
Dynamic Optimization for
Functional Reactive Programming

using
Generalized Algebraic Data Types

Henrik Nilsson

School of Computer Science and Information Technology

University of Nottingham, UK

Dynamic Optimization for FRP using GADTs – p.1/29

Introduction

• Generalized Algebraic Data Types (GADTs)
recently added to GHC.

• GADTs are a limited form of dependent types,
closely related to inductive families.

• GADTs offer considerably enlarged scope for
enforcing important important invariants
statically.

• GADTs also offer the tantalizing possibility of
writing more efficient programs.

Dynamic Optimization for FRP using GADTs – p.2/29

This Talk

A case study on the applications of GADTs for
performance optimizations in the context of
Yampa:

• What kind of optimization possibilities do
GADTs open up?

• What is the impact, performance and other?

Results should be of interest also for other
Domain-Specific Embedded Languages,
especially arrow-based ones.

Dynamic Optimization for FRP using GADTs – p.3/29

Yampa

Yampa is
• a domain-specific language for Functional

Reactive Programming
• related to synchronous dataflow langauges

and modelling and simulation langauges
• implemented as a self-optimizing,

arrow-based Haskell combinator library.

Dynamic Optimization for FRP using GADTs – p.4/29

Signal functions

Key concept in Yampa: functions on signals.

Intuition:

Signal α ≈ Time→α
x :: Signal α
y :: Signal β
f :: Signal α→Signal β

Signal function type:

SF α β ≈ Signal α →Signal β

Dynamic Optimization for FRP using GADTs – p.5/29

Arrows: Lifting and Composition

arr f

a1 >>> a2
Type signatures in Yampa:

arr :: (a -> b) -> SF a b
(>>>) :: SF a b -> SF b c -> SF a c

Dynamic Optimization for FRP using GADTs – p.6/29

Optmimizing >>>: First Attempt (1)

The arrow identity law:

arr id >>> a = a = a >>> arr id

How can this be exploited?

1. Introduce a constructor representing arr id
data SF a b = ...

| SFId
| ...

2. Make SF abstract by hiding all its
constructors.

Dynamic Optimization for FRP using GADTs – p.7/29

Optmimizing >>>: First Attempt (2)

3. Ensure SFId only gets used at intended type:
identity :: SF a a
identity = SFId

4. Define optimizing version of >>>:
(>>>) :: SF a b -> SF b c -> SF a c
...

Dynamic Optimization for FRP using GADTs – p.8/29

Generalized Algebraic Data Types

GADTs allow
• individual specification of return type of

constructors
• the more precise type information to be taken

into account during case analysis.

Dynamic Optimization for FRP using GADTs – p.9/29

Optmimizing >>>: Second Attempt (1)

Instead of

data SF a b = ...

we define

data SF a b where
...
SFId :: SF a a
...

Dynamic Optimization for FRP using GADTs – p.10/29

Optmimizing >>>: Second Attempt (2)

Define optimizing version of >>> exactly as
before:

(>>>) :: SF a b -> SF b c -> SF a c
...

Dynamic Optimization for FRP using GADTs – p.11/29

Other Ways?

There are other ways to implement this kind of
optimisation (e.g. Hughes 2004). However:

• GADTs offer a completely straightforward
solution

• absolutely no run-time overhead.

The latter is important for Yampa, since the signal
function network constantly must be monitored
for emerging optimization opportunities:

arr g >>> switch (...) (_ -> arr f)
switch
=⇒ arr g >>> arr f = arr (f . g)

Dynamic Optimization for FRP using GADTs – p.12/29

Laws Exploited for Optimizations

General arrow laws:

(f >>> g) >>> h = f >>> (g >>> h)

arr (g . f) = arr f >>> arr g

arr id >>> f = f

f = f >>> arr id

Laws involving const (the first is Yampa-specific):

sf >>> arr (const k) = arr (const k)

arr (const k)>>>arr f = arr (const(f k))

Dynamic Optimization for FRP using GADTs – p.13/29

Implementation (1)

data SF a b where
SFArr ::
(DTime -> a -> (SF a b, b))
-> FunDesc a b
-> SF a b

SFCpAXA ::
(DTime -> a -> (SF a d, d))
-> FunDesc a b->SF b c->FunDesc c d
-> SF a d

SF ::
(DTime -> a -> (SF a b, b))
-> SF a b

Dynamic Optimization for FRP using GADTs – p.14/29

Implementation (2)

data FunDesc a b where
FDI :: FunDesc a a
FDC :: b -> FunDesc a b
FDG :: (a -> b) -> FunDesc a b

Recovering the function from a FunDesc:
fdFun :: FunDesc a b -> (a -> b)
fdFun FDI = id
fdFun (FDC b) = const b
fdFun (FDG f) = f

Dynamic Optimization for FRP using GADTs – p.15/29

Implementation (3)

fdComp :: FunDesc a b -> FunDesc b c
-> FunDesc a c

fdComp FDI fd2 = fd2
fdComp fd1 FDI = fd1
fdComp (FDC b) fd2 =

FDC ((fdFun fd2) b)
fdComp _ (FDC c) = FDC c
fdComp (FDG f1) fd2 =

FDG (fdFun fd2 . f1)

Dynamic Optimization for FRP using GADTs – p.16/29

Events

Yampa models discrete-time signals by lifting
the range of continuous-time signals:

data Event a = NoEvent | Event a

Discrete-time signal = Signal (Eventα).

Consider composition of pure event processing:
f :: Event a -> Event b
g :: Event b -> Event c

arr f >>> arr g

Dynamic Optimization for FRP using GADTs – p.17/29

Optimizing Event Processing (1)

Additional function descriptor:
data FunDesc a b where
...
FDE :: (Event a -> b) -> b

-> FunDesc (Event a) b

Extend the composition function:
fdComp (FDE f1 f1ne) fd2 =
FDE (f2 . f1) (f2 f1ne)
where
f2 = fdFun fd2

Dynamic Optimization for FRP using GADTs – p.18/29

Optimizing Event Processing (2)

Extend the composition function:
fdComp (FDG f1) (FDE f2 f2ne) = FDG f
where

f a =
case f1 a of
NoEvent -> f2ne
f1a -> f2 f1a

Dynamic Optimization for FRP using GADTs – p.19/29

Optimizing Stateful Event Processing

A general stateful event processor:

ep :: (c -> a -> (c,b,b)) -> c -> b
-> SF (Event a) b

Composes nicely with stateful and stateless
event processors!
Introduce explicit representation:

data SF a b where
...
SFEP :: ...
-> (c -> a -> (c, b, b)) -> c -> b
-> SF (Event a) b

Dynamic Optimization for FRP using GADTs – p.20/29

Cause for Concern

Code with GADT-based optimizations is getting
large and complicated:

• Many more cases to consider.
• Larger size of signal function representation.

Example: Size of >>>:
• Completely unoptimized: 15 lines
• Some optimizations (current): 45 lines
• GADT-based optimizations: 240 lines

Is the result really a performance improvement?

Dynamic Optimization for FRP using GADTs – p.21/29

Micro Benchmarks (1)

A number of Micro Benchmarks were carried out
to verify that individual optimizations worked as
intended:

• Yes, works as expected.
• No significant performance overhead.
• Particularly successful for optimizing event

processing: additional stages can be added
to event-processing pipelines with almost no
overhead.

Dynamic Optimization for FRP using GADTs – p.22/29

Micro Benchmarks (2)

Most important gains:
• Insensitive to bracketing.
• A number of “pre-composed” combinators no

longer needed, thus simplifying the Yampa
API (and implementation).

• Much better event processing.

But what about overall, system-wide performance
impact? Does it make a difference???

Dynamic Optimization for FRP using GADTs – p.23/29

Benchmark 1: Space Invaders

Dynamic Optimization for FRP using GADTs – p.24/29

Benchmark 2: MIDI Event Processor

High-level model of a MIDI event processor
programmed to perform typical duties:

Dynamic Optimization for FRP using GADTs – p.25/29

The MEP4

Dynamic Optimization for FRP using GADTs – p.26/29

Results

Benchmark TU [s] TS [s] TG [s] TS/TU TG/TS

Space Inv. 0.95 0.86 0.88 0.91 1.02
MEP 19.39 10.31 9.36 0.53 0.91

Dynamic Optimization for FRP using GADTs – p.27/29

Conclusions

• GADTs are powerful and easy-to-use.
• GADTs made a better Yampa implementation

possible.
• Overall performance improvement lower than

what was initially hoped for, but still
worthwhile for certain kinds of applications.

Dynamic Optimization for FRP using GADTs – p.28/29

Finally: Behind the Scenes

Dynamic Optimization for FRP using GADTs – p.29/29

	Introduction
	This Talk
	Yampa
	Signal functions
	Arrows: Lifting and Composition
	Optmimizing 	exttt {comp }: First Attempt (1)
	Optmimizing 	exttt {comp }: First Attempt (2)
	Generalized Algebraic Data Types
	Optmimizing 	exttt {comp }: Second Attempt (1)
	Optmimizing 	exttt {comp }: Second Attempt (2)
	Other Ways?
	Laws Exploited for Optimizations
	Implementation (1)
	Implementation (2)
	Implementation (3)
	Events
	Optimizing Event Processing (1)
	Optimizing Event Processing (2)
	Optimizing Stateful Event Processing
	Cause for Concern
	Micro Benchmarks (1)
	Micro Benchmarks (2)
	Benchmark 1: Space Invaders
	Benchmark 2: MIDI Event Processor
	The MEP4
	Results
	Conclusions
	Finally: Behind the Scenes

