector Yampa
Tailgating Signal Functions are first class entities.
Detectors: 1gdi12)| | 18d(2,3)| - Intuition:
1 « Signals are not first class entities.
« Switchers “apply” signal functions to signals
: tr AR . .
Trackers: il "2 J at some point in time, creating a running
Video: I signal function instance.
ﬂ « Special combinators to run collections of
signal functions in parallel.

_ FonctenReseive Frognmng, Conuesp 1

nctional Reactive Programming, Continued - p.12/23

Static Signal Function Collections Dynamic Signal Function Collections

The most basic way to form a SF collection: Idea:
parB :: Functor col => « Switch over collections of signal functions.
col (SF ab) -> Sk a (col b) - On event, “freeze” running signal functions

into collection of signal function continuations.
» Modify collection as needed and switch back in.

pSwitchB :: Functor col =>
-> SF a (col b)

parB [sfl,sf2,..., s£fN]

Can’'t add or remove SFs from the collection.

_ et Resei Froganming, o p 13 _ ool escive rogammn, Controsspaezs

Dynamic Signal Function Collections Routing (1)

How can flexible communication be achieved?

« Input filtering (+ feedback) is enough.

« But composing each actual signal function
with a filter is awkward and inflexible.

&

ramming, Continued — p.15/23

8
a
o

mming, Continued - p.16/23

Rouing

Idea: pSwitch :: Functor col =>

» Generalized pSwi t ch responsible for routing;

obviates need for composition. -> col (SFbc)

.) -) -> SF (a, col c) (Event d)
« Desired routing specified by user-supplied > (col (SEbc) ->d->SFa(col c))

routing function. -> SF a (col ¢)

a col sf col (b,sf)
Q@ O f (@],
@ 2 [2 (Cel [
2 514 s| (0D

L] | (,E1)

_ et Reseiv Froganmng, o p 1 _ Fonctonl e rogammn, Controsspasis

The Routing Function Type Tailgating Detector: Excerpts

Universal quantification over the collection type CarTracker = SF (Video, UAVStatus)
members: (Car, Event ())

Functor col =>

(forall sf . (a -> col sf -> col (b,sf))) mul ti Car Tr acker

SF (Video, UAVStatus, Event CarTracker)

Collection members thus opaque: [(1d,Car)]
« Ensures only signal functions from argument mul ti Car Tracker =
can be returned. pSwitch route []
- Unfortunately, does not prevent duplication or ‘Z‘f'dtor De'f CarTrackers
cts’ ->

discarding of signal functions.
mul ti Car Tracker (f cts’))

_ FonctenlReseive Frognmng, Coniuep 198 _ ool eseive Frogmmn, Coniesp 2052

Related Work (1) Related Work (2)

¢ First-Order Systems: no dynamic collections * Fran [Elliott and Hudak 97, Elliott 99]
- Esterel [Berry 92], Lustre [Caspi 87], Lucid - First class signals.
Synchrone [Caspl OO], SimuLink, RT-FRP [\Nan, - But dynamic collections?

Taha, Hudak 01] * FranTk [Sage 99]

¢ Fudgets [Carlsson and Hallgren 93, 98] - Dynamic collections, but only via | Omonad.

- Continuation capture with ext r act SP
- Dynamic Collections with dynLi st F
- No synchronous bulk update

_ et Reseiv Froganmng, o p 2 _ Fonctonlescive rogammn, Controssp 222

Obtaining Yampa

These ideas have been implemented in Yampa,
yielding a very expressive language for reactive
programming.

Yampa 0.9 is available from

_ FoncteReseive Frognmng, Conuesp 258

	Functional Reactive Programming
	Functional Reactive Programming
	State
	The Big Picture
	Related Languages
	Describing Composite Systems
	What If System Structure Varies?
	Support for Structural Changes
	Example: Traffic Surveillance
	Tailgating detector
	Yampa
	Static Signal Function Collections
	Dynamic Signal Function Collections
	Dynamic Signal Function Collections
	Routing (1)
	Routing (2)
		exttt {pSwitch}
	The Routing Function Type
	Tailgating Detector: Excerpts
	Related Work (1)
	Related Work (2)
	Obtaining Yampa

