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Introduction

• Generalized Algebraic Data Types (GADTs)
recently added to GHC.

• GADTs are a limited form of dependent types,
closely related to inductive families.

• GADTs offer considerably enlarged scope for
enforcing important important invariants
statically.

• GADTs also offer the tantalizing possibility of
writing more efficient programs.
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This Talk

A case study on the applications of GADTs for
performance optimizations in the context of
Yampa:

• What kind of optimization possibilities do
GADTs open up?

• What is the impact, performance and other?

Results should be of interest also for other
Domain-Specific Embedded Languages,
especially arrow-based ones.
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Yampa

Yampa is
• a domain-specific language for Functional

Reactive Programming
• related to synchronous dataflow langauges

and modelling and simulation langauges
• implemented as a self-optimizing,

arrow-based Haskell combinator library.
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Signal functions

Key concept in Yampa: functions on signals.

Intuition:

Signal α ≈ Time→α
x :: Signal α
y :: Signal β
f :: Signal α→Signal β

Signal function type:

SF α β ≈ Signal α →Signal β

Dynamic Optimization for FRP using GADTs – p.5/29

Arrows: Lifting and Composition

arr f

a1 >>> a2
Type signatures in Yampa:

arr :: (a -> b) -> SF a b
(>>>) :: SF a b -> SF b c -> SF a c
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Optmimizing >>>: First Attempt (1)

The arrow identity law:

arr id >>> a = a = a >>> arr id

How can this be exploited?

1. Introduce a constructor representing arr id
data SF a b = ...

| SFId
| ...

2. Make SF abstract by hiding all its
constructors.
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Optmimizing >>>: First Attempt (2)

3. Ensure SFId only gets used at intended type:
identity :: SF a a
identity = SFId

4. Define optimizing version of >>>:
(>>>) :: SF a b -> SF b c -> SF a c
...
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Generalized Algebraic Data Types

GADTs allow
• individual specification of return type of

constructors
• the more precise type information to be taken

into account during case analysis.
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Optmimizing >>>: Second Attempt (1)

Instead of

data SF a b = ...

we define

data SF a b where
...
SFId :: SF a a
...
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Optmimizing >>>: Second Attempt (2)

Define optimizing version of >>> exactly as
before:

(>>>) :: SF a b -> SF b c -> SF a c
...
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Other Ways?

There are other ways to implement this kind of
optimisation (e.g. Hughes 2004). However:

• GADTs offer a completely straightforward
solution

• absolutely no run-time overhead.

The latter is important for Yampa, since the signal
function network constantly must be monitored
for emerging optimization opportunities:

arr g >>> switch (...) (\_ -> arr f)
switch
=⇒ arr g >>> arr f = arr (f . g)
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Laws Exploited for Optimizations

General arrow laws:

(f >>> g) >>> h = f >>> (g >>> h)

arr (g . f) = arr f >>> arr g

arr id >>> f = f

f = f >>> arr id

Laws involving const (the first is Yampa-specific):

sf >>> arr (const k) = arr (const k)

arr (const k)>>>arr f = arr (const(f k))

Dynamic Optimization for FRP using GADTs – p.13/29

Implementation (1)

data SF a b where
SFArr ::
(DTime -> a -> (SF a b, b))
-> FunDesc a b
-> SF a b

SFCpAXA ::
(DTime -> a -> (SF a d, d))
-> FunDesc a b->SF b c->FunDesc c d
-> SF a d

SF ::
(DTime -> a -> (SF a b, b))
-> SF a b
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Implementation (2)

data FunDesc a b where
FDI :: FunDesc a a
FDC :: b -> FunDesc a b
FDG :: (a -> b) -> FunDesc a b

Recovering the function from a FunDesc:
fdFun :: FunDesc a b -> (a -> b)
fdFun FDI = id
fdFun (FDC b) = const b
fdFun (FDG f) = f
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Implementation (3)

fdComp :: FunDesc a b -> FunDesc b c
-> FunDesc a c

fdComp FDI fd2 = fd2
fdComp fd1 FDI = fd1
fdComp (FDC b) fd2 =

FDC ((fdFun fd2) b)
fdComp _ (FDC c) = FDC c
fdComp (FDG f1) fd2 =

FDG (fdFun fd2 . f1)
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Events

Yampa models discrete-time signals by lifting
the range of continuous-time signals:

data Event a = NoEvent | Event a

Discrete-time signal = Signal (Eventα).

Consider composition of pure event processing:
f :: Event a -> Event b
g :: Event b -> Event c

arr f >>> arr g
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Optimizing Event Processing (1)

Additional function descriptor:
data FunDesc a b where
...
FDE :: (Event a -> b) -> b

-> FunDesc (Event a) b

Extend the composition function:
fdComp (FDE f1 f1ne) fd2 =
FDE (f2 . f1) (f2 f1ne)
where
f2 = fdFun fd2
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Optimizing Event Processing (2)

Extend the composition function:
fdComp (FDG f1) (FDE f2 f2ne) = FDG f
where

f a =
case f1 a of
NoEvent -> f2ne
f1a -> f2 f1a
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Optimizing Stateful Event Processing

A general stateful event processor:

ep :: (c -> a -> (c,b,b)) -> c -> b
-> SF (Event a) b

Composes nicely with stateful and stateless
event processors!
Introduce explicit representation:

data SF a b where
...
SFEP :: ...
-> (c -> a -> (c, b, b)) -> c -> b
-> SF (Event a) b
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Cause for Concern

Code with GADT-based optimizations is getting
large and complicated:

• Many more cases to consider.
• Larger size of signal function representation.

Example: Size of >>>:
• Completely unoptimized: 15 lines
• Some optimizations (current): 45 lines
• GADT-based optimizations: 240 lines

Is the result really a performance improvement?
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Micro Benchmarks (1)

A number of Micro Benchmarks were carried out
to verify that individual optimizations worked as
intended:

• Yes, works as expected.
• No significant performance overhead.
• Particularly successful for optimizing event

processing: additional stages can be added
to event-processing pipelines with almost no
overhead.
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Micro Benchmarks (2)

Most important gains:
• Insensitive to bracketing.
• A number of “pre-composed” combinators no

longer needed, thus simplifying the Yampa
API (and implementation).

• Much better event processing.

But what about overall, system-wide performance
impact? Does it make a difference???
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Benchmark 1: Space Invaders
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Benchmark 2: MIDI Event Processor

High-level model of a MIDI event processor
programmed to perform typical duties:

Dynamic Optimization for FRP using GADTs – p.25/29

The MEP4
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Results

Benchmark TU [s] TS [s] TG [s] TS/TU TG/TS

Space Inv. 0.95 0.86 0.88 0.91 1.02
MEP 19.39 10.31 9.36 0.53 0.91
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Conclusions

• GADTs are powerful and easy-to-use.
• GADTs made a better Yampa implementation

possible.
• Overall performance improvement lower than

what was initially hoped for, but still
worthwhile for certain kinds of applications.
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Finally: Behind the Scenes
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