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Functional Reactive Programming

FRP and Yampa:
• FRP: conceptual framework for programming

with time-varying entities.
• Yampa (formerly AFRP): an implementation

of FRP embedded in Haskell.

Theme of this talk:

Bringing classical FP ideas like first class
continuations to the world of hybrid systems
and reactive programming to make
structurally dynamic systems possible.
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Functional Reactive Programming

Key concept: functions on signals.

x y
f

Intuition:

Signal α = Time → α

x :: Signal T1
y :: Signal T2
f :: Signal T1 → Signal T2

Additionally: causality requirement.
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State

Alternative view:

Functions on signals can encapsulate state.

f y (t)
state(t)

x (t)

state(t) summarizes input history x(t′), t′ ∈ [0, t].

Functions on signals are either:
• Stateful: y(t) depends on x(t) and state(t)

• Stateless: y(t) depends only on x(t)

Functional Reactive Programming, Continued – p.4/23



The Big Picture

Some areas where functions on signals are
central:

• Modelling and simulation of physical systems
• Hybrid systems
• Reactive systems
• Embedded systems
• Digital Signal Processing
• . . .
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Related Languages

Lots of languages designed around the idea of
functions on signals, e.g.:

• Modelling Languages:
- Simulink
- Ptolemy II

• Synchronous languages:
- Esterel
- Lustre
- Lucid Synchrone

• . . .
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Describing Composite Systems
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What If System Structure Varies?

• What type of structural changes can be
expressed?

• What about state?
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Support for Structural Changes

Simulink is fairly typical:

enable

f

control

• Blocks can be enabled/disabled dynamically.
• State can be preserved or reset.

Number of structural configurations fixed.
Blocks cannot be added/deleted dynamically!
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Example: Traffic Surveillance
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Tailgating detector

1 2 3y:

s: tr1 tr2 tr3

lgating

Detectors: tgd(1,2) tgd(2,3)

...

...

Video:
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Yampa

• Signal Functions are first class entities.
Intuition: SF α β = Signal α →Signal β

• Signals are not first class entities.
• Switchers “apply” signal functions to signals

at some point in time, creating a running
signal function instance.

• Special combinators to run collections of
signal functions in parallel.
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Static Signal Function Collections

The most basic way to form a SF collection:

parB :: Functor col =>

col (SF a b) -> SF a (col b)

sf1

sf2

sfN

.

.

.

parB [sf1,sf2,...,sfN]

Can’t add or remove SFs from the collection.
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Dynamic Signal Function Collections

Idea:
• Switch over collections of signal functions.
• On event, “freeze” running signal functions

into collection of signal function continuations.
• Modify collection as needed and switch back in.

pSwitchB :: Functor col =>

col (SF a b)

-> SF (a, col b) (Event c)

-> (col (SF a b) -> c -> SF a (col b))

-> SF a (col b)
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Dynamic Signal Function Collections

s1
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Routing (1)

How can flexible communication be achieved?

f

g

h

• Input filtering (+ feedback) is enough.

• But composing each actual signal function
with a filter is awkward and inflexible.
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Routing (2)

Idea:
• Generalized pSwitch responsible for routing;

obviates need for composition.

• Desired routing specified by user-supplied
routing function.

a col sf

1

2
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4

f

col (b,sf)
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pSwitch

pSwitch :: Functor col =>

(forall sf . (a -> col sf -> col (b, sf)))

-> col (SF b c)

-> SF (a, col c) (Event d)

-> (col (SF b c) -> d -> SF a (col c))

-> SF a (col c)
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The Routing Function Type

Universal quantification over the collection
members:

Functor col =>

(forall sf . (a -> col sf -> col (b,sf)))

Collection members thus opaque:
• Ensures only signal functions from argument

can be returned.
• Unfortunately, does not prevent duplication or

discarding of signal functions.
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Tailgating Detector: Excerpts

type CarTracker = SF (Video, UAVStatus)

(Car, Event ())

multiCarTracker ::

SF (Video, UAVStatus, Event CarTracker)

[(Id,Car)]

multiCarTracker =

pSwitch route []

addOrDelCarTrackers

(\cts’ f ->

multiCarTracker (f cts’))

Functional Reactive Programming, Continued – p.20/23



Related Work (1)

• First-Order Systems: no dynamic collections

- Esterel [Berry 92], Lustre [Caspi 87], Lucid
Synchrone [Caspi 00], SimuLink, RT-FRP [Wan,
Taha, Hudak 01]

• Fudgets [Carlsson and Hallgren 93, 98]

- Continuation capture with extractSP

- Dynamic Collections with dynListF

- No synchronous bulk update
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Related Work (2)

• Fran [Elliott and Hudak 97, Elliott 99]

- First class signals.

- But dynamic collections?

• FranTk [Sage 99]

- Dynamic collections, but only via IO monad.
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Obtaining Yampa

These ideas have been implemented in Yampa,
yielding a very expressive language for reactive
programming.

Yampa 0.9 is available from

http://www.haskell.org/yampa
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