
Functional Reactivity:
Eschewing the Imperative

An Overview of Functional Reactive
Programming in the Context of Yampa

Henrik Nilsson, the University of Nottingham, UK

with

Paul Hudak, John Peterson, and Antony Courtney

Yale University, USA

Functional Reactivity:Eschewing the Imperative – p.1/49

Reactive programming

Reactive systems:
• input arrives incrementally while system is

running
• output is generated in response to input in an

interleaved fashion

Contrast transformational systems.

The notions of
• time
• time-varying entities, signals

are inherent.
Functional Reactivity:Eschewing the Imperative – p.2/49

Functional Reactive Programming

Functional Reactive Programming (FRP):
• Paradigm for reactive programming in a

functional setting.
• Originated from Functional Reactive

Animation (Fran) (Elliott & Hudak).
• Has evolved in a number of directions and

into different concrete implementations.

Functional Reactivity:Eschewing the Imperative – p.3/49

Related languages

FRP related to:
• Synchronous languages, like Esterel, Lucid

Synchrone.
• Modeling languages, like Simulink, Modelica.

Distinct features of FRP:
• First class reactive components.
• Allows highly dynamic system structure.

Functional Reactivity:Eschewing the Imperative – p.4/49

FRP applications

Some domains where FRP has been used:
• Graphical Animation (Fran: Elliott, Hudak)
• Robotics (Frob: Peterson, Hager, Hudak,

Elliott, Pembeci, Nilsson)
• Vision (FVision: Peterson, Hudak, Reid,

Hager)
• GUIs (Fruit: Courtney)
• Hybrid modeling (Nilsson, Hudak, Peterson)

Functional Reactivity:Eschewing the Imperative – p.5/49

Example: Robotics (1)

[PPDP’02, with Izzet Pembeci and Greg Hager,
Johns Hopkins University]

Hardware setup:
On-board
computer

Stereo
camera

Pioneer

Wireless LANConsole

Functional Reactivity:Eschewing the Imperative – p.6/49

Example: Robotics (2)

Software architecture:

Haskell

C/C++

Application

Frob FVision

Pioneer
drivers XVision2

FRP (Yampa)

Functional Reactivity:Eschewing the Imperative – p.7/49

Example: Robotics (3)

Functional Reactivity:Eschewing the Imperative – p.8/49

Yampa

The most recent Yale FRP implementation is
called Yampa:

• Embedding in Haskell; i.e. a Haskell library.
• Arrows used as the basic structuring

framework.
• Advanced switching constructs allows for

highly dynamic system structure.

Functional Reactivity:Eschewing the Imperative – p.9/49

Yampa?

Y et
Another
Mostly
Pointless
Acronym

???

No . . .

Functional Reactivity:Eschewing the Imperative – p.10/49

Yampa?

Y et
Another
Mostly
Pointless
Acronym

???

No . . .

Functional Reactivity:Eschewing the Imperative – p.10/49

Yampa?

Y et
Another
Mostly
Pointless
Acronym

???

No . . .

Functional Reactivity:Eschewing the Imperative – p.10/49

Yampa?

Y et
Another
Mostly
Pointless
Acronym

???

No . . .

Functional Reactivity:Eschewing the Imperative – p.10/49

Yampa?

Yampa is a river . . .

Functional Reactivity:Eschewing the Imperative – p.10/49

Yampa?

. . . with long calmly flowing sections . . .

Functional Reactivity:Eschewing the Imperative – p.10/49

Yampa?

. . . and abrupt whitewater transitions in between.

A good metaphor for hybrid systems!
Functional Reactivity:Eschewing the Imperative – p.10/49

Signal functions

Key concept: functions on signals.

x y
f

Intuition:

Signal α ≈ Time → α

x :: Signal T1
y :: Signal T2
f :: Signal T1 → Signal T2

Additionally: causality requirement.

Functional Reactivity:Eschewing the Imperative – p.11/49

Signal functions and state

Alternative view:

Functions on signals can encapsulate state.

f y (t)x (t)
state(t)][

state(t) summarizes input history x(t′), t′ ∈ [0, t].

Functions on signals are either:
• Stateful: y(t) depends on x(t) and state(t)

• Stateless: y(t) depends only on x(t)

Functional Reactivity:Eschewing the Imperative – p.12/49

Signal functions in Yampa

• Signal functions are first class entities.
Intuition: SF α β ≈ Signal α →Signal β

• Signals are not first class entities: they only
exist indirectly through signal functions.

• The strict separation between signals and
signal functions distinguishes Yampa from
earlier FRP implementations.

Functional Reactivity:Eschewing the Imperative – p.13/49

Signal functions in Yampa

• Signal functions are first class entities.
Intuition: SF α β ≈ Signal α →Signal β

• Signals are not first class entities: they only
exist indirectly through signal functions.

• The strict separation between signals and
signal functions distinguishes Yampa from
earlier FRP implementations.

Functional Reactivity:Eschewing the Imperative – p.13/49

Signal functions in Yampa

• Signal functions are first class entities.
Intuition: SF α β ≈ Signal α →Signal β

• Signals are not first class entities: they only
exist indirectly through signal functions.

• The strict separation between signals and
signal functions distinguishes Yampa from
earlier FRP implementations.

Functional Reactivity:Eschewing the Imperative – p.13/49

Describing systems

Systems are described by combining signal
functions into larger signal functions:

� � �

� � �

� �

Functional Reactivity:Eschewing the Imperative – p.14/49

Yampa and arrows

Yampa uses John Hughes’ arrow framework:
Signal functions are arrows.

Core signal function combinators:
• arr :: (a -> b) -> SF a b

• >>> :: SF a b -> SF b c -> SF a c

• first :: SF a b -> SF (a,c) (b,c)

• loop :: SF (a,c) (b,c) -> SF a b

Enough to express any conceivable “wiring”.

Functional Reactivity:Eschewing the Imperative – p.15/49

The arrow syntactic sugar

Using the basic combinators directly is often very
cumbersome. Ross Paterson’s syntactic sugar
for arrows provides a convenient alternative:

proc pat -> do [rec]
pat1 <- sfexp1 -< exp1

pat2 <- sfexp2 -< exp2

. . .
pat

n
<- sfexp

n
-< exp

n

returnA -< exp

Also: let pat = exp ≡ pat -< arr id -< exp

Functional Reactivity:Eschewing the Imperative – p.16/49

Some basic signal functions

• identity :: SF a a
identity = arr id -- semantics

• constant :: b -> SF a b
constant b = arr (const b) -- semantics

• integral :: VectorSpace a s->SF a a

• time :: SF a Time
time = constant 1.0 >>> integral

• (ˆ<<) :: (b->c) -> SF a b -> SF a c
f (ˆ<<) sf = sf >>> arr f

Functional Reactivity:Eschewing the Imperative – p.17/49

A bouncing ball

m

mg

y

0

y0

y = y0 +

∫
ẏ dt

ẏ =

∫
−9.81

On impact:

ẏ = −ẏ(t−)

(fully elastic collision)

Functional Reactivity:Eschewing the Imperative – p.18/49

Modelling the bouncing ball: part 1

Free-falling ball:

type Pos = Double

type Vel = Double

fallingBall ::

Pos -> Vel -> SF () (Pos, Vel)

fallingBall p0 v0 = proc () -> do

v <- (v0 +) ˆ<< integral -< -9.81

p <- (p0 +) ˆ<< integral -< v

returnA -< (p, v)

Functional Reactivity:Eschewing the Imperative – p.19/49

Events

Conceptually, discrete-time signals are only
defined at discrete points in time, often
associated with the occurrence of some event.

Yampa models discrete-time signals by lifting the
range of continuous-time signals:

data Event a = NoEvent | Event a

Discrete-time signal = Signal (Eventα).

We often want to associate information with an
event occurrence:

tag :: Event a -> b -> Event b
Functional Reactivity:Eschewing the Imperative – p.20/49

Some basic event sources

• never :: SF a (Event b)

• now :: b -> SF a (Event b)

• after :: Time -> b -> SF a (Event b)

• repeatedly ::
Time -> b -> SF a (Event b)

• edge :: SF Bool (Event ())

Functional Reactivity:Eschewing the Imperative – p.21/49

Stateful event suppression

• notYet :: SF (Event a) (Event a)

• once :: SF (Event a) (Event a)

Functional Reactivity:Eschewing the Imperative – p.22/49

Modelling the bouncing ball: part 2

Detecting when the ball goes through the floor:

fallingBall’ ::

Pos -> Vel

-> SF () ((Pos,Vel), Event (Pos,Vel))

fallingBall’ p0 v0 = proc () -> do

pv@(p, _) <- fallingBall p0 v0 -< ()

hit <- edge -< p <= 0

returnA -< (pv, hit ‘tag‘ pv)

Functional Reactivity:Eschewing the Imperative – p.23/49

Switching

Q: How and when do signal functions “start”?

A: • Switchers “apply” a signal functions to its
input signal at some point in time.

• This creates a “running” signal function
instance, which often replaces the
previously running instance.

Switchers thus allow systems with varying
structure to be described.

Functional Reactivity:Eschewing the Imperative – p.24/49

Switching

Q: How and when do signal functions “start”?

A: • Switchers “apply” a signal functions to its
input signal at some point in time.

• This creates a “running” signal function
instance, which often replaces the
previously running instance.

Switchers thus allow systems with varying
structure to be described.

Functional Reactivity:Eschewing the Imperative – p.24/49

Switching

Q: How and when do signal functions “start”?

A: • Switchers “apply” a signal functions to its
input signal at some point in time.

• This creates a “running” signal function
instance, which often replaces the
previously running instance.

Switchers thus allow systems with varying
structure to be described.

Functional Reactivity:Eschewing the Imperative – p.24/49

The basic switch

Idea:
• Allows one signal function to be replaced by

another.
• Switching occurs on the first occurrence of

the switching event source.

switch ::

SF a (b, Event c)

-> (c -> SF a b)

-> SF a b

Functional Reactivity:Eschewing the Imperative – p.25/49

The basic switch

Idea:
• Allows one signal function to be replaced by

another.
• Switching occurs on the first occurrence of

the switching event source.

switch :: Initial SF with event source

SF a (b, Event c)

-> (c -> SF a b)

-> SF a b

Functional Reactivity:Eschewing the Imperative – p.25/49

The basic switch

Idea:
• Allows one signal function to be replaced by

another.
• Switching occurs on the first occurrence of

the switching event source.

switch :: Function yielding SF to switch into

SF a (b, Event c)

-> (c -> SF a b)

-> SF a b

Functional Reactivity:Eschewing the Imperative – p.25/49

Modelling the bouncing ball: part 3

Making the ball bounce:

bouncingBall :: Pos -> SF () (Pos, Vel)

bouncingBall p0 = bbRec p0 0.0

where

bbRec p0 v0 =

switch (fallingBall’ p0 v0) $ \(p,v) ->

bbRec p (-v)

Functional Reactivity:Eschewing the Imperative – p.26/49

Simulation of bouncing ball

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

y
dy/dt

Functional Reactivity:Eschewing the Imperative – p.27/49

Highly dynamic system structure?

Basic switch allows one signal function to be
replaced by another.

• What about more general structural changes?

• What about state?

Functional Reactivity:Eschewing the Imperative – p.28/49

The challenge

George Russel said on the Haskell GUI list:

“I have to say I’m very sceptical about
things like Fruit which rely on reactive
animation, ever since I set our students an
exercise implementing a simple
space-invaders game in such a system,
and had no end of a job producing an
example solution. . . .

Functional Reactivity:Eschewing the Imperative – p.29/49

The challenge

George Russel said on the Haskell GUI list:

. . . Things like getting an alien spaceship
to move slowly downward, moving
randomly to the left and right, and
bouncing off the walls, turned out to be a
major headache. Also I think I had to use
‘error’ to get the message out to the
outside world that the aliens had won. . . .

Functional Reactivity:Eschewing the Imperative – p.29/49

The challenge

George Russel said on the Haskell GUI list:

My suspicion is that reactive animation
works very nicely for the examples
constructed by reactive animation folk, but
not for my examples.”

Functional Reactivity:Eschewing the Imperative – p.29/49

The game

Functional Reactivity:Eschewing the Imperative – p.30/49

Describing the alien behavior (1)

type Object = SF ObjInput ObjOutput

alien :: RandomGen g =>

g -> Position2 -> Velocity -> Object

alien g p0 vyd = proc oi -> do

rec

-- Pick a desired horizontal position

rx <- noiseR (xMin, xMax) g -< ()

smpl <- occasionally g 5 () -< ()

xd <- hold (point2X p0) -< smpl ‘tag‘ rx

...

Functional Reactivity:Eschewing the Imperative – p.31/49

Describing the alien behavior (2)

...

-- Controller

let axd = 5 * (xd - point2X p)

- 3 * (vector2X v)

ayd = 20 * (vyd - (vector2Y v))

ad = vector2 axd ayd

h = vector2Theta ad

...

Functional Reactivity:Eschewing the Imperative – p.32/49

Describing the alien behavior (3)

...

-- Physics

let a = vector2Polar

(min alienAccMax

(vector2Rho ad))

h

vp <- iPre v0 -< v

ffi <- forceField -< (p, vp)

v <- (v0 ˆ+ˆ) ˆ<< impulseIntegral

-< (gravity ˆ+ˆ a, ffi)

p <- (p0 .+ˆ) ˆ<< integral -< v

...
Functional Reactivity:Eschewing the Imperative – p.33/49

Describing the alien behavior (4)

...

-- Shields

sl <- shield -< oiHit oi

die <- edge -< sl <= 0

returnA -< ObjOutput

ooObsObjState = oosAlien p h v,

ooKillReq = die,

ooSpawnReq = noEvent

where

v0 = zeroVector
Functional Reactivity:Eschewing the Imperative – p.34/49

Overall game structure

gun

alien

bullet

alien

...

killOrSpawn

ObjInput ObjOutput

} [ObjectOutput]

dpSwitch

route

Functional Reactivity:Eschewing the Imperative – p.35/49

Dynamic signal function collections

Idea:
• Switch over collections of signal functions.
• On event, “freeze” running signal functions

into collection of signal function continuations,
preserving encapsulated state.

• Modify collection as needed and switch back in.

Functional Reactivity:Eschewing the Imperative – p.36/49

dpSwitch

Need ability to express:
• How input routed to each signal function.
• When collection changes shape.
• How collection changes shape.

dpSwitch :: Functor col =>

(forall sf . (a -> col sf -> col (b,sf)))

-> col (SF b c)

-> SF (a, col c) (Event d)

-> (col (SF b c) -> d -> SF a (col c))

-> SF a (col c)

Functional Reactivity:Eschewing the Imperative – p.37/49

dpSwitch

Need ability to express:
• How input routed to each signal function.
• When collection changes shape.
• How collection changes shape.

dpSwitch :: Functor col =>

(forall sf . (a -> col sf -> col (b,sf)))

-> col (SF b c) Routing function

-> SF (a, col c) (Event d)

-> (col (SF b c) -> d -> SF a (col c))

-> SF a (col c)

Functional Reactivity:Eschewing the Imperative – p.37/49

dpSwitch

Need ability to express:
• How input routed to each signal function.
• When collection changes shape.
• How collection changes shape.

dpSwitch :: Functor col =>

(forall sf . (a -> col sf -> col (b,sf)))

-> col (SF b c) Initial collection

-> SF (a, col c) (Event d)

-> (col (SF b c) -> d -> SF a (col c))

-> SF a (col c)

Functional Reactivity:Eschewing the Imperative – p.37/49

dpSwitch

Need ability to express:
• How input routed to each signal function.
• When collection changes shape.
• How collection changes shape.

dpSwitch :: Functor col =>

(forall sf . (a -> col sf -> col (b,sf)))

-> col (SF b c) Event source

-> SF (a, col c) (Event d)

-> (col (SF b c) -> d -> SF a (col c))

-> SF a (col c)

Functional Reactivity:Eschewing the Imperative – p.37/49

dpSwitch

Need ability to express:
• How input routed to each signal function.
• When collection changes shape.
• How collection changes shape.

dpSwitch :: Functor col =>

(forall sf . (a -> col sf -> col (b,sf)))

-> col (SF b c) Function yielding SF to switch into

-> SF (a, col c) (Event d)

-> (col (SF b c) -> d -> SF a (col c))

-> SF a (col c)

Functional Reactivity:Eschewing the Imperative – p.37/49

Routing

Idea:
• The routing function decides which parts of

the input to pass to each running signal
function instance.

• It achieves this by pairing a projection of the
input with each running instance:

a col sf

1

2

3

4

f

col (b,sf)

1

2

3

4

(

(

(

(

)

)

)

)

,

,

,

,

Functional Reactivity:Eschewing the Imperative – p.38/49

Routing

Idea:
• The routing function decides which parts of

the input to pass to each running signal
function instance.

• It achieves this by pairing a projection of the
input with each running instance:

a col sf

1

2

3

4

f

col (b,sf)

1

2

3

4

(

(

(

(

)

)

)

)

,

,

,

,

Functional Reactivity:Eschewing the Imperative – p.38/49

The game core

gameCore :: IL Object

-> SF (GameInput, IL ObjOutput)

(IL ObjOutput)

gameCore objs =

dpSwitch route

objs

(arr killOrSpawn >>> notYet)

(\sfs’ f -> gameCore (f sfs’))

Functional Reactivity:Eschewing the Imperative – p.39/49

Closing the feedback loop (1)

game :: RandomGen g =>

g -> Int -> Velocity -> Score ->

SF GameInput ((Int, [ObsObjState]),

Event (Either Score Score))

game g nAliens vydAlien score0 = proc gi -> do

rec

oos <- gameCore objs0 -< (gi, oos)

score <- accumHold score0

-< aliensDied oos

gameOver <- edge -< alienLanded oos

newRound <- edge -< noAliensLeft oos

...
Functional Reactivity:Eschewing the Imperative – p.40/49

Closing the feedback loop (2)
...

returnA -< ((score,

map ooObsObjState

(elemsIL oos)),

(newRound ‘tag‘ (Left score))

‘lMerge‘ (gameOver

‘tag‘ (Right score)))

where

objs0 =

listToIL

(gun (Point2 0 50)

: mkAliens g (xMin+d) 900 nAliens)

Functional Reactivity:Eschewing the Imperative – p.41/49

Other functional approaches?

Transition function operating on world model with
explicit state (e.g. Asteroids by Lüth):

• Model snapshot of world with all state
components.

• Transition function takes input and current
world snapshot to output and the next world
snapshot.

One could also use this technique within Yampa
to avoid switching over dynamic collections.

Functional Reactivity:Eschewing the Imperative – p.42/49

Why use Yampa, then?

• Yampa provides a lot of functionality for
programming with time-varying values:
- captures common patterns
- packaged in a way that makes reuse very

easy
• Yampa allows state to be nicely encapsulated

by signal functions:
- avoids keeping track of all state globally
- adding more state is easy and usually does

not imply any major changes to type or
code structure

Functional Reactivity:Eschewing the Imperative – p.43/49

State in alien

Each of the following signal functions used in
alien encapsulate state:

• noiseR

• occasionally

• hold

• iPre

• forceField

• impulseIntegral

• integral

• shield

• edge

Functional Reactivity:Eschewing the Imperative – p.44/49

Why not imperative, then?

If state is so important, why not stick to
imperative/object-oriented programming where
we have “state for free”?

• Yampa retains all advantages of declarative
programming:
- High abstraction level.
- Referential transparency facilitates formal

reasoning.

• Synchronous approach avoids
“event-call-back soup”, meaning robust,
easy-to-understand semantics.

Functional Reactivity:Eschewing the Imperative – p.45/49

Why not imperative, then?

If state is so important, why not stick to
imperative/object-oriented programming where
we have “state for free”?

• Yampa retains all advantages of declarative
programming:
- High abstraction level.
- Referential transparency facilitates formal

reasoning.

• Synchronous approach avoids
“event-call-back soup”, meaning robust,
easy-to-understand semantics.

Functional Reactivity:Eschewing the Imperative – p.45/49

Why not imperative, then?

If state is so important, why not stick to
imperative/object-oriented programming where
we have “state for free”?

• Yampa retains all advantages of declarative
programming:
- High abstraction level.
- Referential transparency facilitates formal

reasoning.
• Synchronous approach avoids

“event-call-back soup”, meaning robust,
easy-to-understand semantics.

Functional Reactivity:Eschewing the Imperative – p.45/49

Drawbacks of Yampa?

• Choosing the right switch can be tricky.
• Subtle issues concerning when to use e.g.
iPre, notYet.

• Syntax could be improved (with specialized
pre-processor).

Functional Reactivity:Eschewing the Imperative – p.46/49

Related work (1)

• First-Order Systems: no dynamic collections
- Esterel [Berry 92], Lustre [Caspi 87], Lucid

Synchrone [Caspi 00], SimuLink, RT-FRP
[Wan, Taha, Hudak 01]

• Fudgets [Carlsson and Hallgren 93, 98]
- Continuation capture with extractSP

- Dynamic Collections with dynListF

- No synchronous bulk update

Functional Reactivity:Eschewing the Imperative – p.47/49

Related work (2)

• Fran [Elliott and Hudak 97, Elliott 99]
- First class signals.
- But dynamic collections?

• FranTk [Sage 99]
- Dynamic collections, but only via IO

monad.

Functional Reactivity:Eschewing the Imperative – p.48/49

Obtaining Yampa

Yampa 0.9 is available from

http://www.haskell.org/yampa

Functional Reactivity:Eschewing the Imperative – p.49/49

	Reactive programming
	Functional Reactive Programming
	Related languages
	FRP applications
	Example: Robotics (1)
	Example: Robotics (2)
	Example: Robotics (3)
	Yampa
	Yampa?
	Signal functions
	Signal functions and state
	Signal functions in Yampa
	Describing systems
	Yampa and arrows
	The arrow syntactic sugar
	Some basic signal functions
	A bouncing ball
	Modelling the bouncing ball: part 1
	Events
	Some basic event sources
	Stateful event suppression
	Modelling the bouncing ball: part 2
	Switching
	The basic switch
	Modelling the bouncing ball: part 3
	Simulation of bouncing ball
	Highly dynamic system structure?
	The challenge
	The game
	Describing the alien behavior (1)
	Describing the alien behavior (2)
	Describing the alien behavior (3)
	Describing the alien behavior (4)
	Overall game structure
	Dynamic signal function collections
		exttt {dpSwitch}
	Routing
	The game core
	Closing the feedback loop (1)
	Closing the feedback loop (2)
	Other functional approaches?
	Why use Yampa, then?
	State in 	exttt {alien}
	Why not imperative, then?
	Drawbacks of Yampa?
	Related work (1)
	Related work (2)
	Obtaining Yampa

