
Functional Reactive Programming,
Continued

Henrik Nilsson, Antony Courtney, and John Peterson

Yale University

New Haven, CT, USA

Functional Reactive Programming, Continued – p.1/23



Functional Reactive Programming

FRP and Yampa:
• FRP: conceptual framework for programming

with time-varying entities.
• Yampa (formerly AFRP): an implementation

of FRP embedded in Haskell.

Theme of this talk:

Bringing classical FP ideas like first class
continuations to the world of hybrid systems
and reactive programming to make
structurally dynamic systems possible.

Functional Reactive Programming, Continued – p.2/23



Functional Reactive Programming

FRP and Yampa:
• FRP: conceptual framework for programming

with time-varying entities.
• Yampa (formerly AFRP): an implementation

of FRP embedded in Haskell.

Theme of this talk:

Bringing classical FP ideas like first class
continuations to the world of hybrid systems
and reactive programming to make
structurally dynamic systems possible.

Functional Reactive Programming, Continued – p.2/23



Functional Reactive Programming

Key concept: functions on signals.

x y
f

Intuition:

Signal α = Time → α

x :: Signal T1
y :: Signal T2
f :: Signal T1 → Signal T2

Additionally: causality requirement.

Functional Reactive Programming, Continued – p.3/23



State

Alternative view:

Functions on signals can encapsulate state.

f y (t)
state(t)

x (t)

state(t) summarizes input history x(t′), t′ ∈ [0, t].

Functions on signals are either:
• Stateful: y(t) depends on x(t) and state(t)

• Stateless: y(t) depends only on x(t)

Functional Reactive Programming, Continued – p.4/23



The Big Picture

Some areas where functions on signals are
central:

• Modelling and simulation of physical systems
• Hybrid systems
• Reactive systems
• Embedded systems
• Digital Signal Processing
• . . .

Functional Reactive Programming, Continued – p.5/23



Related Languages

Lots of languages designed around the idea of
functions on signals, e.g.:

• Modelling Languages:
- Simulink
- Ptolemy II

• Synchronous languages:
- Esterel
- Lustre
- Lucid Synchrone

• . . .
Functional Reactive Programming, Continued – p.6/23



Describing Composite Systems

1/C

i

i2

uR2
uL

uin

uR1

uC

i1

R2
-1

+1Σ 1/L

+1

+1Σ
+1

-1Σ 1/R1

Functional Reactive Programming, Continued – p.7/23



What If System Structure Varies?

• What type of structural changes can be
expressed?

• What about state?

Functional Reactive Programming, Continued – p.8/23



Support for Structural Changes

Simulink is fairly typical:

enable

f

control

• Blocks can be enabled/disabled dynamically.
• State can be preserved or reset.

Number of structural configurations fixed.
Blocks cannot be added/deleted dynamically!

Functional Reactive Programming, Continued – p.9/23



Support for Structural Changes

Simulink is fairly typical:

enable

f

control

• Blocks can be enabled/disabled dynamically.
• State can be preserved or reset.

Number of structural configurations fixed.
Blocks cannot be added/deleted dynamically!

Functional Reactive Programming, Continued – p.9/23



Example: Traffic Surveillance

Functional Reactive Programming, Continued – p.10/23



Tailgating detector

1 2 3y:

s: tr1 tr2 tr3

lgating

Detectors: tgd(1,2) tgd(2,3)

...

...

Video:

Functional Reactive Programming, Continued – p.11/23



Yampa

• Signal Functions are first class entities.
Intuition: SF α β = Signal α →Signal β

• Signals are not first class entities.
• Switchers “apply” signal functions to signals

at some point in time, creating a running
signal function instance.

• Special combinators to run collections of
signal functions in parallel.

Functional Reactive Programming, Continued – p.12/23



Yampa

• Signal Functions are first class entities.
Intuition: SF α β = Signal α →Signal β

• Signals are not first class entities.

• Switchers “apply” signal functions to signals
at some point in time, creating a running
signal function instance.

• Special combinators to run collections of
signal functions in parallel.

Functional Reactive Programming, Continued – p.12/23



Yampa

• Signal Functions are first class entities.
Intuition: SF α β = Signal α →Signal β

• Signals are not first class entities.
• Switchers “apply” signal functions to signals

at some point in time, creating a running
signal function instance.

• Special combinators to run collections of
signal functions in parallel.

Functional Reactive Programming, Continued – p.12/23



Yampa

• Signal Functions are first class entities.
Intuition: SF α β = Signal α →Signal β

• Signals are not first class entities.
• Switchers “apply” signal functions to signals

at some point in time, creating a running
signal function instance.

• Special combinators to run collections of
signal functions in parallel.

Functional Reactive Programming, Continued – p.12/23



Static Signal Function Collections

The most basic way to form a SF collection:

parB :: Functor col =>

col (SF a b) -> SF a (col b)

sf1

sf2

sfN

.

.

.

parB [sf1,sf2,...,sfN]

Can’t add or remove SFs from the collection.
Functional Reactive Programming, Continued – p.13/23



Dynamic Signal Function Collections

Idea:
• Switch over collections of signal functions.
• On event, “freeze” running signal functions

into collection of signal function continuations.
• Modify collection as needed and switch back in.

pSwitchB :: Functor col =>

col (SF a b)

-> SF (a, col b) (Event c)

-> (col (SF a b) -> c -> SF a (col b))

-> SF a (col b)
Functional Reactive Programming, Continued – p.14/23



Dynamic Signal Function Collections

Idea:
• Switch over collections of signal functions.
• On event, “freeze” running signal functions

into collection of signal function continuations.
• Modify collection as needed and switch back in.

pSwitchB :: Functor col =>

col (SF a b) Initial collection

-> SF (a, col b) (Event c)

-> (col (SF a b) -> c -> SF a (col b))

-> SF a (col b)
Functional Reactive Programming, Continued – p.14/23



Dynamic Signal Function Collections

Idea:
• Switch over collections of signal functions.
• On event, “freeze” running signal functions

into collection of signal function continuations.
• Modify collection as needed and switch back in.

pSwitchB :: Functor col =>

col (SF a b) Event source

-> SF (a, col b) (Event c)

-> (col (SF a b) -> c -> SF a (col b))

-> SF a (col b)
Functional Reactive Programming, Continued – p.14/23



Dynamic Signal Function Collections

Idea:
• Switch over collections of signal functions.
• On event, “freeze” running signal functions

into collection of signal function continuations.
• Modify collection as needed and switch back in.

pSwitchB :: Functor col =>

col (SF a b) Function yielding SF to switch into

-> SF (a, col b) (Event c)

-> (col (SF a b) -> c -> SF a (col b))

-> SF a (col b)
Functional Reactive Programming, Continued – p.14/23



Dynamic Signal Function Collections

s1

s0

Functional Reactive Programming, Continued – p.15/23



Dynamic Signal Function Collections

s1

s0

t
e

Functional Reactive Programming, Continued – p.15/23



Dynamic Signal Function Collections

s1

s0

t
e

s2

s3

Functional Reactive Programming, Continued – p.15/23



Dynamic Signal Function Collections

s1

s0

t
e

s2

s3

Functional Reactive Programming, Continued – p.15/23



Dynamic Signal Function Collections

s1

s0

te

s2

s3

te
2

Functional Reactive Programming, Continued – p.15/23



Dynamic Signal Function Collections

s1

s0

te

s2

s3

te
2

Functional Reactive Programming, Continued – p.15/23



Routing (1)

How can flexible communication be achieved?

f

g

h

• Input filtering (+ feedback) is enough.

• But composing each actual signal function
with a filter is awkward and inflexible.

Functional Reactive Programming, Continued – p.16/23



Routing (1)

How can flexible communication be achieved?

f

g

h

• Input filtering (+ feedback) is enough.
• But composing each actual signal function

with a filter is awkward and inflexible.

Functional Reactive Programming, Continued – p.16/23



Routing (2)

Idea:
• Generalized pSwitch responsible for routing;

obviates need for composition.

• Desired routing specified by user-supplied
routing function.

a col sf

1

2

3

4

f

col (b,sf)

1

2

3

4

(

(

(

(

)

)

)

)

,

,

,

,

Functional Reactive Programming, Continued – p.17/23



Routing (2)

Idea:
• Generalized pSwitch responsible for routing;

obviates need for composition.
• Desired routing specified by user-supplied

routing function.

a col sf

1

2

3

4

f

col (b,sf)

1

2

3

4

(

(

(

(

)

)

)

)

,

,

,

,

Functional Reactive Programming, Continued – p.17/23



pSwitch

pSwitch :: Functor col =>

(forall sf . (a -> col sf -> col (b, sf)))

-> col (SF b c)

-> SF (a, col c) (Event d)

-> (col (SF b c) -> d -> SF a (col c))

-> SF a (col c)

Functional Reactive Programming, Continued – p.18/23



The Routing Function Type

Universal quantification over the collection
members:

Functor col =>

(forall sf . (a -> col sf -> col (b,sf)))

Collection members thus opaque:
• Ensures only signal functions from argument

can be returned.
• Unfortunately, does not prevent duplication or

discarding of signal functions.

Functional Reactive Programming, Continued – p.19/23



Tailgating Detector: Excerpts

type CarTracker = SF (Video, UAVStatus)

(Car, Event ())

multiCarTracker ::

SF (Video, UAVStatus, Event CarTracker)

[(Id,Car)]

multiCarTracker =

pSwitch route []

addOrDelCarTrackers

(\cts’ f ->

multiCarTracker (f cts’))

Functional Reactive Programming, Continued – p.20/23



Related Work (1)

• First-Order Systems: no dynamic collections

- Esterel [Berry 92], Lustre [Caspi 87], Lucid
Synchrone [Caspi 00], SimuLink, RT-FRP [Wan,
Taha, Hudak 01]

• Fudgets [Carlsson and Hallgren 93, 98]

- Continuation capture with extractSP

- Dynamic Collections with dynListF

- No synchronous bulk update

Functional Reactive Programming, Continued – p.21/23



Related Work (2)

• Fran [Elliott and Hudak 97, Elliott 99]

- First class signals.

- But dynamic collections?

• FranTk [Sage 99]

- Dynamic collections, but only via IO monad.

Functional Reactive Programming, Continued – p.22/23



Obtaining Yampa

These ideas have been implemented in Yampa,
yielding a very expressive language for reactive
programming.

Yampa 0.9 is available from

http://www.haskell.org/yampa

Functional Reactive Programming, Continued – p.23/23


	Functional Reactive Programming
	Functional Reactive Programming
	State
	The Big Picture
	Related Languages
	Describing Composite Systems
	What If System Structure Varies?
	Support for Structural Changes
	Example: Traffic Surveillance
	Tailgating detector
	Yampa
	Static Signal Function Collections
	Dynamic Signal Function Collections
	Dynamic Signal Function Collections
	Routing (1)
	Routing (2)
		exttt {pSwitch}
	The Routing Function Type
	Tailgating Detector: Excerpts
	Related Work (1)
	Related Work (2)
	Obtaining Yampa

