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The Arpeggigon (1)

• Software realisation of the reacTogon:

• Interactive cellular automaton:

- Configuration

- Performance parameters
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The Arpeggigon (2)

• Implemented in Haskell using:

- The Functional Reactive Programming
(FRP) system Yampa

- Reactive Values and Relations (RVR)

• Based on the Harmonic Table

Code: https://gitlab.com/chupin/arpeggigon
Video:
https://www.youtube.com/watch?v=v0HIkFR1EN4

Before you get too excited: Work in progress!
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Motivation

Exploring FRP and RVR as an (essentially)
declarative way for developing full-fledged
musical applications:

• FRP aligns with declarative and temporal
(discrete and continuous) nature of music

• RVR allows declarative-style interfacing with
external components

The structure of the application should be such
that it in principle is usable in a MIDI-studio
setting.

The Arpeggigon: A Functional Reactive Musical Automaton – p.4/26



The Harmonic Table
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Running a Sample Configuration
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The Rest of this Talk

• Brief introduction to FRP and Yampa

• The Arpeggigon core

• Brief introduction to Reactive Values and
Relations

• The Arpeggigon shell
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Functional Reactive Programming

• Key idea: Don’t program one-time-step-at-a-time,
but describe an evolving entity as a whole.

• Combines conceptual simplicity of synchronous
data flow with the flexibility of higher-order
functional programming:

- First class temporal abstractions

- Dynamic system structure

• Traditionally hybrid: mixed continuous and
discrete time

Good conceptual fit for games, musical applications . . .
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Yampa

• FRP implementation embedded in Haskell

• Key notions:

- Signals: time-varying values

- Signal Functions: pure functions on signals

- Switching: temporal composition of signal
functions

• Programming model:
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Signal Functions (1)

Intuition:

Time ≈ R

Signal a ≈ Time → a
x :: Signal T1
y :: Signal T2
SF a b ≈ Signal a → Signal b
f :: SF T1 T2

Additionally, causality required: output at time t

must be determined by input on interval [0, t].
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Signal Functions (2)

Example:

integral :: VectorSpace a s ⇒ SF a a

y(t) =

t∫

0

x(τ) dτ

Clearly causal: output at time t determined by
input on interval [0, t].
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Composition

In Yampa, systems are described by combining
signal functions (forming new signal functions).

For example, serial composition:

A combinator that captures this idea:

(≫) :: SF a b → SF b c → SF a c

Signal functions are the primary notion; signals a
secondary one, only existing indirectly.
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Arrow Notation

proc x → do

rec

u ← f −≺ (x , v)

y ← g−≺ u

v ← h−≺ (u, x )

returnA−≺ y

Only syntactic sugar:

everything translated into a

combinator expression.
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Events

Yampa models discrete-time signals by lifting the
co-domain of signals using an option-type:

data Event a = NoEvent | Event a

Discrete-time signal = Signal (Eventα).

Some functions and event sources:

tag :: Event a → b → Event b

after :: Time → b → SF a (Event b)

edge :: SF Bool (Event ())
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Aspects of the Arpeggigon

• Interactive

• Layers can be added/removed: dynamic structure

• Notes generated at discrete points in time

• Configuration and performance parameters
can be changed at any time
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Arpeggigon Architecture

User GUI

Common

Control

MIDI

Keyboard
Layers

MIDI

Translator

MIDI

Synthesizer
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Cellular Automaton

State transition function for the cellular automaton:

advanceHeads :: Board → BeatNo → RelPitch → Strength

→ [PlayHead ]→ ([PlayHead ], [Note ])

Lifted into a signal function primarily using accumBy :

accumBy :: (b → a → b)→ b → SF (Event a) (Event b)

automaton :: [PlayHead ]

→ SF (Board ,DynamicLayerCtrl ,Event BeatNo)

(Event [Note ], [PlayHead ])
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Automated Smooth Tempo Change

Smooth transition between two preset tempos:
smoothTempo :: Tempo → SF (Bool ,Tempo,Tempo,Rate) Tempo

smoothTempo tpo0 = proc (sel1 , tpo1 , tpo2 , rate)→ do

rec

let desTpo = if sel1 then tpo1 else tpo2

diff = desTpo − curTpo

rate ′ = if diff > 0.1 then rate

else if diff <−0.1 then − rate

else 0

curTpo ← arr (+tpo0 ) ≪ integral−≺ rate ′

returnA−≺ curTpo
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Reactive Values and Relations (1)

• The Arpeggigon interacts with the outside
world using two imperative toolkits:

- GUI: GTK+

- MIDI I/O: Jack

• Very imperative APIs: Hard or impossible to
provide FRP wrappers.

• Instead, we use Ivan Perez’s Reactive Values
and Relations (RVR) to wrap the FRP core in
a “shell” that acts as a bridge between the
outside world and the pure FRP core.
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Reactive Values and Relations (2)

• A Reactive Value (RV) is a typed mutable
value with access rights and subscribable
change notification.

• RVs provide a uniform interface to GUI
widgets, files, network devices, . . .

• A Reactive Relation (RR) is a relation
between RVs that is maintained automatically.

• RVR programming takes place in the IO
monad, allowing arbitrary interfacing with
imperative APIs.

• Yet, the high-level view is quite declarative/FRP-like.
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System Tempo Slider

globalSettings :: IO (VBox ,ReactiveFieldReadWrite IO Int)

globalSettings = do

globalSettingsBox ← vBoxNew False 10

tempoAdj ← adjustmentNew 120 40 200 1 1 1

tempoLabel ← labelNew (Just "Tempo")

boxPackStart globalSettingsBox tempoLabel PackNatural 0

tempoScale ← hScaleNew tempoAdj

boxPackStart globalSettingsBox tempoScale PackNatural 0

scaleSetDigits tempoScale 0

let tempoRV =

bijection (floor , fromIntegral)

‘liftRW ‘ scaleValueReactive tempoScale

return (globalSettingsBox , tempoRV )
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Pause

• Pausing is achieved by setting the tempo to 0
when the pause button is engaged.

• Easy to implement by combining two RVs:

tempoRV ′ =

liftR2 (λtempo paused → if paused then 0 else tempo)

tempoRV

pauseButtonRV

• This is an equation defining tempoRV ′ once
and for all.
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Connecting the Core to the Shell

The following function makes a signal function
available as RVs:

yampaReactiveDual ::

a

→ SF a b

→ IO (ReactiveFieldWrite IO a,ReactiveFieldRead IO b)

This creates two reactive values: one for the input
and one for the output of the signal function.
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Summary

• Yampa (FRP) good fit for writing interactive
musical applications in a declarative way.

• Reactive Values and Relations proved very
helpful for bridging the gap between the
outside world and the FRP core in a fairly
declarative way.

• Performance in terms of overall execution
time and space perfectly fine.

• Timing is not yet as tight as it should be due
to naive MIDI generation.
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Reading (1)

• Henrik Nilsson and Guerric Chupin. Funky
Grooves: Declarative Programming of
Full-Fledged Musical Applications. In 9th
International Symposium on Practical
Aspects of Declarative Languages (PADL
2017), pp. 163–172, January 2017.

• Ivan Perez and Henrik Nilsson. Bridging the
GUI Gap with Reactive Values and Relations.
In Proceedings of the 8th ACM SIGPLAN
Symposium on Haskell (Haskell’15), pp.
47–58, September 2015.
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Reading (2)

• Henrik Nilsson, Antony Courtney, and John
Peterson. Functional reactive programming,
continued. In Proceedings of the 2002
Haskell Workshop, pp. 51–64, October 2002.

• Antony Courtney and Henrik Nilsson and
John Peterson. The Yampa Arcade. In
Proceedings of the 2003 Haskell Workshop,
pp. 7–18, August 2003.
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