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Functional Reactive Programming

FRP and Yampa:

FRP: conceptual framework for programming
with time-varying entities.

Yampa (formerly AFRP): an implementation
of FRP embedded in Haskell.
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Functional Reactive Programming

FRP and Yampa:

FRP: conceptual framework for programming
with time-varying entities.

Yampa (formerly AFRP): an implementation
of FRP embedded in Haskell.

Theme of this talk:

Bringing classical FP ideas like first class
continuations to the world of hybrid systems
and reactive programming to make
structurally dynamic systems possible.
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Functional Reactive Programming

Key concept: functions on signals.

Intuition:

Signal aa = Tinme — «

r .. Signhal T1

y .. Signhal T2

f .. Signal Tl — Signal T2
Additionally: causality requirement.
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State

Alternative view:
Functions on signals can encapsulate state.

f

state(t)

state(t) summarizes input history z(t'), t' € [0, t].
Functions on signals are either:

Stateful: y(¢) depends on x(t) and state(t)
Stateless: y(t) depends only on x (%)
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The Big Picture

Some areas where functions on signals are
central:

Modelling and simulation of physical systems
Hybrid systems

Reactive systems

Embedded systems

Digital Signal Processing



Related Languages

Lots of languages designed around the idea of
functions on signals, e.g.:

Modelling Languages:
Simulink
Ptolemy Il
Synchronous languages:
Esterel
Lustre
Lucid Synchrone
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Describing Composite Systems

> B P

> b
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What If System Structure Varies?

ex

nat type of structural changes can be
pressed?

nat about state?
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Support for Structural Changes

Simulink iIs fairly typical:

control

f

Blocks can be enabled/disabled dynamically.

State can be preserved or reset.
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Support for Structural Changes

Simulink iIs fairly typical:

control

f

Blocks can be enabled/disabled dynamically.

State can be preserved or reset.

Number of structural configurations fixed.
Blocks cannot be added/deleted dynamically!
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Example: Traffic Surveillance

>




Tallgating detector




Yampa

Signal Functions are first class entities.
Intuition: SF o 5 = SI gnal o —Si ghal g
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Yampa

Signal Functions are first class entities.
Intuition: SF o 5 = SI gnal o —Si ghal g

Signals are not first class entities.
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Yampa

Signal Functions are first class entities.
Intuition: SF o 5 = SI gnal o —Si ghal g

Signals are not first class entities.

Switchers “apply” signal functions to signals
at some point in time, creating a running
signal function instance.
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Yampa

Signal Functions are first class entities.
Intuition: SF o 5 = SI gnal o —Si ghal g

Signals are not first class entities.

Switchers “apply” signal functions to signals
at some point in time, creating a running
signal function instance.

Special combinators to run collections of
signal functions in parallel.
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Static Signal Function Collections

The most basic way to form a SF collection:

parB :: Functor col =>
col (SF ab) ->SF a (col b)

sf

£2

Can’t add or remove SFs from the collection.



Dynamic Signal Function Collections

|dea:

Switch over collections of signal functions.

On event, “freeze” running signal functions
Into collection of signal function continuations.

Modify collection as needed and switch back In.

pSwtchB :: Functor col =>
col (SF a b)
-> SF (a, col b) (Event c)
-> (col (SFab) ->c ->SF a (col b))
-> SF a (col Db)



Dynamic Signal Function Collections

|dea:

Switch over collections of signal functions.

On event, “freeze” running signal functions
Into collection of signal function continuations.

Modify collection as needed and switch back In.

pSwtchB :: Functor col =>

col (SF a b) | Initial collection
-> SF (a, col b) (Event c)

-> (col (SFab) ->c ->SF a (col b))
-> SF a (col b)
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Dynamic Signal Function Collections

|dea:

Switch over collections of signal functions.

On event, “freeze” running signal functions
Into collection of signal function continuations.

Modify collection as needed and switch back In.

pSwtchB :: Functor col =>
col (SF a b) Event source

-> |SF (a, col b) (Event c) -
-> (col (SFab) ->c ->SF a (col b))
-> SF a (col b)
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Dynamic Signal Function Collections

|dea:

Switch over collections of signal functions.

On event, “freeze” running signal functions
Into collection of signal function continuations.

Modify collection as needed and switch back In.

pSwtchB :: Functor col =>
col (SF a b) Function yielding SF to switch into

-> SF (a, col b) (Event—e)—

-> [(col (SFab) ->c ->SF a (col b))
-> SF a (col b)
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Routing (1)

How can flexible communication be achieved?

Input filtering (+ feedback) is enough.



Routing (1)

How can flexible communication be achieved?

Input filtering (+ feedback) is enough.

But composing each actual signal function
with a filter 1Is awkward and inflexible.



Routing (2)

|dea:

Generalized pSw t ch responsible for routing;
obviates need for composition.
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Routing (2)

|dea:

Generalized pSw t ch responsible for routing;
obviates need for composition.

Desired routing specified by user-supplied
routing function.




pSwW t ch

pSw tch :: Functor col =>
(forall sf . (a -> col sf -> col (b, sf)))
-> col (SF b c)
-> SF (a, col c) (Event d)
-> (col (SFbc) ->d->SF a (col c))
-> SF a (col c¢)
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The Routing Function Type

Universal quantification over the collection
members:

Functor col =>
(forall sf . (a -> col sf -> col (b,sf)))

Collection members thus opaque:

Ensures only signal functions from argument
can be returned.

Unfortunately, does not prevent duplication or
discarding of signal functions.



Tallgating Detector: Excerpts

type CarTracker = SF (Video, UAVSt at us)
(Car, Event ())

mul t 1 Car Tr acker
SF (Video, UAVStatus, Event CarTracker)
[(1d, Car)]
mul t1 Car Tracker =
pSwW tch route []
addOr Del Car Tr ackers
(\cts” f ->
mul ti1 Car Tracker (f cts’))
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Related Work (1)

First-Order Systems: no dynamic collections
Esterel [Berry 92], Lustre [Caspi 87], Lucid
Synchrone [Caspi 00], SimuLink, RT-FRP [Wan,
Taha, Hudak 01]

Fudgets [Carlsson and Hallgren 93, 98]
Continuation capture with ext r act SP
Dynamic Collections with dynLi st F
No synchronous bulk update
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Related Work (2)

Fran [Elliott and Hudak 97, Elliott 99]
First class signals.
But dynamic collections?

FranTk [Sage 99]
Dynamic collections, but only via | Omonad.
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Obtaining Yampa

These ideas have been implemented in Yampa,
yielding a very expressive language for reactive
programming.

Yampa 0.9 is available from

http://ww. haskel | . or g/ yanpa
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