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Reactive programming

Reactive systems:
• input arrives incrementally while system is

running
• output is generated in response to input in an

interleaved fashion

Contrast transformational systems.

The notions of
• time
• time-varying entities, signals

are inherent.
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Functional Reactive Programming

Functional Reactive Programming (FRP):
• Paradigm for reactive programming in a

functional setting.
• Originated from Functional Reactive

Animation (Fran) (Elliott & Hudak).
• Has evolved in a number of directions and

into different concrete implementations.
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Related languages

FRP related to:
• Synchronous languages, like Esterel, Lucid

Synchrone.
• Modeling languages, like Simulink, Modelica.

Distinct features of FRP:
• First class reactive components.
• Allows highly dynamic system structure.
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FRP applications

Some domains where FRP has been used:
• Graphical Animation (Fran: Elliott, Hudak)
• Robotics (Frob: Peterson, Hager, Hudak,

Elliott, Pembeci, Nilsson)
• Vision (FVision: Peterson, Hudak, Reid,

Hager)
• GUIs (Fruit: Courtney)
• Hybrid modeling (Nilsson, Hudak, Peterson)
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Example: Robotics (1)

[PPDP’02, with Izzet Pembeci and Greg Hager,
Johns Hopkins University]

Hardware setup:
On-board
computer

Stereo
camera

Pioneer

Wireless LANConsole
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Example: Robotics (2)

Software architecture:

Haskell

C/C++

Application

Frob FVision

Pioneer
drivers XVision2

FRP (Yampa)
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Example: Robotics (3)
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Yampa

The most recent Yale FRP implementation is
called Yampa:

• Embedding in Haskell; i.e. a Haskell library.
• Arrows used as the basic structuring

framework.
• Advanced switching constructs allows for

highly dynamic system structure.
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Yampa?

Y et
Another
Mostly
Pointless
Acronym

???

No . . .

Functional Reactivity:Eschewing the Imperative – p.10/49



Yampa?

Y et
Another
Mostly
Pointless
Acronym

???

No . . .

Functional Reactivity:Eschewing the Imperative – p.10/49



Yampa?

Y et
Another
Mostly
Pointless
Acronym

???

No . . .

Functional Reactivity:Eschewing the Imperative – p.10/49



Yampa?

Y et
Another
Mostly
Pointless
Acronym

???

No . . .

Functional Reactivity:Eschewing the Imperative – p.10/49



Yampa?

Yampa is a river . . .
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Yampa?

. . . with long calmly flowing sections . . .
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Yampa?

. . . and abrupt whitewater transitions in between.

A good metaphor for hybrid systems!
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Signal functions

Key concept: functions on signals.

x y
f

Intuition:

Signal α ≈ Time → α

x :: Signal T1
y :: Signal T2
f :: Signal T1 → Signal T2

Additionally: causality requirement.
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Signal functions and state

Alternative view:

Functions on signals can encapsulate state.

f y (t)x (t)
state(t)][

state(t) summarizes input history x(t′), t′ ∈ [0, t].

Functions on signals are either:
• Stateful: y(t) depends on x(t) and state(t)

• Stateless: y(t) depends only on x(t)
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Signal functions in Yampa

• Signal functions are first class entities.
Intuition: SF α β ≈ Signal α →Signal β

• Signals are not first class entities: they only
exist indirectly through signal functions.

• The strict separation between signals and
signal functions distinguishes Yampa from
earlier FRP implementations.
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Describing systems

Systems are described by combining signal
functions into larger signal functions:

� � �

� � �

� �
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Yampa and arrows

Yampa uses John Hughes’ arrow framework:
Signal functions are arrows.

Core signal function combinators:
• arr :: (a -> b) -> SF a b

• >>> :: SF a b -> SF b c -> SF a c

• first :: SF a b -> SF (a,c) (b,c)

• loop :: SF (a,c) (b,c) -> SF a b

Enough to express any conceivable “wiring”.
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The arrow syntactic sugar

Using the basic combinators directly is often very
cumbersome. Ross Paterson’s syntactic sugar
for arrows provides a convenient alternative:

proc pat -> do [ rec ]
pat1 <- sfexp1 -< exp1

pat2 <- sfexp2 -< exp2

. . .
pat

n
<- sfexp

n
-< exp

n

returnA -< exp

Also: let pat = exp ≡ pat -< arr id -< exp
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Some basic signal functions

• identity :: SF a a
identity = arr id -- semantics

• constant :: b -> SF a b
constant b = arr (const b) -- semantics

• integral :: VectorSpace a s->SF a a

• time :: SF a Time
time = constant 1.0 >>> integral

• (ˆ<<) :: (b->c) -> SF a b -> SF a c
f (ˆ<<) sf = sf >>> arr f
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A bouncing ball

m

mg

y

0

y0

y = y0 +

∫
ẏ dt

ẏ =

∫
−9.81

On impact:

ẏ = −ẏ(t−)

(fully elastic collision)
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Modelling the bouncing ball: part 1

Free-falling ball:

type Pos = Double

type Vel = Double

fallingBall ::

Pos -> Vel -> SF () (Pos, Vel)

fallingBall p0 v0 = proc () -> do

v <- (v0 +) ˆ<< integral -< -9.81

p <- (p0 +) ˆ<< integral -< v

returnA -< (p, v)
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Events

Conceptually, discrete-time signals are only
defined at discrete points in time, often
associated with the occurrence of some event.

Yampa models discrete-time signals by lifting the
range of continuous-time signals:

data Event a = NoEvent | Event a

Discrete-time signal = Signal (Eventα).

We often want to associate information with an
event occurrence:

tag :: Event a -> b -> Event b
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Some basic event sources

• never :: SF a (Event b)

• now :: b -> SF a (Event b)

• after :: Time -> b -> SF a (Event b)

• repeatedly ::
Time -> b -> SF a (Event b)

• edge :: SF Bool (Event ())

Functional Reactivity:Eschewing the Imperative – p.21/49



Stateful event suppression

• notYet :: SF (Event a) (Event a)

• once :: SF (Event a) (Event a)
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Modelling the bouncing ball: part 2

Detecting when the ball goes through the floor:

fallingBall’ ::

Pos -> Vel

-> SF () ((Pos,Vel), Event (Pos,Vel))

fallingBall’ p0 v0 = proc () -> do

pv@(p, _) <- fallingBall p0 v0 -< ()

hit <- edge -< p <= 0

returnA -< (pv, hit ‘tag‘ pv)
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Switching

Q: How and when do signal functions “start”?

A: • Switchers “apply” a signal functions to its
input signal at some point in time.

• This creates a “running” signal function
instance, which often replaces the
previously running instance.

Switchers thus allow systems with varying
structure to be described.
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The basic switch

Idea:
• Allows one signal function to be replaced by

another.
• Switching occurs on the first occurrence of

the switching event source.

switch ::

SF a (b, Event c)

-> (c -> SF a b)

-> SF a b

Functional Reactivity:Eschewing the Imperative – p.25/49



The basic switch

Idea:
• Allows one signal function to be replaced by

another.
• Switching occurs on the first occurrence of

the switching event source.

switch :: Initial SF with event source

SF a (b, Event c)

-> (c -> SF a b)

-> SF a b

Functional Reactivity:Eschewing the Imperative – p.25/49



The basic switch

Idea:
• Allows one signal function to be replaced by

another.
• Switching occurs on the first occurrence of

the switching event source.

switch :: Function yielding SF to switch into

SF a (b, Event c)

-> (c -> SF a b)

-> SF a b
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Modelling the bouncing ball: part 3

Making the ball bounce:

bouncingBall :: Pos -> SF () (Pos, Vel)

bouncingBall p0 = bbRec p0 0.0

where

bbRec p0 v0 =

switch (fallingBall’ p0 v0) $ \(p,v) ->

bbRec p (-v)
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Simulation of bouncing ball

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

y
dy/dt
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Highly dynamic system structure?

Basic switch allows one signal function to be
replaced by another.

• What about more general structural changes?

• What about state?
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The challenge

George Russel said on the Haskell GUI list:

“I have to say I’m very sceptical about
things like Fruit which rely on reactive
animation, ever since I set our students an
exercise implementing a simple
space-invaders game in such a system,
and had no end of a job producing an
example solution. . . .
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The challenge

George Russel said on the Haskell GUI list:

. . . Things like getting an alien spaceship
to move slowly downward, moving
randomly to the left and right, and
bouncing off the walls, turned out to be a
major headache. Also I think I had to use
‘error’ to get the message out to the
outside world that the aliens had won. . . .
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The challenge

George Russel said on the Haskell GUI list:

My suspicion is that reactive animation
works very nicely for the examples
constructed by reactive animation folk, but
not for my examples.”
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The game

Functional Reactivity:Eschewing the Imperative – p.30/49



Describing the alien behavior (1)

type Object = SF ObjInput ObjOutput

alien :: RandomGen g =>

g -> Position2 -> Velocity -> Object

alien g p0 vyd = proc oi -> do

rec

-- Pick a desired horizontal position

rx <- noiseR (xMin, xMax) g -< ()

smpl <- occasionally g 5 () -< ()

xd <- hold (point2X p0) -< smpl ‘tag‘ rx

...
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Describing the alien behavior (2)

...

-- Controller

let axd = 5 * (xd - point2X p)

- 3 * (vector2X v)

ayd = 20 * (vyd - (vector2Y v))

ad = vector2 axd ayd

h = vector2Theta ad

...

Functional Reactivity:Eschewing the Imperative – p.32/49



Describing the alien behavior (3)

...

-- Physics

let a = vector2Polar

(min alienAccMax

(vector2Rho ad))

h

vp <- iPre v0 -< v

ffi <- forceField -< (p, vp)

v <- (v0 ˆ+ˆ) ˆ<< impulseIntegral

-< (gravity ˆ+ˆ a, ffi)

p <- (p0 .+ˆ) ˆ<< integral -< v

...
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Describing the alien behavior (4)

...

-- Shields

sl <- shield -< oiHit oi

die <- edge -< sl <= 0

returnA -< ObjOutput

ooObsObjState = oosAlien p h v,

ooKillReq = die,

ooSpawnReq = noEvent

where

v0 = zeroVector
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Overall game structure

gun

alien

bullet

alien

...

killOrSpawn

ObjInput ObjOutput

} [ObjectOutput]

dpSwitch

route
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Dynamic signal function collections

Idea:
• Switch over collections of signal functions.
• On event, “freeze” running signal functions

into collection of signal function continuations,
preserving encapsulated state.

• Modify collection as needed and switch back in.
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dpSwitch

Need ability to express:
• How input routed to each signal function.
• When collection changes shape.
• How collection changes shape.

dpSwitch :: Functor col =>

(forall sf . (a -> col sf -> col (b,sf)))

-> col (SF b c)

-> SF (a, col c) (Event d)

-> (col (SF b c) -> d -> SF a (col c))

-> SF a (col c)
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dpSwitch

Need ability to express:
• How input routed to each signal function.
• When collection changes shape.
• How collection changes shape.

dpSwitch :: Functor col =>

(forall sf . (a -> col sf -> col (b,sf)))

-> col (SF b c) Function yielding SF to switch into
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Routing

Idea:
• The routing function decides which parts of

the input to pass to each running signal
function instance.

• It achieves this by pairing a projection of the
input with each running instance:

a col sf

1

2

3

4

f

col (b,sf)

1

2

3

4

(

(

(

(

)

)

)

)

,

,

,

,
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The game core

gameCore :: IL Object

-> SF (GameInput, IL ObjOutput)

(IL ObjOutput)

gameCore objs =

dpSwitch route

objs

(arr killOrSpawn >>> notYet)

(\sfs’ f -> gameCore (f sfs’))
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Closing the feedback loop (1)

game :: RandomGen g =>

g -> Int -> Velocity -> Score ->

SF GameInput ((Int, [ObsObjState]),

Event (Either Score Score))

game g nAliens vydAlien score0 = proc gi -> do

rec

oos <- gameCore objs0 -< (gi, oos)

score <- accumHold score0

-< aliensDied oos

gameOver <- edge -< alienLanded oos

newRound <- edge -< noAliensLeft oos

...
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Closing the feedback loop (2)
...

returnA -< ((score,

map ooObsObjState

(elemsIL oos)),

(newRound ‘tag‘ (Left score))

‘lMerge‘ (gameOver

‘tag‘ (Right score)))

where

objs0 =

listToIL

(gun (Point2 0 50)

: mkAliens g (xMin+d) 900 nAliens)
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Other functional approaches?

Transition function operating on world model with
explicit state (e.g. Asteroids by Lüth):

• Model snapshot of world with all state
components.

• Transition function takes input and current
world snapshot to output and the next world
snapshot.

One could also use this technique within Yampa
to avoid switching over dynamic collections.
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Why use Yampa, then?

• Yampa provides a lot of functionality for
programming with time-varying values:
- captures common patterns
- packaged in a way that makes reuse very

easy
• Yampa allows state to be nicely encapsulated

by signal functions:
- avoids keeping track of all state globally
- adding more state is easy and usually does

not imply any major changes to type or
code structure
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State in alien

Each of the following signal functions used in
alien encapsulate state:

• noiseR

• occasionally

• hold

• iPre

• forceField

• impulseIntegral

• integral

• shield

• edge
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Why not imperative, then?

If state is so important, why not stick to
imperative/object-oriented programming where
we have “state for free”?

• Yampa retains all advantages of declarative
programming:
- High abstraction level.
- Referential transparency facilitates formal

reasoning.

• Synchronous approach avoids
“event-call-back soup”, meaning robust,
easy-to-understand semantics.
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Drawbacks of Yampa?

• Choosing the right switch can be tricky.
• Subtle issues concerning when to use e.g.
iPre, notYet.

• Syntax could be improved (with specialized
pre-processor).
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Related work (1)

• First-Order Systems: no dynamic collections
- Esterel [Berry 92], Lustre [Caspi 87], Lucid

Synchrone [Caspi 00], SimuLink, RT-FRP
[Wan, Taha, Hudak 01]

• Fudgets [Carlsson and Hallgren 93, 98]
- Continuation capture with extractSP

- Dynamic Collections with dynListF

- No synchronous bulk update
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Related work (2)

• Fran [Elliott and Hudak 97, Elliott 99]
- First class signals.
- But dynamic collections?

• FranTk [Sage 99]
- Dynamic collections, but only via IO

monad.
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Obtaining Yampa

Yampa 0.9 is available from

http://www.haskell.org/yampa
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