
The Arpeggigon: A Functional
Reactive Musical Automaton
London Haskell Meetup, 2017-06-28

Henrik Nilsson

Functional Programming Laboratory, School of Computer Science

University of Nottingham, UK

The Arpeggigon: A Functional Reactive Musical Automaton – p.1/41

The Arpeggigon (1)

• Software realisation of the reacTogon:

• Interactive cellular automaton:

- Configuration

- Performance parameters

The Arpeggigon: A Functional Reactive Musical Automaton – p.2/41

The Arpeggigon (2)

• Implemented in Haskell using:

- The Functional Reactive Programming
(FRP) system Yampa

- Reactive Values and Relations

• Based on the Harmonic Table

Code: https://gitlab.com/chupin/arpeggigon
Video:
https://www.youtube.com/watch?v=v0HIkFR1EN4

The Arpeggigon: A Functional Reactive Musical Automaton – p.3/41

The Harmonic Table

The Arpeggigon: A Functional Reactive Musical Automaton – p.4/41



Running a Sample Configuration

The Arpeggigon: A Functional Reactive Musical Automaton – p.5/41

This Talk

• Demonstration

• Brief introduction to FRP and Yampa

• Time in music

• The Arpeggigon core

• Brief introduction to Reactive Values and
Relations

• The Arpeggigon shell

The Arpeggigon: A Functional Reactive Musical Automaton – p.6/41

Functional Reactive Programming (1)

• Key idea: Don’t program one-time-step-at-a-time,
but describe an evolving entity as whole.

y = y0 +

∫
v dt

v = v0 +

∫
−9.81

We are used to describing behaviours in
totallity over time in mathematics. Why not
program in the same way?

The Arpeggigon: A Functional Reactive Musical Automaton – p.7/41

Functional Reactive Programming (2)

• FRP originated in Conal Elliott and Paul Hudak’s
work on Functional Reactive Animation (Fran).
Highly cited 1997 ICFP paper; ICFP award for
most influential paper in 2007.

• FRP has evolved in a number of directions
and into different concrete implementations.

• We will use Yampa: an FRP system
embedded in Haskell.

The Arpeggigon: A Functional Reactive Musical Automaton – p.8/41



Key FRP Features

Combines conceptual simplicity of the synchronous
data flow approach with the flexibility and abstraction
power of higher-order functional programming:

• Synchronous

• First class temporal abstractions

• Hybrid: mixed continuous and discrete time

• Dynamic system structure

Good conceptual fit for many applications,
including games and, as we will see here,
interactive musical applications.

The Arpeggigon: A Functional Reactive Musical Automaton – p.9/41

Yampa

• FRP implementation embedded in Haskell

• Key notions:

- Signals: time-varying values

- Signal Functions: pure functions on signals

- Switching: temporal composition of signal
functions

• Programming model:

The Arpeggigon: A Functional Reactive Musical Automaton – p.10/41

Signal Functions

Intuition:

Time ≈ R

Signal a ≈ Time → a
x :: Signal T1
y :: Signal T2
SF a b ≈ Signal a → Signal b

f :: SF T1 T2

Additionally, causality required: output at time t

must be determined by input on interval [0, t].

The Arpeggigon: A Functional Reactive Musical Automaton – p.11/41

Some Basic Signal Functions

identity :: SF a a

constant :: b → SF a b

iPre :: a → SF a a

integral :: VectorSpace a s ⇒ SF a a

y(t) =

t∫

0

x(τ) dτ

The Arpeggigon: A Functional Reactive Musical Automaton – p.12/41



Composition

In Yampa, systems are described by combining
signal functions (forming new signal functions).

For example, serial composition:

A combinator that captures this idea:

(≫) :: SF a b → SF b c → SF a c

Signal functions are the primary notion; signals a
secondary one, only existing indirectly.

The Arpeggigon: A Functional Reactive Musical Automaton – p.13/41

The Arrow Combinators

arr f f ≫ g

first f loop f

arr :: (a → b)→ SF a b

(≫) :: SF a b → SF b c → SF a c

first :: SF a b → SF (a, c) (b, c)

loop :: SF (a, c) (b, c)→ SF a b
The Arpeggigon: A Functional Reactive Musical Automaton – p.14/41

Paterson’s Arrow Notation

proc x → do

rec

u ← f −≺ (x , v)

y ← g−≺ u

v ← h−≺ (u, x )

returnA−≺ y

Only syntactic sugar:

everything translated into a

combinator expression.

The Arpeggigon: A Functional Reactive Musical Automaton – p.15/41

Example 1: Sine oscillator

oscSine f
cv

oscSine :: Frequency → SF CV Sample

oscSine f0 = proc cv → do

let f = f0 ∗ (2 ∗∗ cv)

phi ← integral−≺ 2 ∗ pi ∗ f

returnA−≺ sin phi

constant 0 ≫ oscSine 440

The Arpeggigon: A Functional Reactive Musical Automaton – p.16/41



Example 2: Vibrato

0
oscSine 5.0 oscSine f*0.05

constant 0

≫ oscSine 5.0

≫ arr (∗0.05)

≫ oscSine 440

The Arpeggigon: A Functional Reactive Musical Automaton – p.17/41

Example 3: 50’s Sci Fi

0
oscSine 3.0

oscSine f

*0.2

-0.25
+1.0

+

sciFi :: SF () Sample

sciFi = proc ()→ do

und ← arr (∗0.2) ≪ oscSine 3.0−≺ 0

swp ← arr (+1.0) ≪ integral −≺ −0.25

audio ← oscSine 440 −≺ und + swp

returnA−≺ audio
The Arpeggigon: A Functional Reactive Musical Automaton – p.18/41

Events

Yampa models discrete-time signals by lifting the
co-domain of signals using an option-type:

data Event a = NoEvent | Event a

Discrete-time signal = Signal (Eventα).

Some functions and event sources:

tag :: Event a → b → Event b

after :: Time → b → SF a (Event b)

edge :: SF Bool (Event ())

The Arpeggigon: A Functional Reactive Musical Automaton – p.19/41

Switching

Q: How and when do signal functions “start”?

A: • Switchers apply a signal functions to its
input signal at some point in time.

• This is temporal composition of signal
functions.

Switchers thus allow systems with varying
structure to be described.

Generalised switches allow composition of
collections of signal functions. Can be used to
model e.g. varying number of objects in a game.

The Arpeggigon: A Functional Reactive Musical Automaton – p.20/41



The Basic Switch

Idea:

• Allows one signal function to be replaced by
another.

• Switching takes place on the first occurrence
of the switching event source.

switch::
SF a (b,Event c)
→ (c → SF a b)
→ SF a b

The Arpeggigon: A Functional Reactive Musical Automaton – p.21/41

Time in Music

Time inherent to music. Both continuous-time
and discrete-time aspects:

• Discrete or striated time:

- Time signatures

- Notes in a musical score

• Continuous or smooth time:

- Crescendo

- Ritardando

- Portamento

- Filter sweeps (cf. 50’s SciFi)

The Arpeggigon: A Functional Reactive Musical Automaton – p.22/41

Aspects of the Arpeggigon (1)

• Interactive

• Layers can be added/removed: dynamic structure

• Notes generated at discrete points in time

• Notes played slightly shorter than nominal length

• Configuration and performance parameters
can be changed at any time

The Arpeggigon: A Functional Reactive Musical Automaton – p.23/41

Aspects of the Arpeggigon (2)

Potential further enhancements, e.g.:

• Swing: alternately lengthening and shortening
pulse divisions

• Staccato and legato playing

• Sliding notes

• Automated, smooth, performance parameter
changes

Natural fit for an interactive framework supporting
both discrete and continuous time. Like Yampa.

The Arpeggigon: A Functional Reactive Musical Automaton – p.24/41



Arpeggigon Architecture

User GUI

Common

Control

MIDI

Keyboard
Layers

MIDI

Translator

MIDI

Synthesizer

The Arpeggigon: A Functional Reactive Musical Automaton – p.25/41

Some Basic Types

data PlayHead =

PlayHead {

phPos :: Pos ,

phBTM :: Int ,

phDir :: Dir

}

data Note = Note {

notePch :: Pitch,

noteStr :: Strength,

noteDur :: Duration,

noteOrn ::Ornaments

}

The Arpeggigon: A Functional Reactive Musical Automaton – p.26/41

Cellular Automaton

State transition function for the cellular automaton:

advanceHeads :: Board → BeatNo → RelPitch → Strength

→ [PlayHead ]→ ([PlayHead ], [Note ])

Lifted into a signal function primarily using accumBy :

accumBy :: (b → a → b)→ b → SF (Event a) (Event b)

automaton :: [PlayHead ]

→ SF (Board ,DynamicLayerCtrl ,Event BeatNo)

(Event [Note ], [PlayHead ])

The Arpeggigon: A Functional Reactive Musical Automaton – p.27/41

Layers (1)

• A layer has two states: running and stopped

• Swithing allows for:

- Moving between states

- Adding and removing layers dynamically

The Arpeggigon: A Functional Reactive Musical Automaton – p.28/41



Layers (2)

A running layer is an instance of automaton along
with a meteronome:

layerRunning :: StaticLayerCtrl → [PlayHead ]

→ SF (Event AbsBeat ,Board ,LayerCtrl ,Event RunStatus)

(Event [Note ], [PlayHead ])

layerRunning islc iphs =

switch (lrAux islc iphs) $ λ(rs ′, islc ′, iphs ′)→

case rs ′ of

Stopped → layerStopped

Running → layerRunning islc ′ iphs ′

The Arpeggigon: A Functional Reactive Musical Automaton – p.29/41

Layers (3)

lrAux islc iphs = proc (clk , b, (slc, dlc, ), ers)→ do

lbc ← layerMetronome islc−≺ (clk , dlc)

enphs ← automaton iphs−≺ (b, dlc, lbc)

e ← notYet−≺ fmap (λrs → (rs , slc, startHeads b)) ers

returnA−≺ (enphs, e)

The static part of LayerControl are parameters
can’t usefully be changed while the automaton is
running. slc is sampled at the point of switching,
and becomes the new islc. The board b is sampled
as well and used to compute the new iphs .

The Arpeggigon: A Functional Reactive Musical Automaton – p.30/41

Automatic Restarting of a Layer

A useful feature is to allow optional automatic
restart of a layer every n bars.

An additional static layer parameter
restart ::Maybe int along with the following
modificatio to lrAux achieves this:

r ← case restart islc of

Nothing → never

Just n → countTo (n ∗ barLength + 1)

−≺ lbc

let ers ′ = ers ‘lMerge‘ (r ‘tag ‘ Running)

e ← notYet−≺ fmap (λrs → (rs , slc, startHeads b)) ers ′

The Arpeggigon: A Functional Reactive Musical Automaton – p.31/41

Automated Smooth Tempo Change

Smooth transition between two preset tempos:
smoothTempo :: Tempo → SF (Bool ,Tempo,Tempo,Rate) Tempo

smoothTempo tpo0 = proc (sel1 , tpo1 , tpo2 , rate)→ do

rec

let desTpo = if sel1 then tpo1 else tpo2

diff = desTpo − curTpo

rate ′ = if diff > 0.1 then rate

else if diff <−0.1 then − rate

else 0

curTpo ← arr (+tpo0 ) ≪ integral−≺ rate ′

returnA−≺ curTpo
The Arpeggigon: A Functional Reactive Musical Automaton – p.32/41



Reactive Values and Relations (1)

• The Arpeggigon interacts with the outside
world using two imperative toolkits:

- GUI: GTK+

- MIDI I/O: Jack

• Very imperative APIs: Hard or impossible to
provide FRP wrappers.

• Instead, we use Reactive Values and
Relations (RVR) to wrap the FRP core in a
"shell" that acts as a bridge between the
outside world and the pure FRP core.

The Arpeggigon: A Functional Reactive Musical Automaton – p.33/41

Reactive Values and Relations (2)

• A Reactive Value (RV) is a typed mutable
value with access rights and subscribable
change notification.

• RVs provide a uniform interface to GUI
widgets, files, network devices, . . .

For example, the text field of a text input
widget becomes an RV.

• Reactive Relations (RR) allow RVs to
automatically be kept in synch by specifying
the relations that should hold between them.

The Arpeggigon: A Functional Reactive Musical Automaton – p.34/41

Reactive Values and Relations (3)

• While the RVR programming takes place in
the IO monad, the code reads fairly
declaratively as it specifies an interconnected
network of RVs.

• Of course, RVR bindings need to be written
for libraries that we wish to use unless
available. Inevitably imperative code.

• RVR bindings for GTK+ are available; Jack
bindings were written from scratch.

The Arpeggigon: A Functional Reactive Musical Automaton – p.35/41

System Tempo Slider

globalSettings :: IO (VBox ,ReactiveFieldReadWrite IO Int)

globalSettings = do

globalSettingsBox ← vBoxNew False 10

tempoAdj ← adjustmentNew 120 40 200 1 1 1

tempoLabel ← labelNew (Just "Tempo")

boxPackStart globalSettingsBox tempoLabel PackNatural 0

tempoScale ← hScaleNew tempoAdj

boxPackStart globalSettingsBox tempoScale PackNatural 0

scaleSetDigits tempoScale 0

let tempoRV =

bijection (floor , fromIntegral)

‘liftRW ‘ scaleValueReactive tempoScale

return (globalSettingsBox , tempoRV )
The Arpeggigon: A Functional Reactive Musical Automaton – p.36/41



Pause

• Pausing is achieved by setting the tempo to 0
when the pause button is engaged.

• Easy to implement by combining two RVs:

tempoRV ′ =

liftR2 (λtempo paused → if paused then 0 else tempo)

tempoRV

pauseButtonRV

• This is an equation defining tempoRV ′ once
and for all.

The Arpeggigon: A Functional Reactive Musical Automaton – p.37/41

Connecting the Core to the Shell

The following function makes a signal function
available as RVs:

yampaReactiveDual ::

a

→ SF a b

→ IO (ReactiveFieldWrite IO a,ReactiveFieldRead IO b)

This creates two reactive values: one for the input
and one for the output of the signal function. After
writing a value to the input, the corresponding
output at that point in time can be read.

The Arpeggigon: A Functional Reactive Musical Automaton – p.38/41

Summary

• Yampa (FRP) good fit for writing interactive
musical applications in a declarative way.

• Reactive Values and Relations proved very
helpful for bridging the gap between the
outside world and the FRP core in a fairly
declarative way.

• Performance in terms of overall execution
time and space perfectly fine.

• Timing is not as tight as it should be due to
naive MIDI generation.

The Arpeggigon: A Functional Reactive Musical Automaton – p.39/41

Reading (1)

• Henrik Nilsson and Guerric Chupin. Funky
Grooves: Declarative Programming of
Full-Fledged Musical Applications. In 9th
International Symposium on Practical
Aspects of Declarative Languages (PADL
2017), pp. 163–172, January 2017.

• Ivan Perez and Henrik Nilsson. Bridging the
GUI Gap with Reactive Values and Relations.
In Proceedings of the 8th ACM SIGPLAN
Symposium on Haskell (Haskell’15), pp.
47–58, September 2015.

The Arpeggigon: A Functional Reactive Musical Automaton – p.40/41



Reading (2)

• Henrik Nilsson, Antony Courtney, and John
Peterson. Functional reactive programming,
continued. In Proceedings of the 2002
Haskell Workshop, pp. 51–64, October 2002.

• Antony Courtney and Henrik Nilsson and
John Peterson. The Yampa Arcade. In
Proceedings of the 2003 Haskell Workshop,
pp. 7–18, August 2003.

The Arpeggigon: A Functional Reactive Musical Automaton – p.41/41


	The Arpeggigon (1)
	The Arpeggigon (2)
	The Harmonic Table
	Running a Sample Configuration
	This Talk
	Functional Reactive Programming (1)
	Functional Reactive Programming (2)
	Key FRP Features
	Yampa
	Signal Functions
	Some Basic Signal Functions
	Composition
	The Arrow Combinators
	Paterson's Arrow Notation
	Example 1: Sine oscillator
	Example 2: Vibrato
	Example 3: 50's Sci Fi
	Events
	Switching
	The Basic Switch
	Time in Music
	Aspects of the Arpeggigon (1)
	Aspects of the Arpeggigon (2)
	Arpeggigon Architecture
	Some Basic Types
	Cellular Automaton
	Layers (1)
	Layers (2)
	Layers (3)
	Automatic Restarting of a Layer
	Automated Smooth Tempo Change
	Reactive Values and Relations (1)
	Reactive Values and Relations (2)
	Reactive Values and Relations (3)
	System Tempo Slider
	Pause
	Connecting the Core to the Shell
	Summary
	Reading (1)
	Reading (2)

