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Big picture

Functional Reactive Programming (FRP) as a
starting point for a language for modeling and
simulation of physical systems.

Functional languages can offer quite a lot, e.g:
• Powerful abstraction facilities
• Higher order features
• Advanced type systems

FRP itself is a flexible modeling language in some

ways.
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Big picture (2)

What kind of modeling?
• Differential equations.
• Equations solved numerically (integration).
• Often hybrid continuous and discrete systems

and/or models: solutions may have “jumps”.

Typical systems:
• electrical circuits
• gear boxes
• chemical plants
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Yampa (1)

Our current FRP implementation is called
Yampa.

Key concept 1: first class signal functions.

x y
f

Intuition:

Signal α ≈ Time → α

SF α β ≈ Signal α → Signal β

f :: SF T1 T2

Signals are not first class!
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Yampa (2)

Key concept 2: Switch constructs for describing
systems with varying structure:

Switching introduces discontinuities!
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Simple system: a bouncing ball
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A hybrid model of the bouncing ball

Yampa model of bouncing ball (arrow notation):
bouncing0 :: Double -> SF () (Double, Double)

bouncing0 init_pos = bouncing init_pos 0.0

where

bouncing init_pos init_vel =

switch (bouncing’ init_pos init_vel) $ \(pos, vel) ->

bouncing pos (-vel)

bouncing’ init_pos init_vel = proc () -> do

vel <- (init_vel +) ˆ<< integral -< -9.81

pos <- (init_pos +) ˆ<< integral -< vel

hit <- edge -< pos <= 0

returnA -< ((pos, vel), hit ‘tag‘ (pos, vel))
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Problems

Bouncing ball example exemplifies two problems
we would like to address to make a better
modeling language:

• Unsatisfying model: a physical force modeled
by switching and recursion. Not as
declarative as we would like.

• It is desirable to be able to compute
derivatives of signals. But how in a hybrid
setting where signals may be discontinuous?
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This talk (1)

Possible solutions:
• Automatic differentiation to compute

derivatives of signals.
• Dirac Impulses to

- allow modeling of e.g. impulsive forces;
- allow differentiation of discontinuous signals.

Is it possible to combine Automatic Differentiation
with Dirac Impulses into a unified framework?
Answer: Yes, at least to some extent. This talk
shows how in the context of Yampa.
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This talk (2)

Outline
• Automatic Differentiation
• Adding Automatic Differentiation to Yampa
• Dirac Impulses and Generalized Signals
• Differentiation of Generalized Signals

Functional Automatic Differentiation with Dirac Impulses – p.10/31



Yampa?

One interpretation:
• The work began at YAle
• it ended with Arrows
• and there was Much Programming in

between.
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Yampa?

Or maybe it means

Y et
Another
Mostly
Pointless
Acronym
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Yampa?

Yampa is a river . . .
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Yampa?

. . . with long calmly flowing sections . . .
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Yampa?

. . . and abrupt whitewater transitions in between.

A good metaphor for hybrid systems!
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Automatic Differentiation (1)

Automatic (or Computational) Differentiation is
• a purely algebraic method
• exact (within the limits of FP arithmetic)
• capable of finding the derivative of arbitrary

computations.

Adding automatic differentiation is easy thanks to
prior work by Jerzy Karczmarczuk, . . .
. . . as long as signals are differentiable in the
usual sense.
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Automatic Differentiation (2)

Idea: Augment every computation so that the
derivative(s) w.r.t. some variable is computed
using the chain rule along with the main result:

z1 = x+y
z2 = x*z1

⇒

z1 = x+y
z1’ = x’+y’
z2 = x*z1
z2’ = x’*z1 + x*z1’

How? Jerzy Karczmarczuk’s method:
• Use Haskell’s overloading
• Lazy evaluation to compute all derivatives
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Automatic Differentiation (3)

data C = C Double C

zeroC = C 0.0 zeroC

constC a = C a zeroC

dVarC a = C a (constC 1.0)

valC (C a _) = a

derC (C _ x’) = x’

instance Num C where

(C a x’) + (C b y’) = C (a+b) (x’+y’)

x@(C a x’) * y@(C b y’) =

C (a*b) (x’*y + x*y’)
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Automatic Differentiation: Example

Consider y = t2 + k and wanting to compute y, ẏ,
and ÿ for t = 2 and k = 1:

k = constC 1.0
t = dVarC 2.0
y = t * t + k

Now we have:

valC y = 5

valC (derC y) = 4

valC (derC (derC y)) = 2
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Implementation of Yampa

Basic Yampa implementation is like other
simulation systems or synchronous data flow
languages:

• signals are represented by “streams” of
instantaneous signal values;

• signal functions are (stateful) processors of
such streams.

data SF a b = SF (DTime -> a -> (SF a b, b))

Functional Automatic Differentiation with Dirac Impulses – p.16/31



Automatic Differentiation in Yampa

A main source of continuous time varying signals
in Yampa is the signal function
integral :: SF Double Double.

All that is needed is to define a version using C:
integralC :: SF C C.

Most interesting: computation of the output value.
a and a_prev are current and previous input:
C igrl’ a

where
igrl’ = igrl + dt*valC a_prev
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The Dirac delta function (1)

What is
• the derivative of the unit step function?
• the force F (t) associated with an

“instantaneous” collision?

Such quantities can be understood through δ(t),
the Dirac delta “function” or unit impulse.

∫ b

a

δ(t) dt =

{

1 if 0 ∈ (a, b)

0 if 0 6∈ [a, b]
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The Dirac delta function (2)
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Differentiating piecewise cont. signals
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Differentiating piecewise cont. signals

f(t) =

{

t2 if t < 1

−(2 − t)2 if t ≥ 1

f ′(t) =

{

2t if t < 1

4 − 2t if t ≥ 1
− 2δ(t − 1)

f ′′(t) =

{

2 if t < 1

−2 if t ≥ 1
− 2δ′(t − 1)

f ′′′(t) = −4δ(t − 1) − 2δ′′(t − 1)
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Representing generalized signals (1)

Conceptually, a piecewise continuous signal can
be seen as a generalized function of time:

s(t) = s0(t) +
m

∑

i=0

n
∑

j=1

aijδ
(i)(t − τj)

where s0(t) is an impulse-free signal.

Representing a sample of s(t) at t = τj, j ∈ [1, n]:

sτj
= (s0(τj−), [a0j, a1j, . . . , amj])
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Representing generalized signals (2)

However, to make generalized signals work with
automatic differentiation, each sample should
include all derivatives at that point.

Actual representation:
data G = G C I

data C = C Double C

data I = NI | I [Double] I
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Operations on G (1)

der :: G -> G

der (G x i) = G (derC x) (derI i)

leftLimit :: G -> C

leftLimit (G x _) = x

rightLimit :: G -> C

rightLimit (G x NI) = x

rightLimit (G (C a x’) (I _ i’)) =

C (a + impStrength i’) (rightLimit (G x’ i’))
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Operations on G (2)

What about numeric instances?

• Generalized functions can be added and
subtracted without problem.

• In general, not possible to multiply
generalized functions!

• A generalized function can be multiplied with
a C∞ function. But quite complicated, e.g.:

∫ ∞

−∞

f(x)δ′(t − a) dt = −f ′(a)
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Operations on G (3)

Product of a C∞ function and arbitrary impulse
derivative:

f(t)δ(n)(t − τ) =
n

∑

k=0

(−1)k

(

n

k

)

f (k)(τ)δ(n−k)(t − τ)

Thus we know the strengths of all impulse

derivatives in the product, allowing us to construct

a correct representation of a sample of the result.
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Integration of generalized signals (1)

x and x_prev are non-impulse parts of current
and previous input, i is impulse part of current
input. Current output is then
G (C igrl’ x) (integrateImp i)

where
igrl’ = igrl + dt * valC x_prev

Accumulated state: igrl’ + strengthI i

Next previous input: right limit of current output.
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Integration of generalized signals (2)

• The left limit of the basic output value only
depends on input at earlier points in time.

• The impulse part of the output does depend
on the input at the current point in time: bad
for recursively defined signals!

Solution: appeal to modeling knowledge and
break loop by asserting that a signal is
impulse-free:
assertNoImpulse :: SF G G
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Where do impulses come from?

Switching introduces discontinuities. We need a
version of switch that account for that by
introducing impulses:
switchG :: SF a (G, Event b) -> (b -> SF a G)

-> SF a G

We also need the ability to introduce impulses
explicitly:
impulse :: Event C -> G
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Bouncing ball with impulses

bouncing :: Position -> SF () (Position, Velocity)

bouncing init_pos = proc () -> do

rec

pos <- (init_pos +) ˆ<< integralG -< vel_ni

hit <- edge -< pos <= 0

vel <- integralG -<

-9.81 + impulseG (hit ‘tag‘ (-2*leftLimit vel))

vel_ni <- assertNoImpulse -< vel

returnA -< (pos, vel)
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Conclusions

• Automatic Differentiation can be neatly
integrated with a system like Yampa.

• Dirac impulses can be used to account for
discontinuities and can be made to work with
the Automatic Differentiation machinery.

• Dirac impulses are also useful for modeling
purposes.

• More work needed to implement algebraic
operations on generalized signals properly.
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