
Yampa: Functional Reactive
Programming for Systems with

Dynamic Structure
Henrik Nilsson

University of Nottingham, UK

Yampa: Functional Reactive Programming for Systems with Dynamic Structure – p.1/51

Reactive programming

Reactive systems :
• input arrives incrementally while system is

running
• output is generated in response to input in an

interleaved fashion

(Contrast transformational systems .)

The notions of
• time
• time-varying entities, signals

are inherent.
Yampa: Functional Reactive Programming for Systems with Dynamic Structure – p.2/51

Functional Reactive Programming

Functional Reactive Programming (FRP)
• Framework for reactive programming in a

functional setting.
• Systems described by mapping signals to

signals .
• Supports hybrid systems (continuous and

discrete time).
• Supports systems with evolving structure.
• Originated from Functional Reactive

Animation (Fran) (Elliott & Hudak).
Yampa: Functional Reactive Programming for Systems with Dynamic Structure – p.3/51

Related languages

FRP related both to modeling and synchronous
dataflow languages:

• Modeling Languages:
- Simulink
- Ptolemy II
- Modelica

• Synchronous languages:
- Esterel
- Lustre
- Lucid Synchrone

• . . . Yampa: Functional Reactive Programming for Systems with Dynamic Structure – p.4/51



FRP applications

Some domains where FRP has been used:
• Graphical Animation (Fran: Elliott, Hudak)
• Robotics (Frob: Peterson, Hager, Hudak,

Elliott, Pembeci, Nilsson)
• Vision (FVision: Peterson, Hudak, Reid,

Hager)
• GUIs (Fruit: Courtney)
• Hybrid modeling (Nilsson, Hudak, Peterson)

Yampa: Functional Reactive Programming for Systems with Dynamic Structure – p.5/51

Example: Robotics (1)

[PPDP’02, with Izzet Pembeci and Greg Hager,
Johns Hopkins University]

Hardware setup:
On-board
computer

Stereo
camera

Pioneer

Wireless LANConsole

Yampa: Functional Reactive Programming for Systems with Dynamic Structure – p.6/51

Example: Robotics (2)

Software architecture:

Haskell

C/C++

Application

Frob FVision

Pioneer
drivers XVision2

FRP (Yampa)

Yampa: Functional Reactive Programming for Systems with Dynamic Structure – p.7/51

Example: Robotics (3)

Yampa: Functional Reactive Programming for Systems with Dynamic Structure – p.8/51



Yampa

The most recent Yale FRP implementation is
called Yampa :

• Embedding in Haskell; i.e. a Haskell library.
• Clear separation between signals and

functions on signals.
• Arrows used as the basic structuring

framework.
• Advanced switching constructs allows for

description of systems with highly dynamic
structure.

Yampa: Functional Reactive Programming for Systems with Dynamic Structure – p.9/51

Yampa?
Yampa is a river with long calmly flowing sections
and abrupt whitewater transitions in between.

A good metaphor for hybrid systems!
Yampa: Functional Reactive Programming for Systems with Dynamic Structure – p.10/51

Signal functions

Key concept: functions on signals.

x y
f

Intuition:

Signal α ≈ Time → α

x :: Signal T1
y :: Signal T2
f :: Signal T1 → Signal T2

Additionally: causality requirement.

Yampa: Functional Reactive Programming for Systems with Dynamic Structure – p.11/51

Signal functions and state

Alternative view:

Functions on signals can encapsulate state.

f y (t)x (t)
state(t)][

state(t) summarizes input history x(t′), t′ ∈ [0, t].

Functions on signals are either:
• Stateful : y(t) depends on x(t) and state(t)

• Stateless : y(t) depends only on x(t)

Yampa: Functional Reactive Programming for Systems with Dynamic Structure – p.12/51



Signal functions in Yampa

• Signal functions are first class entities .
Intuition: SF α β ≈ Signal α →Signal β

• Signals are not first class entities: they only
exist indirectly through signal functions.

• The strict separation between signals and
signal functions distinguishes Yampa from
earlier FRP implementations.

Yampa: Functional Reactive Programming for Systems with Dynamic Structure – p.13/51

Describing systems

Systems are described by combining signal
functions into larger signal functions:

sf2sf1

sf 


Yampa: Functional Reactive Programming for Systems with Dynamic Structure – p.14/51

Yampa and arrows

Yampa uses John Hughes’ arrow framework:
Signal functions are arrows.

Core signal function combinators:
• arr :: (a -> b) -> SF a b

• >>> :: SF a b -> SF b c -> SF a c

• first :: SF a b -> SF (a,c) (b,c)

• loop :: SF (a,c) (b,c) -> SF a b

Enough to express any conceivable “wiring”.

Yampa: Functional Reactive Programming for Systems with Dynamic Structure – p.15/51

The arrow syntactic sugar

Using the basic combinators directly is often very
cumbersome. Ross Paterson’s syntactic sugar
for arrows provides a convenient alternative:

proc pat -> do [ rec ]
pat1 <- sfexp1 -< exp1

pat2 <- sfexp2 -< exp2

. . .
pat

n
<- sfexp

n
-< exp

n

returnA -< exp

Also: let pat = exp ≡ pat -< arr id -< exp

Yampa: Functional Reactive Programming for Systems with Dynamic Structure – p.16/51



Some basic signal functions

• identity :: SF a a
identity = arr id -- semantics

• constant :: b -> SF a b
constant b = arr (const b) -- semantics

• integral :: VectorSpace a s->SF a a

• time :: SF a Time
time = constant 1.0 >>> integral

• (ˆ<<) :: (b->c) -> SF a b -> SF a c
f (ˆ<<) sf = sf >>> arr f

Yampa: Functional Reactive Programming for Systems with Dynamic Structure – p.17/51

A bouncing ball

m

mg

y

0

y0

y = y0 +

∫
ẏ dt

ẏ =

∫
−9.81

On impact:

ẏ = −ẏ(t−)

(fully elastic collision)

Yampa: Functional Reactive Programming for Systems with Dynamic Structure – p.18/51

Modelling the bouncing ball: part 1

Free-falling ball:

type Pos = Double

type Vel = Double

fallingBall ::

Pos -> Vel -> SF () (Pos, Vel)

fallingBall p0 v0 = proc () -> do

v <- (v0 +) ˆ<< integral -< -9.81

p <- (p0 +) ˆ<< integral -< v

returnA -< (p, v)

Yampa: Functional Reactive Programming for Systems with Dynamic Structure – p.19/51

Events

Conceptually, discrete-time signals are only
defined at discrete points in time, often
associated with the occurrence of some event .

Yampa models discrete-time signals by lifting the
range of continuous-time signals:

data Event a = NoEvent | Event a

Discrete-time signal = Signal (Event α).

We often want to associate information with an
event occurrence:

tag :: Event a -> b -> Event b
Yampa: Functional Reactive Programming for Systems with Dynamic Structure – p.20/51



Some basic event sources

• never :: SF a (Event b)

• now :: b -> SF a (Event b)

• after :: Time -> b -> SF a (Event b)

• repeatedly ::
Time -> b -> SF a (Event b)

• edge :: SF Bool (Event ())

Yampa: Functional Reactive Programming for Systems with Dynamic Structure – p.21/51

Stateful event suppression

• notYet :: SF (Event a) (Event a)

• once :: SF (Event a) (Event a)

Yampa: Functional Reactive Programming for Systems with Dynamic Structure – p.22/51

Modelling the bouncing ball: part 2

Detecting when the ball goes through the floor:

fallingBall’ ::

Pos -> Vel

-> SF () ((Pos,Vel), Event (Pos,Vel))

fallingBall’ p0 v0 = proc () -> do

pv@(p, _) <- fallingBall p0 v0 -< ()

hit <- edge -< p <= 0

returnA -< (pv, hit ‘tag‘ pv)

Yampa: Functional Reactive Programming for Systems with Dynamic Structure – p.23/51

Switching

Q: How and when do signal functions “start”?

A: • Switchers “apply” a signal functions to its
input signal at some point in time.

• This creates a “running” signal function
instance , which often replaces the
previously running instance.

Switchers thus allow systems with varying
structure to be described.

Yampa: Functional Reactive Programming for Systems with Dynamic Structure – p.24/51



The basic switch

Idea:
• Allows one signal function to be replaced by

another.
• Switching occurs on the first occurrence of

the switching event source.

switch ::

SF a (b, Event c)

-> (c -> SF a b)

-> SF a b

Yampa: Functional Reactive Programming for Systems with Dynamic Structure – p.25/51

Modelling the bouncing ball: part 3

Making the ball bounce:

bouncingBall :: Pos -> SF () (Pos, Vel)

bouncingBall p0 = bbRec p0 0.0

where

bbRec p0 v0 =

switch (fallingBall’ p0 v0) $ \(p,v) ->

bbRec p (-v)

Yampa: Functional Reactive Programming for Systems with Dynamic Structure – p.26/51

Simulation of bouncing ball

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

y
dy/dt

Yampa: Functional Reactive Programming for Systems with Dynamic Structure – p.27/51

Highly dynamic system structure?

Basic switch allows one signal function to be
replaced by another.

• What about more general structural changes?

• What about state?

Yampa: Functional Reactive Programming for Systems with Dynamic Structure – p.28/51



The challenge

George Russel said on the Haskell GUI list:

“. . . Things like getting an alien spaceship
to move slowly downward, moving
randomly to the left and right, and
bouncing off the walls, turned out to be a
major headache. Also I think I had to use
‘error’ to get the message out to the
outside world that the aliens had won. . . . ”

Yampa: Functional Reactive Programming for Systems with Dynamic Structure – p.29/51

What was wrong?

Possible reasons for George Russel’s reaction:

• Original reactive animation systems like Fran
and FAL lacked crucial features, like dynamic
collections of signal functions.
Yampa attempts to address this [Haskell
Workshop ’02]

• Not many examples of good FRP code
around.
[Haskell Workshop ’03]

Yampa: Functional Reactive Programming for Systems with Dynamic Structure – p.30/51

The game

Yampa: Functional Reactive Programming for Systems with Dynamic Structure – p.31/51

Describing the alien behavior (1)

type Object = SF ObjInput ObjOutput

alien :: RandomGen g =>

g -> Position2 -> Velocity -> Object

alien g p0 vyd = proc oi -> do

rec

-- Pick a desired horizontal position

rx <- noiseR (xMin, xMax) g -< ()

smpl <- occasionally g 5 () -< ()

xd <- hold (point2X p0) -< smpl ‘tag‘ rx

...

Yampa: Functional Reactive Programming for Systems with Dynamic Structure – p.32/51



Describing the alien behavior (2)

...

-- Controller

let axd = 5 * (xd - point2X p)

- 3 * (vector2X v)

ayd = 20 * (vyd - (vector2Y v))

ad = vector2 axd ayd

h = vector2Theta ad

...

Yampa: Functional Reactive Programming for Systems with Dynamic Structure – p.33/51

Describing the alien behavior (3)

...

-- Physics

let a = vector2Polar

(min alienAccMax

(vector2Rho ad))

h

vp <- iPre v0 -< v

ffi <- forceField -< (p, vp)

v <- (v0 ˆ+ˆ) ˆ<< impulseIntegral

-< (gravity ˆ+ˆ a, ffi)

p <- (p0 .+ˆ) ˆ<< integral -< v

...
Yampa: Functional Reactive Programming for Systems with Dynamic Structure – p.34/51

Describing the alien behavior (4)

...

-- Shields

sl <- shield -< oiHit oi

die <- edge -< sl <= 0

returnA -< ObjOutput

ooObsObjState = oosAlien p h v,

ooKillReq = die,

ooSpawnReq = noEvent

where

v0 = zeroVector
Yampa: Functional Reactive Programming for Systems with Dynamic Structure – p.35/51

Overall game structure

gun

alien

bullet

alien

...

killOrSpawn

ObjInput ObjOutput

} [ObjectOutput]

dpSwitch

route

Yampa: Functional Reactive Programming for Systems with Dynamic Structure – p.36/51



Dynamic signal function collections

Idea:
• Switch over collections of signal functions.
• On event, “freeze” running signal functions

into collection of signal function continuations ,
preserving encapsulated state .

• Modify collection as needed and switch back in.

Yampa: Functional Reactive Programming for Systems with Dynamic Structure – p.37/51

Dynamic signal function collections

s1

s0

te

s2

s3

te2

Yampa: Functional Reactive Programming for Systems with Dynamic Structure – p.38/51

dpSwitch

Need ability to express:
• How input routed to each signal function.
• When collection changes shape.
• How collection changes shape.

dpSwitch :: Functor col =>

(forall sf . (a -> col sf -> col (b,sf)))

-> col (SF b c)

-> SF (a, col c) (Event d)

-> (col (SF b c) -> d -> SF a (col c))

-> SF a (col c)

Yampa: Functional Reactive Programming for Systems with Dynamic Structure – p.39/51

Routing

Idea:
• The routing function decides which parts of

the input to pass to each running signal
function instance.

• It achieves this by pairing a projection of the
input with each running instance:

a col sf

1

2

3

4

f

col (b,sf)

1

2

3

4

(

(

(

(

)

)

)

)

,

,

,

,

Yampa: Functional Reactive Programming for Systems with Dynamic Structure – p.40/51



The routing function type

Universal quantification over the collection
members:

Functor col =>

(forall sf . (a -> col sf -> col (b,sf)))

Collection members thus opaque :
• Ensures only signal function instances from

argument can be returned.
• Unfortunately, does not prevent duplication or

discarding of signal function instances.

Yampa: Functional Reactive Programming for Systems with Dynamic Structure – p.41/51

The game core

gameCore :: IL Object

-> SF (GameInput, IL ObjOutput)

(IL ObjOutput)

gameCore objs =

dpSwitch route

objs

(arr killOrSpawn >>> notYet)

(\sfs’ f -> gameCore (f sfs’))

Yampa: Functional Reactive Programming for Systems with Dynamic Structure – p.42/51

Closing the feedback loop (1)

game :: RandomGen g =>

g -> Int -> Velocity -> Score ->

SF GameInput ((Int, [ObsObjState]),

Event (Either Score Score))

game g nAliens vydAlien score0 = proc gi -> do

rec

oos <- gameCore objs0 -< (gi, oos)

score <- accumHold score0

-< aliensDied oos

gameOver <- edge -< alienLanded oos

newRound <- edge -< noAliensLeft oos

...
Yampa: Functional Reactive Programming for Systems with Dynamic Structure – p.43/51

Closing the feedback loop (2)
...

returnA -< ((score,

map ooObsObjState

(elemsIL oos)),

(newRound ‘tag‘ (Left score))

‘lMerge‘ (gameOver

‘tag‘ (Right score)))

where

objs0 =

listToIL

(gun (Point2 0 50)

: mkAliens g (xMin+d) 900 nAliens)

Yampa: Functional Reactive Programming for Systems with Dynamic Structure – p.44/51



Other approaches?

Transition function operating on world model with
explicit state (e.g. Asteroids by Lüth):

• Model snapshot of world with all state
components.

• Transition function takes input and current
world snapshot to output and the next world
snapshot.

One could also use this technique within Yampa
to avoid switching over dynamic collections.

Yampa: Functional Reactive Programming for Systems with Dynamic Structure – p.45/51

Why use Yampa, then?

• Yampa provides a lot of functionality for
programming with time-varying values:
- captures common patterns
- packaged in a way that makes reuse very

easy
• Yampa allows state to be nicely encapsulated

by signal functions:
- avoids keeping track of all state globally
- adding more state is easy and usually does

not imply any major changes to type or
code structure

Yampa: Functional Reactive Programming for Systems with Dynamic Structure – p.46/51

State in alien

Each of the following signal functions used in
alien encapsulate state:

• noiseR

• occasionally

• hold

• iPre

• forceField

• impulseIntegral

• integral

• shield

• edge

Yampa: Functional Reactive Programming for Systems with Dynamic Structure – p.47/51

Drawbacks of Yampa?

• Choosing the right switch can be tricky.
• Subtle issues concerning when to use e.g.

iPre , notYet .
• Syntax could be improved (with specialized

pre-processor).

Yampa: Functional Reactive Programming for Systems with Dynamic Structure – p.48/51



Related work (1)

• First-Order Systems: no dynamic collections
- Esterel [Berry 92], Lustre [Caspi 87], Lucid

Synchrone [Caspi 00], SimuLink, RT-FRP
[Wan, Taha, Hudak 01]

• Fudgets [Carlsson and Hallgren 93, 98]
- Continuation capture with extractSP

- Dynamic Collections with dynListF

- No synchronous bulk update

Yampa: Functional Reactive Programming for Systems with Dynamic Structure – p.49/51

Related work (2)

• Fran [Elliott and Hudak 97, Elliott 99]
- First class signals .
- But dynamic collections?

• FranTk [Sage 99]
- Dynamic collections, but only via IO

monad.

Yampa: Functional Reactive Programming for Systems with Dynamic Structure – p.50/51

Obtaining Yampa

Yampa 0.9 is available from

http://www.haskell.org/yampa

Yampa: Functional Reactive Programming for Systems with Dynamic Structure – p.51/51


	Reactive programming
	Functional Reactive Programming
	Related languages
	FRP applications
	Example: Robotics (1)
	Example: Robotics (2)
	Example: Robotics (3)
	Yampa
	Yampa?
	Signal functions
	Signal functions and state
	Signal functions in Yampa
	Describing systems
	Yampa and arrows
	The arrow syntactic sugar
	Some basic signal functions
	A bouncing ball
	Modelling the bouncing ball: part 1
	Events
	Some basic event sources
	Stateful event suppression
	Modelling the bouncing ball: part 2
	Switching
	The basic switch
	Modelling the bouncing ball: part 3
	Simulation of bouncing ball
	Highly dynamic system structure?
	The challenge
	What was wrong?
	The game
	Describing the alien behavior (1)
	Describing the alien behavior (2)
	Describing the alien behavior (3)
	Describing the alien behavior (4)
	Overall game structure
	Dynamic signal function collections
	Dynamic signal function collections
		exttt {dpSwitch}
	Routing
	The routing function type
	The game core
	Closing the feedback loop (1)
	Closing the feedback loop (2)
	Other approaches?
	Why use Yampa, then?
	State in 	exttt {alien}
	Drawbacks of Yampa?
	Related work (1)
	Related work (2)
	Obtaining Yampa

