Functional Reactive Programming,
Continued

Henrik Nilsson, Antony Courtney, and John Peterson

Yale University
New Haven, CT, USA

Functional Reactive Programming, Continued — p.1/2:



Functional Reactive Programming

FRP and Yampa:

FRP: conceptual framework for programming
with time-varying entities.

Yampa (formerly AFRP): an implementation
of FRP embedded in Haskell.

Functional Reactive Programming, Continued — p.2/2.



Functional Reactive Programming

FRP and Yampa:

FRP: conceptual framework for programming
with time-varying entities.

Yampa (formerly AFRP): an implementation
of FRP embedded in Haskell.

Theme of this talk:

Bringing classical FP ideas like first class
continuations to the world of hybrid systems
and reactive programming to make
structurally dynamic systems possible.

Functional Reactive Programming, Continued — p.2/2.



Functional Reactive Programming

Key concept: functions on signals.

Intuition:

Signal aa = Tinme — «

r .. Signhal T1

y .. Signhal T2

f .. Signal Tl — Signal T2
Additionally: causality requirement.

Functional Reactive Programming, Continued — p.3/2.



State

Alternative view:
Functions on signals can encapsulate state.

f

state(t)

state(t) summarizes input history z(t'), t' € [0, t].
Functions on signals are either:

Stateful: y(¢) depends on x(t) and state(t)
Stateless: y(t) depends only on x (%)

Functional Reactive Programming, Continued — p.4/2.



The Big Picture

Some areas where functions on signals are
central:

Modelling and simulation of physical systems
Hybrid systems

Reactive systems

Embedded systems

Digital Signal Processing



Related Languages

Lots of languages designed around the idea of
functions on signals, e.g.:

Modelling Languages:
Simulink
Ptolemy Il
Synchronous languages:
Esterel
Lustre
Lucid Synchrone

Functional Reactive Programming, Continued — p.6/2.



Describing Composite Systems

> B P

> b

Functional Reactive Programming, Continued — p.7/2.



What If System Structure Varies?

ex

nat type of structural changes can be
pressed?

nat about state?

Functional Reactive Programming, Continued — p.8/2.



Support for Structural Changes

Simulink iIs fairly typical:

control

f

Blocks can be enabled/disabled dynamically.

State can be preserved or reset.

Functional Reactive Programming, Continued — p.9/2.



Support for Structural Changes

Simulink iIs fairly typical:

control

f

Blocks can be enabled/disabled dynamically.

State can be preserved or reset.

Number of structural configurations fixed.
Blocks cannot be added/deleted dynamically!

Functional Reactive Programming, Continued — p.9/2.



Example: Traffic Surveillance

>




Tallgating detector




Yampa

Signal Functions are first class entities.
Intuition: SF o 5 = SI gnal o —Si ghal g

Functional Reactive Programming, Continued — p.12/2:



Yampa

Signal Functions are first class entities.
Intuition: SF o 5 = SI gnal o —Si ghal g

Signals are not first class entities.

Functional Reactive Programming, Continued — p.12/2:



Yampa

Signal Functions are first class entities.
Intuition: SF o 5 = SI gnal o —Si ghal g

Signals are not first class entities.

Switchers “apply” signal functions to signals
at some point in time, creating a running
signal function instance.

Functional Reactive Programming, Continued — p.12/2:



Yampa

Signal Functions are first class entities.
Intuition: SF o 5 = SI gnal o —Si ghal g

Signals are not first class entities.

Switchers “apply” signal functions to signals
at some point in time, creating a running
signal function instance.

Special combinators to run collections of
signal functions in parallel.

Functional Reactive Programming, Continued — p.12/2:



Static Signal Function Collections

The most basic way to form a SF collection:

parB :: Functor col =>
col (SF ab) ->SF a (col b)

sf

£2

Can’t add or remove SFs from the collection.



Dynamic Signal Function Collections

|dea:

Switch over collections of signal functions.

On event, “freeze” running signal functions
Into collection of signal function continuations.

Modify collection as needed and switch back In.

pSwtchB :: Functor col =>
col (SF a b)
-> SF (a, col b) (Event c)
-> (col (SFab) ->c ->SF a (col b))
-> SF a (col Db)



Dynamic Signal Function Collections

|dea:

Switch over collections of signal functions.

On event, “freeze” running signal functions
Into collection of signal function continuations.

Modify collection as needed and switch back In.

pSwtchB :: Functor col =>

col (SF a b) | Initial collection
-> SF (a, col b) (Event c)

-> (col (SFab) ->c ->SF a (col b))
-> SF a (col b)

Functional Reactive Programming, Continued — p.14/2.



Dynamic Signal Function Collections

|dea:

Switch over collections of signal functions.

On event, “freeze” running signal functions
Into collection of signal function continuations.

Modify collection as needed and switch back In.

pSwtchB :: Functor col =>
col (SF a b) Event source

-> |SF (a, col b) (Event c) -
-> (col (SFab) ->c ->SF a (col b))
-> SF a (col b)

Functional Reactive Programming, Continued — p.14/2.



Dynamic Signal Function Collections

|dea:

Switch over collections of signal functions.

On event, “freeze” running signal functions
Into collection of signal function continuations.

Modify collection as needed and switch back In.

pSwtchB :: Functor col =>
col (SF a b) Function yielding SF to switch into

-> SF (a, col b) (Event—e)—

-> [(col (SFab) ->c ->SF a (col b))
-> SF a (col b)

Functional Reactive Programming, Continued — p.14/2.



Dynamic Signal Function Collections



Dynamic Signal Function Collections



Dynamic Signal Function Collections



Dynamic Signal Function Collections



Dynamic Signal Function Collections



Dynamic Signal Function Collections



Routing (1)

How can flexible communication be achieved?

Input filtering (+ feedback) is enough.



Routing (1)

How can flexible communication be achieved?

Input filtering (+ feedback) is enough.

But composing each actual signal function
with a filter 1Is awkward and inflexible.



Routing (2)

|dea:

Generalized pSw t ch responsible for routing;
obviates need for composition.

Functional Reactive Programming, Continued — p.17/2.



Routing (2)

|dea:

Generalized pSw t ch responsible for routing;
obviates need for composition.

Desired routing specified by user-supplied
routing function.




pSwW t ch

pSw tch :: Functor col =>
(forall sf . (a -> col sf -> col (b, sf)))
-> col (SF b c)
-> SF (a, col c) (Event d)
-> (col (SFbc) ->d->SF a (col c))
-> SF a (col c¢)

Functional Reactive Programming, Continued — p.18/2:



The Routing Function Type

Universal quantification over the collection
members:

Functor col =>
(forall sf . (a -> col sf -> col (b,sf)))

Collection members thus opaque:

Ensures only signal functions from argument
can be returned.

Unfortunately, does not prevent duplication or
discarding of signal functions.



Tallgating Detector: Excerpts

type CarTracker = SF (Video, UAVSt at us)
(Car, Event ())

mul t 1 Car Tr acker
SF (Video, UAVStatus, Event CarTracker)
[(1d, Car)]
mul t1 Car Tracker =
pSwW tch route []
addOr Del Car Tr ackers
(\cts” f ->
mul ti1 Car Tracker (f cts’))

Functional Reactive Programming, Continued — p.20/2:



Related Work (1)

First-Order Systems: no dynamic collections
Esterel [Berry 92], Lustre [Caspi 87], Lucid
Synchrone [Caspi 00], SimuLink, RT-FRP [Wan,
Taha, Hudak 01]

Fudgets [Carlsson and Hallgren 93, 98]
Continuation capture with ext r act SP
Dynamic Collections with dynLi st F
No synchronous bulk update

Functional Reactive Programming, Continued — p.21/2:



Related Work (2)

Fran [Elliott and Hudak 97, Elliott 99]
First class signals.
But dynamic collections?

FranTk [Sage 99]
Dynamic collections, but only via | Omonad.

Functional Reactive Programming, Continued — p.22/2.



Obtaining Yampa

These ideas have been implemented in Yampa,
yielding a very expressive language for reactive
programming.

Yampa 0.9 is available from

http://ww. haskel | . or g/ yanpa



	Functional Reactive Programming
	Functional Reactive Programming
	State
	The Big Picture
	Related Languages
	Describing Composite Systems
	What If System Structure Varies?
	Support for Structural Changes
	Example: Traffic Surveillance
	Tailgating detector
	Yampa
	Static Signal Function Collections
	Dynamic Signal Function Collections
	Dynamic Signal Function Collections
	Routing (1)
	Routing (2)
		exttt {pSwitch}
	The Routing Function Type
	Tailgating Detector: Excerpts
	Related Work (1)
	Related Work (2)
	Obtaining Yampa

