
Switched-on Yampa:
Programming Modular
Synthesizers in Haskell
MGS Christmas Seminar 2007

Henrik Nilsson and George Giorgidze

School of Computer Science

The University of Nottingham, UK

Programming Modular Synthesizers in Haskell – p.1/31

Modular synthesizers?

Programming Modular Synthesizers in Haskell – p.2/31

Modular synthesizers?

Programming Modular Synthesizers in Haskell – p.2/31

Modular synthesizers?

Programming Modular Synthesizers in Haskell – p.2/31

Modern Modular Synthesizers

Programming Modular Synthesizers in Haskell – p.3/31

Yampa?

Programming Modular Synthesizers in Haskell – p.4/31

Yampa?
• Domain-specific language embedded in

Haskell for programming hybrid (mixed
discrete- and continuous-time) systems.

Programming Modular Synthesizers in Haskell – p.4/31

Yampa?
• Domain-specific language embedded in

Haskell for programming hybrid (mixed
discrete- and continuous-time) systems.

• Key concepts:
- Signals: time-varying values
- Signal Functions: functions on signals
- Switching between signal functions

Programming Modular Synthesizers in Haskell – p.4/31

Yampa?
• Domain-specific language embedded in

Haskell for programming hybrid (mixed
discrete- and continuous-time) systems.

• Key concepts:
- Signals: time-varying values
- Signal Functions: functions on signals
- Switching between signal functions

• Programming model:

Programming Modular Synthesizers in Haskell – p.4/31

What is the point?

Programming Modular Synthesizers in Haskell – p.5/31

What is the point?
• Music can be seen as a hybrid phenomenon.

Thus interesting to explore a hybrid approach
to programming music and musical applications.

Programming Modular Synthesizers in Haskell – p.5/31

What is the point?
• Music can be seen as a hybrid phenomenon.

Thus interesting to explore a hybrid approach
to programming music and musical applications.

• Yampa’s programming model is very reminiscent
of programming modular synthesizers:

Programming Modular Synthesizers in Haskell – p.5/31

What is the point?
• Music can be seen as a hybrid phenomenon.

Thus interesting to explore a hybrid approach
to programming music and musical applications.

• Yampa’s programming model is very reminiscent
of programming modular synthesizers:

• Fun application! Useful for teaching?
Programming Modular Synthesizers in Haskell – p.5/31

What have we done?

Programming Modular Synthesizers in Haskell – p.6/31

What have we done?

Framework for programming modular
synthesizers in Yampa:

Programming Modular Synthesizers in Haskell – p.6/31

What have we done?

Framework for programming modular
synthesizers in Yampa:
• Sound-generating and sound-shaping

modules

Programming Modular Synthesizers in Haskell – p.6/31

What have we done?

Framework for programming modular
synthesizers in Yampa:
• Sound-generating and sound-shaping

modules
• Additional supporting infrastructure:

- Input: MIDI files (musical scores), keyboard
- Output: audio files (.wav), sound card
- Reading SoundFont files (instrument

definitions)

Programming Modular Synthesizers in Haskell – p.6/31

What have we done?

Framework for programming modular
synthesizers in Yampa:
• Sound-generating and sound-shaping

modules
• Additional supporting infrastructure:

- Input: MIDI files (musical scores), keyboard
- Output: audio files (.wav), sound card
- Reading SoundFont files (instrument

definitions)
• Status: proof-of-concept, but decent performance.

Programming Modular Synthesizers in Haskell – p.6/31

Yampa: Signal functions

x y
f

Programming Modular Synthesizers in Haskell – p.7/31

Yampa: Signal functions

x y
f

Intuition:

Programming Modular Synthesizers in Haskell – p.7/31

Yampa: Signal functions

x y
f

Intuition:

Time ≈ R

Programming Modular Synthesizers in Haskell – p.7/31

Yampa: Signal functions

x y
f

Intuition:

Time ≈ R

Signal a ≈ Time → a
x :: Signal T1

y :: Signal T2

Programming Modular Synthesizers in Haskell – p.7/31

Yampa: Signal functions

x y
f

Intuition:

Time ≈ R

Signal a ≈ Time → a
x :: Signal T1

y :: Signal T2
SF a b ≈ Signal a → Signal b

f :: SF T1 T2

Programming Modular Synthesizers in Haskell – p.7/31

Yampa: Signal functions

x y
f

Intuition:

Time ≈ R

Signal a ≈ Time → a
x :: Signal T1

y :: Signal T2
SF a b ≈ Signal a → Signal b

f :: SF T1 T2

Additionally, causality required: output at time t

must be determined by input on interval [0, t].
Programming Modular Synthesizers in Haskell – p.7/31

Yampa: Related languages

FRP/Yampa related to:
• Synchronous dataflow languages, like

Esterel, Lucid Synchrone.
• Modeling languages, like Simulink, Modelica.

Programming Modular Synthesizers in Haskell – p.8/31

Yampa: Programming (1)

In Yampa, systems are described by combining
signal functions (forming new signal functions).

Programming Modular Synthesizers in Haskell – p.9/31

Yampa: Programming (1)

In Yampa, systems are described by combining
signal functions (forming new signal functions).

For example, serial composition:

f g

Programming Modular Synthesizers in Haskell – p.9/31

Yampa: Programming (1)

In Yampa, systems are described by combining
signal functions (forming new signal functions).

For example, serial composition:

f g

A combinator can be defined that captures this
idea:

(≫) :: SF a b → SF b c → SF a c

Programming Modular Synthesizers in Haskell – p.9/31

Yampa: Programming (2)

What about larger networks?
How many combinators are needed?

g

h

f

Programming Modular Synthesizers in Haskell – p.10/31

Yampa: Programming (2)

What about larger networks?
How many combinators are needed?

g

h

f

John Hughes’s Arrow framework provides a
good answer!

Programming Modular Synthesizers in Haskell – p.10/31

Yampa: The Arrow framework (1)

f

arr f

f g

f ≫ g

f

first f

f

loop f

arr :: (a → b)→ SF a b

(≫) :: SF a b → SF b c → SF a c

first :: SF a b → SF (a, c) (b, c)

loop :: SF (a, c) (b, c)→ SF a b
Programming Modular Synthesizers in Haskell – p.11/31

Yampa: The Arrow framework (2)

Some derived combinators:

f

g

f ∗∗∗ g

f

g

f &&&g

(∗∗∗) :: SF a b → SF c d → SF (a, c) (b, d)

(&&&) :: SF a b → SF a c → SF a (b, c)

Programming Modular Synthesizers in Haskell – p.12/31

Yampa: Constructing a network

g

h

f

Programming Modular Synthesizers in Haskell – p.13/31

Yampa: Constructing a network

>>> ***

first

>>>>>>

loop

g

h

f

Programming Modular Synthesizers in Haskell – p.13/31

Yampa: Constructing a network

>>> ***

first

>>>>>>

loop

g

h

f

loop (arr (λ(x , y)→ ((x , y), x))

≫ (first f

≫ (arr (λ(x , y)→ (x , (x , y))) ≫ (g ∗∗∗ h))))

Programming Modular Synthesizers in Haskell – p.13/31

Yampa: Paterson’s Arrow notation

g

h

f

Programming Modular Synthesizers in Haskell – p.14/31

Yampa: Paterson’s Arrow notation

g

h

f
x u y

v

Programming Modular Synthesizers in Haskell – p.14/31

Yampa: Paterson’s Arrow notation

g

h

f
x u y

v

proc x → do

rec

u ← f −≺ (x , v)

y ← g−≺ u

v ← h−≺ (u, x)

returnA−≺ y

Programming Modular Synthesizers in Haskell – p.14/31

Yampa: Discrete-time signals

Yampa’s signals are conceptually
continuous-time signals.

Programming Modular Synthesizers in Haskell – p.15/31

Yampa: Discrete-time signals

Yampa’s signals are conceptually
continuous-time signals.

Discrete-time signals: signals defined at
discrete points in time.

Programming Modular Synthesizers in Haskell – p.15/31

Yampa: Discrete-time signals

Yampa’s signals are conceptually
continuous-time signals.

Discrete-time signals: signals defined at
discrete points in time.

Yampa models discrete-time signals by lifting the
co-domain of signals using an option-type:

data Event a = NoEvent | Event a

Example:

repeatedly :: Time → b → SF a (Event b)
Programming Modular Synthesizers in Haskell – p.15/31

Yampa: Switching

The structure of a Yampa system may evolve
over time. This is expressed through switching
primitives.

Example:

switch :: SF a (b,Event c)→ (c → SF a b)

→ SF a b

Programming Modular Synthesizers in Haskell – p.16/31

Example 1: Sine oscillator

oscSine f
cv

oscSine :: Frequency → SF CV Sample

oscSine f0 = proc cv → do

let f = f0 ∗ (2 ∗∗ cv)

phi ← integral−≺ 2 ∗ pi ∗ f

returnA−≺ sin phi

constant 0 ≫ oscSine 440

Programming Modular Synthesizers in Haskell – p.17/31

Example 2: Vibrato

0
oscSine 5.0 oscSine f*0.05

constant 0

≫ oscSine 5.0

≫ arr (∗0.05)

≫ oscSine 440

Programming Modular Synthesizers in Haskell – p.18/31

Example 3: 50’s Sci Fi

0
oscSine 3.0

oscSine f

*0.2

-0.25
+1.0

+

sciFi :: SF () Sample

sciFi = proc ()→ do

und ← arr (∗0.2) ≪ oscSine 3.0−≺ 0

swp ← arr (+1.0) ≪ integral −≺ −0.25

audio ← oscSine 440 −≺ und + swp

returnA−≺ audio
Programming Modular Synthesizers in Haskell – p.19/31

Envelope Generators (1)

A D S R

key on key off t

envGen :: CV → [(Time,CV)]→ (Maybe Int)

→ SF (Event ()) (CV ,Event ())

envEx = envGen 0 [(0.5, 1), (0.5, 0.5), (1.0, 0.5), (0.7, 0)]

(Just 3)

Programming Modular Synthesizers in Haskell – p.20/31

Envelope Generators (2)

How to implement?

Programming Modular Synthesizers in Haskell – p.21/31

Envelope Generators (2)

How to implement?

Integration of a step function yields suitable
shapes:

t

∫

−→
A D S R

key on key off t

Programming Modular Synthesizers in Haskell – p.21/31

Envelope Generators (3)

t

afterEach :: [(Time, b)]→ SF a (Event b)

hold :: a → SF (Event a) a

steps = afterEach [(0.7, 2), (0.5,−1), (0.5, 0), (1,−0.7), (0.7, 0)]

≫ hold 0

Programming Modular Synthesizers in Haskell – p.22/31

Envelope Generators (4)

Envelope generator with predetermined shape:

envGenAux :: CV → [(Time,CV)]→ SF a CV

envGenAux l0 tls = afterEach trs ≫ hold r0

≫ integral ≫ arr (+l0)

where

(r0 , trs) = toRates l0 tls

Programming Modular Synthesizers in Haskell – p.23/31

Envelope Generators (5)
Envelope generator responding to key off:

envGen :: CV → [(Time,CV)]→ (Maybe Int)

→ SF (Event ()) (CV ,Event ())

envGen l0 tls (Just n) =

switch (proc noteoff → do

l ← envGenAux l0 tls1−≺ ()

returnA−≺ ((l ,noEvent),noteoff ‘tag ‘ l))

(λl → envGenAux l tls2

&&&after (sum (map fst tls2)) ())

where

(tls1 , tls2) = splitAt n tls
Programming Modular Synthesizers in Haskell – p.24/31

Example 4: Bell

0

*

oscSine f*2.0oscSine (f*2.33)

envBell

bell :: Frequency → SF () (Sample,Event)

bell f = proc ()→ do

m ← oscSine (2.33 ∗ f)−≺ 0

audio ← oscSine f −≺ 2.0 ∗m

(ampl , end)← envBell −≺ noEvent

returnA−≺ (audio ∗ ampl , end)

Programming Modular Synthesizers in Haskell – p.25/31

Example 5: Tinkling Bell

tinkle :: SF () Sample

tinkle = (repeatedly 0.25 84

≫ constant ()

&&&arr (fmap (bell ◦midiNoteToFreq))

≫ rSwitch (constant 0))

Programming Modular Synthesizers in Haskell – p.26/31

Example 6: Playing a C-major scale

scale :: SF () Sample

scale = (afterEach [(0.0, 60), (2.0, 62), (2.0, 64),

(2.0, 65), (2.0, 67), (2.0, 69),

(2.0, 71), (2.0, 72)]

≫ constant ()

&&&arr (fmap (bell ◦midiNoteToFreq))

≫ rSwitch (constant 0))

&&&after 16 ()

Programming Modular Synthesizers in Haskell – p.27/31

Example 7: Playing simultaneous notes

mysterySong :: SF () (Sample ,Event ())

mysterySong = proc → do

t ← tinkle −≺ ()

m ← mystery−≺ ()

returnA−≺ (0.4 ∗ t + 0.6 ∗m)

Programming Modular Synthesizers in Haskell – p.28/31

A polyphonic synthesizer (1)
Sample-playing monophnic synthesizer:
• Read samples (instrument recordings) from

SoundFont file into internal table.
• Oscillator similar to sine oscillator, except sine

func. replaced by table lookup and interpolation.

SoundFont synthesizer structure:

Envelopes

LFO

Modulators

Oscillator Lowpass filter Amplifier

Frequency
Reverb

Chorus
Volume

Fc

Programming Modular Synthesizers in Haskell – p.29/31

A polyphonic synthesizer (2)

Exploit Yampa’s switching capabilities to:
• create and switch in a mono synth instance is

response to each note on event;
• switch out the instance in response to a

corresponding note off event.

Programming Modular Synthesizers in Haskell – p.30/31

Switched-on Yampa?

Programming Modular Synthesizers in Haskell – p.31/31

Switched-on Yampa?

Software and paper: www.cs.nott.ac.uk/~ggg
Programming Modular Synthesizers in Haskell – p.31/31

	Modular synthesizers?
	Modern Modular Synthesizers
	Yampa?
	What is the point?
	What have we done?
	Yampa: Signal functions
	Yampa: Related languages
	Yampa: Programming (1)
	Yampa: Programming (2)
	Yampa: The Arrow framework (1)
	Yampa: The Arrow framework (2)
	Yampa: Constructing a network
	Yampa: Paterson's Arrow notation
	Yampa: Discrete-time signals
	Yampa: Switching
	Example 1: Sine oscillator
	Example 2: Vibrato
	Example 3: 50's Sci Fi
	Envelope Generators (1)
	Envelope Generators (2)
	Envelope Generators (3)
	Envelope Generators (4)
	Envelope Generators (5)
	Example 4: Bell
	Example 5: Tinkling Bell
	Example 6: Playing a C-major scale
	Example 7: Playing simultaneous notes
	A polyphonic synthesizer (1)
	A polyphonic synthesizer (2)
	Switched-on Yampa?

