
The Arpeggigon: A Functional
Reactive Musical Automaton

Haskell in Leipzig 2017, 26–27 Oct., Leipzig

Henrik Nilsson

Joint work with Guerric Chupin and Jin Zhan

Functional Programming Laboratory, School of Computer Science

University of Nottingham, UK

The Arpeggigon: A Functional Reactive Musical Automaton – p.1/26

The Arpeggigon (1)

• Software realisation of the reacTogon:

• Interactive cellular automaton:

- Configuration

- Performance parameters

The Arpeggigon: A Functional Reactive Musical Automaton – p.2/26

The Arpeggigon (2)

• Implemented in Haskell using:

- The Functional Reactive Programming
(FRP) system Yampa

- Reactive Values and Relations (RVR)

• Based on the Harmonic Table

Code: https://gitlab.com/chupin/arpeggigon
Video:
https://www.youtube.com/watch?v=v0HIkFR1EN4

Before you get too excited: Work in progress!

The Arpeggigon: A Functional Reactive Musical Automaton – p.3/26

Motivation

Exploring FRP and RVR as an (essentially)
declarative way for developing full-fledged
musical applications:

• FRP aligns with declarative and temporal
(discrete and continuous) nature of music

• RVR allows declarative-style interfacing with
external components

The structure of the application should be such
that it in principle is usable in a MIDI-studio
setting.

The Arpeggigon: A Functional Reactive Musical Automaton – p.4/26



The Harmonic Table

The Arpeggigon: A Functional Reactive Musical Automaton – p.5/26

Running a Sample Configuration

The Arpeggigon: A Functional Reactive Musical Automaton – p.6/26

The Rest of this Talk

• Brief introduction to FRP and Yampa

• The Arpeggigon core

• Brief introduction to Reactive Values and
Relations

• The Arpeggigon shell

The Arpeggigon: A Functional Reactive Musical Automaton – p.7/26

Functional Reactive Programming

• Key idea: Don’t program one-time-step-at-a-time,
but describe an evolving entity as a whole.

• Combines conceptual simplicity of synchronous
data flow with the flexibility of higher-order
functional programming:

- First class temporal abstractions

- Dynamic system structure

• Traditionally hybrid: mixed continuous and
discrete time

Good conceptual fit for games, musical applications . . .

The Arpeggigon: A Functional Reactive Musical Automaton – p.8/26



Yampa

• FRP implementation embedded in Haskell

• Key notions:

- Signals: time-varying values

- Signal Functions: pure functions on signals

- Switching: temporal composition of signal
functions

• Programming model:

The Arpeggigon: A Functional Reactive Musical Automaton – p.9/26

Signal Functions (1)

Intuition:

Time ≈ R

Signal a ≈ Time → a
x :: Signal T1
y :: Signal T2
SF a b ≈ Signal a → Signal b
f :: SF T1 T2

Additionally, causality required: output at time t

must be determined by input on interval [0, t].

The Arpeggigon: A Functional Reactive Musical Automaton – p.10/26

Signal Functions (2)

Example:

integral :: VectorSpace a s ⇒ SF a a

y(t) =

t∫

0

x(τ) dτ

Clearly causal: output at time t determined by
input on interval [0, t].

The Arpeggigon: A Functional Reactive Musical Automaton – p.11/26

Composition

In Yampa, systems are described by combining
signal functions (forming new signal functions).

For example, serial composition:

A combinator that captures this idea:

(≫) :: SF a b → SF b c → SF a c

Signal functions are the primary notion; signals a
secondary one, only existing indirectly.

The Arpeggigon: A Functional Reactive Musical Automaton – p.12/26



Arrow Notation

proc x → do

rec

u ← f −≺ (x , v)

y ← g−≺ u

v ← h−≺ (u, x )

returnA−≺ y

Only syntactic sugar:

everything translated into a

combinator expression.

The Arpeggigon: A Functional Reactive Musical Automaton – p.13/26

Events

Yampa models discrete-time signals by lifting the
co-domain of signals using an option-type:

data Event a = NoEvent | Event a

Discrete-time signal = Signal (Eventα).

Some functions and event sources:

tag :: Event a → b → Event b

after :: Time → b → SF a (Event b)

edge :: SF Bool (Event ())

The Arpeggigon: A Functional Reactive Musical Automaton – p.14/26

Aspects of the Arpeggigon

• Interactive

• Layers can be added/removed: dynamic structure

• Notes generated at discrete points in time

• Configuration and performance parameters
can be changed at any time

The Arpeggigon: A Functional Reactive Musical Automaton – p.15/26

Arpeggigon Architecture

User GUI

Common

Control

MIDI

Keyboard
Layers

MIDI

Translator

MIDI

Synthesizer

The Arpeggigon: A Functional Reactive Musical Automaton – p.16/26



Cellular Automaton

State transition function for the cellular automaton:

advanceHeads :: Board → BeatNo → RelPitch → Strength

→ [PlayHead ]→ ([PlayHead ], [Note ])

Lifted into a signal function primarily using accumBy :

accumBy :: (b → a → b)→ b → SF (Event a) (Event b)

automaton :: [PlayHead ]

→ SF (Board ,DynamicLayerCtrl ,Event BeatNo)

(Event [Note ], [PlayHead ])

The Arpeggigon: A Functional Reactive Musical Automaton – p.17/26

Automated Smooth Tempo Change

Smooth transition between two preset tempos:
smoothTempo :: Tempo → SF (Bool ,Tempo,Tempo,Rate) Tempo

smoothTempo tpo0 = proc (sel1 , tpo1 , tpo2 , rate)→ do

rec

let desTpo = if sel1 then tpo1 else tpo2

diff = desTpo − curTpo

rate ′ = if diff > 0.1 then rate

else if diff <−0.1 then − rate

else 0

curTpo ← arr (+tpo0 ) ≪ integral−≺ rate ′

returnA−≺ curTpo
The Arpeggigon: A Functional Reactive Musical Automaton – p.18/26

Reactive Values and Relations (1)

• The Arpeggigon interacts with the outside
world using two imperative toolkits:

- GUI: GTK+

- MIDI I/O: Jack

• Very imperative APIs: Hard or impossible to
provide FRP wrappers.

• Instead, we use Ivan Perez’s Reactive Values
and Relations (RVR) to wrap the FRP core in
a “shell” that acts as a bridge between the
outside world and the pure FRP core.

The Arpeggigon: A Functional Reactive Musical Automaton – p.19/26

Reactive Values and Relations (2)

• A Reactive Value (RV) is a typed mutable
value with access rights and subscribable
change notification.

• RVs provide a uniform interface to GUI
widgets, files, network devices, . . .

• A Reactive Relation (RR) is a relation
between RVs that is maintained automatically.

• RVR programming takes place in the IO
monad, allowing arbitrary interfacing with
imperative APIs.

• Yet, the high-level view is quite declarative/FRP-like.
The Arpeggigon: A Functional Reactive Musical Automaton – p.20/26



System Tempo Slider

globalSettings :: IO (VBox ,ReactiveFieldReadWrite IO Int)

globalSettings = do

globalSettingsBox ← vBoxNew False 10

tempoAdj ← adjustmentNew 120 40 200 1 1 1

tempoLabel ← labelNew (Just "Tempo")

boxPackStart globalSettingsBox tempoLabel PackNatural 0

tempoScale ← hScaleNew tempoAdj

boxPackStart globalSettingsBox tempoScale PackNatural 0

scaleSetDigits tempoScale 0

let tempoRV =

bijection (floor , fromIntegral)

‘liftRW ‘ scaleValueReactive tempoScale

return (globalSettingsBox , tempoRV )
The Arpeggigon: A Functional Reactive Musical Automaton – p.21/26

Pause

• Pausing is achieved by setting the tempo to 0
when the pause button is engaged.

• Easy to implement by combining two RVs:

tempoRV ′ =

liftR2 (λtempo paused → if paused then 0 else tempo)

tempoRV

pauseButtonRV

• This is an equation defining tempoRV ′ once
and for all.

The Arpeggigon: A Functional Reactive Musical Automaton – p.22/26

Connecting the Core to the Shell

The following function makes a signal function
available as RVs:

yampaReactiveDual ::

a

→ SF a b

→ IO (ReactiveFieldWrite IO a,ReactiveFieldRead IO b)

This creates two reactive values: one for the input
and one for the output of the signal function.

The Arpeggigon: A Functional Reactive Musical Automaton – p.23/26

Summary

• Yampa (FRP) good fit for writing interactive
musical applications in a declarative way.

• Reactive Values and Relations proved very
helpful for bridging the gap between the
outside world and the FRP core in a fairly
declarative way.

• Performance in terms of overall execution
time and space perfectly fine.

• Timing is not yet as tight as it should be due
to naive MIDI generation.

The Arpeggigon: A Functional Reactive Musical Automaton – p.24/26



Reading (1)

• Henrik Nilsson and Guerric Chupin. Funky
Grooves: Declarative Programming of
Full-Fledged Musical Applications. In 9th
International Symposium on Practical
Aspects of Declarative Languages (PADL
2017), pp. 163–172, January 2017.

• Ivan Perez and Henrik Nilsson. Bridging the
GUI Gap with Reactive Values and Relations.
In Proceedings of the 8th ACM SIGPLAN
Symposium on Haskell (Haskell’15), pp.
47–58, September 2015.

The Arpeggigon: A Functional Reactive Musical Automaton – p.25/26

Reading (2)

• Henrik Nilsson, Antony Courtney, and John
Peterson. Functional reactive programming,
continued. In Proceedings of the 2002
Haskell Workshop, pp. 51–64, October 2002.

• Antony Courtney and Henrik Nilsson and
John Peterson. The Yampa Arcade. In
Proceedings of the 2003 Haskell Workshop,
pp. 7–18, August 2003.

The Arpeggigon: A Functional Reactive Musical Automaton – p.26/26


	The Arpeggigon (1)
	The Arpeggigon (2)
	Motivation
	The Harmonic Table
	Running a Sample Configuration
	The Rest of this Talk
	Functional Reactive Programming
	Yampa
	Signal Functions (1)
	Signal Functions (2)
	Composition
	Arrow Notation
	Events
	Aspects of the Arpeggigon
	Arpeggigon Architecture
	Cellular Automaton
	Automated Smooth Tempo Change
	Reactive Values and Relations (1)
	Reactive Values and Relations (2)
	System Tempo Slider
	Pause
	Connecting the Core to the Shell
	Summary
	Reading (1)
	Reading (2)

