
Switched-on Yampa
Programming Modular Synthesizers in Haskell

George Giorgidze and Henrik Nilsson

School of Computer Science

The University of Nottingham, UK

Switched-on Yampa – p.1/14

Modular synthesizers?

Switched-on Yampa – p.2/14

What is Yampa?
• Domain-specific language embedded in

Haskell for programming hybrid (mixed
discrete- and continuous-time) systems.

• Key concepts:
- Signals: time-varying values
- Signal Functions: functions on signals
- Switching between signal functions

• Programming model:

Switched-on Yampa – p.3/14

What is the point?

• Music can be seen as a hybrid phenomenon.
Thus interesting to explore a hybrid approach
to programming music and musical
applications.

• Yampa’s programming model is very
reminiscent of programming modular
synthesizers, so . . .

• Fun application! Useful e.g.in a class-room
context?

Switched-on Yampa – p.4/14



So, what have you done?

Framework for programming modular
synthesizers in Yampa:
• Sound-generating and sound-shaping

modules
• Supporting infrastructure:

- Reading MIDI files (musical scores)
- Reading SoundFont files (instrument

definitions)
- Writing result as audio files (.wav)

• Status: proof-of-concept, but decent performance.

Switched-on Yampa – p.5/14

Example 1: Sine oscillator

oscSine f
cv

oscSine :: Frequency → SF CV Sample

oscSine f0 = proc cv → do

let f = f0 ∗ (2 ∗∗ cv)

phi ← integral−≺ 2 ∗ pi ∗ f

returnA−≺ sin phi

constant 0 ≫ oscSine 440

Switched-on Yampa – p.6/14

Example 2: Vibrato

0
oscSine 5.0 oscSine f*0.05

constant 0

≫ oscSine 5.0

≫ arr (∗0.05)

≫ oscSine 440

Switched-on Yampa – p.7/14

Example 3: 50’s Sci Fi

0
oscSine 3.0

oscSine f

*0.2

-0.25
+1.0

+

sciFi :: SF () Sample

sciFi = proc ()→ do

und ← arr (∗0.2) ≪ oscSine 3.0−≺ 0

swp ← arr (+1.0) ≪ integral −≺ −0.25

audio ← oscSine 440 −≺ und + swp

returnA−≺ audio
Switched-on Yampa – p.8/14



Envelope Generators

A D S R

key on key off t

envGen :: CV → [(Time,CV )]→ (Maybe Int)

→ SF (Event ()) (CV ,Event ())

envBell = envGen 0 [(0.05, 1), (1.5, 0)] Nothing

Switched-on Yampa – p.9/14

Example 4: Bell

0

*

oscSine f*2.0oscSine (f*2.33)

envBell

bell :: Frequency → SF () (Sample,Event)

bell f = proc ()→ do

m ← oscSine (2.33 ∗ f )−≺ 0

audio ← oscSine f −≺ 2.0 ∗m

(ampl , end)← envBell −≺ noEvent

returnA−≺ (audio ∗ ampl , end)

Switched-on Yampa – p.10/14

Example 5: Playing a C-major scale

scale :: SF () (Sample ,Event)

scale = (afterEach [(0.0, 60), (2.0, 62), (2.0, 64),

(2.0, 65), (2.0, 67), (2.0, 69),

(2.0, 71), (2.0, 72)]

≫ constant ()

&&&arr (fmap (bell ◦midiNoteToFreq))

≫ rSwitch (constant 0))

&&&after 16 ()

Switched-on Yampa – p.11/14

Example 6: Polyphonic synthesizer (1)
Sample-playing monophnic synthesizer:
• Read samples (instrument recordings) from

SoundFont file into internal table.
• Oscillator similar to sine oscillator, except sine

func. replaced by table lookup and interpolation.

SoundFont synthesizer structure:

Envelopes

LFO

Modulators

Oscillator Lowpass filter Amplifier

Frequency
Reverb

Chorus
Volume

Fc

Switched-on Yampa – p.12/14



Example 6: Polyphonic synthesizer (2)

Exploit Yampa’s switching capabilities to:
• create and switch in a mono synth instance is

response to each note on event;
• switch out the instance in response to a

corresponding note off event.

Switched-on Yampa – p.13/14

Switched-on Yampa?

Software and paper: www.cs.nott.ac.uk/~ggg
Switched-on Yampa – p.14/14


	Modular synthesizers?
	What is Yampa?
	What is the point?
	So, what have you done?
	Example 1: Sine oscillator
	Example 2: Vibrato
	Example 3: 50's Sci Fi
	Envelope Generators
	Example 4: Bell
	Example 5: Playing a C-major scale
	Example 6: Polyphonic synthesizer (1)
	Example 6: Polyphonic synthesizer (2)
	Switched-on Yampa?

