
Functional Automatic
Differentiation with Dirac

Impulses
Henrik Nilsson

Yale University

New Haven, CT, USA

Functional Automatic Differentiation with Dirac Impulses – p.1/31

Big picture

Functional Reactive Programming (FRP) as a
starting point for a language for modeling and
simulation of physical systems.

Functional languages can offer quite a lot, e.g:
• Powerful abstraction facilities
• Higher order features
• Advanced type systems

FRP itself is a flexible modeling language in some

ways.
Functional Automatic Differentiation with Dirac Impulses – p.2/31

Big picture (2)

What kind of modeling?
• Differential equations.
• Equations solved numerically (integration).
• Often hybrid continuous and discrete systems

and/or models: solutions may have “jumps”.

Typical systems:
• electrical circuits
• gear boxes
• chemical plants

Functional Automatic Differentiation with Dirac Impulses – p.3/31

Yampa (1)

Our current FRP implementation is called
Yampa.

Key concept 1: first class signal functions.

x y
f

Intuition:

Signal α ≈ Time → α

SF α β ≈ Signal α → Signal β

f :: SF T1 T2

Signals are not first class!

Functional Automatic Differentiation with Dirac Impulses – p.4/31

Yampa (2)

Key concept 2: Switch constructs for describing
systems with varying structure:

Switching introduces discontinuities!

Functional Automatic Differentiation with Dirac Impulses – p.5/31

Simple system: a bouncing ball

m

mg

y

0

y0

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

y
dy/dt

Functional Automatic Differentiation with Dirac Impulses – p.6/31

A hybrid model of the bouncing ball

Yampa model of bouncing ball (arrow notation):
bouncing0 :: Double -> SF () (Double, Double)

bouncing0 init_pos = bouncing init_pos 0.0

where

bouncing init_pos init_vel =

switch (bouncing’ init_pos init_vel) $ \(pos, vel) ->

bouncing pos (-vel)

bouncing’ init_pos init_vel = proc () -> do

vel <- (init_vel +) ˆ<< integral -< -9.81

pos <- (init_pos +) ˆ<< integral -< vel

hit <- edge -< pos <= 0

returnA -< ((pos, vel), hit ‘tag‘ (pos, vel))

Functional Automatic Differentiation with Dirac Impulses – p.7/31

Problems

Bouncing ball example exemplifies two problems
we would like to address to make a better
modeling language:

• Unsatisfying model: a physical force modeled
by switching and recursion. Not as
declarative as we would like.

• It is desirable to be able to compute
derivatives of signals. But how in a hybrid
setting where signals may be discontinuous?

Functional Automatic Differentiation with Dirac Impulses – p.8/31

This talk (1)

Possible solutions:
• Automatic differentiation to compute

derivatives of signals.
• Dirac Impulses to

- allow modeling of e.g. impulsive forces;
- allow differentiation of discontinuous signals.

Is it possible to combine Automatic Differentiation
with Dirac Impulses into a unified framework?
Answer: Yes, at least to some extent. This talk
shows how in the context of Yampa.

Functional Automatic Differentiation with Dirac Impulses – p.9/31

This talk (1)

Possible solutions:
• Automatic differentiation to compute

derivatives of signals.
• Dirac Impulses to

- allow modeling of e.g. impulsive forces;
- allow differentiation of discontinuous signals.

Is it possible to combine Automatic Differentiation
with Dirac Impulses into a unified framework?

Answer: Yes, at least to some extent. This talk
shows how in the context of Yampa.

Functional Automatic Differentiation with Dirac Impulses – p.9/31

This talk (1)

Possible solutions:
• Automatic differentiation to compute

derivatives of signals.
• Dirac Impulses to

- allow modeling of e.g. impulsive forces;
- allow differentiation of discontinuous signals.

Is it possible to combine Automatic Differentiation
with Dirac Impulses into a unified framework?
Answer: Yes, at least to some extent. This talk
shows how in the context of Yampa.

Functional Automatic Differentiation with Dirac Impulses – p.9/31

This talk (2)

Outline
• Automatic Differentiation
• Adding Automatic Differentiation to Yampa
• Dirac Impulses and Generalized Signals
• Differentiation of Generalized Signals

Functional Automatic Differentiation with Dirac Impulses – p.10/31

Yampa?

One interpretation:
• The work began at YAle
• it ended with Arrows
• and there was Much Programming in

between.

Functional Automatic Differentiation with Dirac Impulses – p.11/31

Yampa?

Or maybe it means

Y et
Another
Mostly
Pointless
Acronym

Functional Automatic Differentiation with Dirac Impulses – p.11/31

Yampa?

Yampa is a river . . .

Functional Automatic Differentiation with Dirac Impulses – p.11/31

Yampa?

. . . with long calmly flowing sections . . .

Functional Automatic Differentiation with Dirac Impulses – p.11/31

Yampa?

. . . and abrupt whitewater transitions in between.

A good metaphor for hybrid systems!
Functional Automatic Differentiation with Dirac Impulses – p.11/31

Automatic Differentiation (1)

Automatic (or Computational) Differentiation is
• a purely algebraic method
• exact (within the limits of FP arithmetic)
• capable of finding the derivative of arbitrary

computations.

Adding automatic differentiation is easy thanks to
prior work by Jerzy Karczmarczuk, . . .
. . . as long as signals are differentiable in the
usual sense.

Functional Automatic Differentiation with Dirac Impulses – p.12/31

Automatic Differentiation (1)

Automatic (or Computational) Differentiation is
• a purely algebraic method
• exact (within the limits of FP arithmetic)
• capable of finding the derivative of arbitrary

computations.

Adding automatic differentiation is easy thanks to
prior work by Jerzy Karczmarczuk, . . .

. . . as long as signals are differentiable in the
usual sense.

Functional Automatic Differentiation with Dirac Impulses – p.12/31

Automatic Differentiation (1)

Automatic (or Computational) Differentiation is
• a purely algebraic method
• exact (within the limits of FP arithmetic)
• capable of finding the derivative of arbitrary

computations.

Adding automatic differentiation is easy thanks to
prior work by Jerzy Karczmarczuk, . . .
. . . as long as signals are differentiable in the
usual sense.

Functional Automatic Differentiation with Dirac Impulses – p.12/31

Automatic Differentiation (2)

Idea: Augment every computation so that the
derivative(s) w.r.t. some variable is computed
using the chain rule along with the main result:

z1 = x+y
z2 = x*z1

⇒

z1 = x+y
z1’ = x’+y’
z2 = x*z1
z2’ = x’*z1 + x*z1’

How? Jerzy Karczmarczuk’s method:
• Use Haskell’s overloading
• Lazy evaluation to compute all derivatives

Functional Automatic Differentiation with Dirac Impulses – p.13/31

Automatic Differentiation (3)

data C = C Double C

zeroC = C 0.0 zeroC

constC a = C a zeroC

dVarC a = C a (constC 1.0)

valC (C a _) = a

derC (C _ x’) = x’

instance Num C where

(C a x’) + (C b y’) = C (a+b) (x’+y’)

x@(C a x’) * y@(C b y’) =

C (a*b) (x’*y + x*y’)
Functional Automatic Differentiation with Dirac Impulses – p.14/31

Automatic Differentiation: Example

Consider y = t2 + k and wanting to compute y, ẏ,
and ÿ for t = 2 and k = 1:

k = constC 1.0
t = dVarC 2.0
y = t * t + k

Now we have:

valC y = 5

valC (derC y) = 4

valC (derC (derC y)) = 2

Functional Automatic Differentiation with Dirac Impulses – p.15/31

Implementation of Yampa

Basic Yampa implementation is like other
simulation systems or synchronous data flow
languages:

• signals are represented by “streams” of
instantaneous signal values;

• signal functions are (stateful) processors of
such streams.

data SF a b = SF (DTime -> a -> (SF a b, b))

Functional Automatic Differentiation with Dirac Impulses – p.16/31

Automatic Differentiation in Yampa

A main source of continuous time varying signals
in Yampa is the signal function
integral :: SF Double Double.

All that is needed is to define a version using C:
integralC :: SF C C.

Most interesting: computation of the output value.
a and a_prev are current and previous input:
C igrl’ a

where
igrl’ = igrl + dt*valC a_prev

Functional Automatic Differentiation with Dirac Impulses – p.17/31

The Dirac delta function (1)

What is
• the derivative of the unit step function?
• the force F (t) associated with an

“instantaneous” collision?

Such quantities can be understood through δ(t),
the Dirac delta “function” or unit impulse.

∫ b

a

δ(t) dt =

{

1 if 0 ∈ (a, b)

0 if 0 6∈ [a, b]

Functional Automatic Differentiation with Dirac Impulses – p.18/31

The Dirac delta function (2)

1

-1

δ()t τ-

τ t tτ

1

-1

’δ ()t τ-

Functional Automatic Differentiation with Dirac Impulses – p.19/31

Differentiating piecewise cont. signals

f(t)
2

-1

-2

-3

-4

1

t1 2

f’’(t)
2

-1

-2

-3

-4

1

t1 2

f’(t)
2

-1

-2

-3

-4

1

t1 2

f’’’(t)
2

-1

-2

-3

-4

1

t1 2

Functional Automatic Differentiation with Dirac Impulses – p.20/31

Differentiating piecewise cont. signals

f(t) =

{

t2 if t < 1

−(2 − t)2 if t ≥ 1

f ′(t) =

{

2t if t < 1

4 − 2t if t ≥ 1
− 2δ(t − 1)

f ′′(t) =

{

2 if t < 1

−2 if t ≥ 1
− 2δ′(t − 1)

f ′′′(t) = −4δ(t − 1) − 2δ′′(t − 1)

Functional Automatic Differentiation with Dirac Impulses – p.21/31

Representing generalized signals (1)

Conceptually, a piecewise continuous signal can
be seen as a generalized function of time:

s(t) = s0(t) +
m

∑

i=0

n
∑

j=1

aijδ
(i)(t − τj)

where s0(t) is an impulse-free signal.

Representing a sample of s(t) at t = τj, j ∈ [1, n]:

sτj
= (s0(τj−), [a0j, a1j, . . . , amj])

Functional Automatic Differentiation with Dirac Impulses – p.22/31

Representing generalized signals (2)

However, to make generalized signals work with
automatic differentiation, each sample should
include all derivatives at that point.

Actual representation:
data G = G C I

data C = C Double C

data I = NI | I [Double] I

Functional Automatic Differentiation with Dirac Impulses – p.23/31

Operations on G (1)

der :: G -> G

der (G x i) = G (derC x) (derI i)

leftLimit :: G -> C

leftLimit (G x _) = x

rightLimit :: G -> C

rightLimit (G x NI) = x

rightLimit (G (C a x’) (I _ i’)) =

C (a + impStrength i’) (rightLimit (G x’ i’))

Functional Automatic Differentiation with Dirac Impulses – p.24/31

Operations on G (2)

What about numeric instances?

• Generalized functions can be added and
subtracted without problem.

• In general, not possible to multiply
generalized functions!

• A generalized function can be multiplied with
a C∞ function. But quite complicated, e.g.:

∫ ∞

−∞

f(x)δ′(t − a) dt = −f ′(a)

Functional Automatic Differentiation with Dirac Impulses – p.25/31

Operations on G (3)

Product of a C∞ function and arbitrary impulse
derivative:

f(t)δ(n)(t − τ) =
n

∑

k=0

(−1)k

(

n

k

)

f (k)(τ)δ(n−k)(t − τ)

Thus we know the strengths of all impulse

derivatives in the product, allowing us to construct

a correct representation of a sample of the result.

Functional Automatic Differentiation with Dirac Impulses – p.26/31

Integration of generalized signals (1)

x and x_prev are non-impulse parts of current
and previous input, i is impulse part of current
input. Current output is then
G (C igrl’ x) (integrateImp i)

where
igrl’ = igrl + dt * valC x_prev

Accumulated state: igrl’ + strengthI i

Next previous input: right limit of current output.

Functional Automatic Differentiation with Dirac Impulses – p.27/31

Integration of generalized signals (2)

• The left limit of the basic output value only
depends on input at earlier points in time.

• The impulse part of the output does depend
on the input at the current point in time: bad
for recursively defined signals!

Solution: appeal to modeling knowledge and
break loop by asserting that a signal is
impulse-free:
assertNoImpulse :: SF G G

Functional Automatic Differentiation with Dirac Impulses – p.28/31

Where do impulses come from?

Switching introduces discontinuities. We need a
version of switch that account for that by
introducing impulses:
switchG :: SF a (G, Event b) -> (b -> SF a G)

-> SF a G

We also need the ability to introduce impulses
explicitly:
impulse :: Event C -> G

Functional Automatic Differentiation with Dirac Impulses – p.29/31

Bouncing ball with impulses

bouncing :: Position -> SF () (Position, Velocity)

bouncing init_pos = proc () -> do

rec

pos <- (init_pos +) ˆ<< integralG -< vel_ni

hit <- edge -< pos <= 0

vel <- integralG -<

-9.81 + impulseG (hit ‘tag‘ (-2*leftLimit vel))

vel_ni <- assertNoImpulse -< vel

returnA -< (pos, vel)

Functional Automatic Differentiation with Dirac Impulses – p.30/31

Conclusions

• Automatic Differentiation can be neatly
integrated with a system like Yampa.

• Dirac impulses can be used to account for
discontinuities and can be made to work with
the Automatic Differentiation machinery.

• Dirac impulses are also useful for modeling
purposes.

• More work needed to implement algebraic
operations on generalized signals properly.

Functional Automatic Differentiation with Dirac Impulses – p.31/31

	Big picture
	Big picture (2)
	Yampa (1)
	Yampa (2)
	Simple system: a bouncing ball
	A hybrid model of the bouncing ball
	Problems
	This talk (1)
	This talk (2)
	Yampa?
	Automatic Differentiation (1)
	Automatic Differentiation (2)
	Automatic Differentiation (3)
	Automatic Differentiation: Example
	Implementation of Yampa
	Automatic Differentiation in Yampa
	The Dirac delta function (1)
	The Dirac delta function (2)
	Differentiating piecewise cont. signals
	Differentiating piecewise cont. signals
	Representing generalized signals (1)
	Representing generalized signals (2)
	Operations on 	exttt {G} (1)
	Operations on 	exttt {G} (2)
	Operations on 	exttt {G} (3)
	Integration of generalized signals (1)
	Integration of generalized signals (2)
	Where do impulses come from?
	Bouncing ball with impulses
	Conclusions

