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What isthe point?

Music can be seen as a hybrid phenomenon.
Thus interesting to explore a hybrid approach
to programming music and musical applications.

Yampa’'s programming model is very reminiscent
of programming modular synthesizers:

Fun application! Useful for teaching?
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What have we done?

Framework for programming modular
synthesizers in Yampa:

Sound-generating and sound-shaping

modules

Additional supporting infrastructure:
Input: MIDI files (musical scores), keyboard
Output: audio files (.wav), sound card
Reading SoundFont files (instrument
definitions)

Status: proof-of-concept, but decent performance.
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Yampa: Signal functions

Intuition:

Time =~ R

Signal a ~ Time — a

x . Signal T1

y :: Signal T2

SF' a b~ Signal a — Signal b
fSFT1 T2

Additionally, causality required: output at time ¢
must be determined by input on interval |0, ¢|.
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Yampa: Related languages

FRP/Yampa related to:

Synchronous dataflow languages, like
Esterel, Lucid Synchrone.

Modeling languages, like Simulink, Modelica.
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In Yampa, systems are described by combining
signal functions (forming new signal functions).

For example, serial composition:
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A combinator can be defined that captures this
idea:

(>>):SFab—SFbc— SFac
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What about larger networks?
How many combinators are needed?

9

John Hughes’s Arrow framework provides a
good answer!



Yampa: The Arrow framework (1)

>(O—

arr f

I
L

-'_-
_

()

first f loop f
arr (e —b) — SF ab
(>>):SFab—SFbc— SFac
first - SF a b — SF (a,c) (b, c)
loop :: SF (a,c) (b,c) — SF a b




Yampa: The Arrow framework (2)

Some derived combinators:

ok g J &g

(#) = SF ab— SF cd— SF (a,c) (b,d)
(&) :: SF a b — SF a ¢ — SF a (b, ¢)
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Yampa: Constructing a networ k

loop (arr (M(z,y) — ((z,y),7))
S>> (first f
> (arr (Mz,y) — (z,(z,y))) > (g h))))
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Yampa: Paterson’s Arrow notation

_

proc z — do
rec
u<— f—=(z,v)
Yy — g—= u
v «— h— (u, )
returnA— vy
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Yampa: Discrete-time signals

Yampa'’s signals are conceptually
continuous-time signals.

Discrete-time signals: signals defined at
discrete points in time.

Yampa models discrete-time signals by lifting the
co-domain of signals using an option-type:

data Event a = NoFEvent | Event a
Example:

repeatedly :: Time — b — SF a (Event b)
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Yampa: Switching

The structure of a Yampa system may evolve

over time. This is expressed through switching
primitives.

Example:

switch :: SF a (b, Event ¢) — (¢ — SF a b)
— SF a b



Example 1. Sine oscillator

AVAVAV;

cV :
oscSnef

oscSine :: Frequency — SF CV Sample
oscSine f0 = proc cv — do
let [ = f0 x (2 x* cv)
pht «— integral—< 2 *x pi * f
returnA— sin phi

constant 0 >> oscSine 440



Example 2: Vibrato

Y WAM

L e 50 J-w{agy oot

constant
S>> o0seSine 5.0

>> arr (x0.05)
S>> oscSine 440



Example 3: 50’'s Sci Fi

sciFi .2 SF () Sample

sciFi = proc () — do
und «— arr (¥0.2) << oscSine 3.0—< 0
swp «— arr (+1.0) < integral — —0.25
audio <— oscSine 440 — und + swp
returnA— audio



Envelope Generators (1)

envGen :: CV — [(Time, CV')| — (Maybe Int)
— SF (FEvent ()) (C'V, Event ())

envEx = envGen 0 [(0.5,1),(0.5,0.5),(1.0,0.5), (0.7,0)]
(Just 3)
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Envelope Generators (2)

How to implement?

ntegration of a step function yields suitable
shapes:




Envelope Generators (3)

afterEach :: [(Time, b)] — SF a (Event b)

hold 20 — SF (Fvent a) a

steps = afterEach [(0.7,2),(0.5,—1), (0.5,0), (1, —0.7), (0.7,0) ]
>> hold 0



Envelope Generators (4)

Envelope generator with predetermined shape:

envGenAuz :: CV — [(Time, CV)| — SF a CV
envGenAux 10 tls = afterEach trs =>> hold r0

S>> antegral =>> arr (+10)
where

(r0, trs) = toRates 10 tls



Envelope Generators (5)

Envelope generator responding to key off:
envGen :: CV — [(Time, CV)| — (Maybe Int)
— SF (FEvent ()) (CV, Event ())
envGen 10 tls (Just n) =
switch (proc noteoff — do
| +— envGenAux 10 tls1— ()
returnA— ((I, noEvent), noteoff ‘tag‘l)
(A — envGenAuz | tls2
& after (sum (map fst tis2)) ())
where
(tls1, tls2) = splitAt n tis



Example 4. Bell

oscSne (f*2.33)

bell :: Frequency — SF () (Sample, Event)
bell f = proc () — do

m — oscSine (2.33 % f)— 0
audio «— oscSine f —< 2.0%xm
(ampl, end) < envBell — noFvent

returnA— (audio * ampl, end)



Example 5: Tinkling Bell

tinkle :: SF () Sample
tinkle = (repeatedly 0.25 84

>> constant ()
&arr (fmap (bell o midiNoteToFreq)
>> rSwitch (constant 0))



Example 6: Playing a C-major scale

scale :: SF () Sample
scale = (afterEach [(0.0,60), (2.0,62), (2.0, 64),
(2.0,65), (2.0,67), (2.0, 69),
(2.0,71),(2.0,72)]
>> constant ()
& arr (fmap (bell o midiNoteToFreq))
>> rSwitch (constant 0))
& after 16 ()



Example 7. Playing ssmultaneous notes

mysterySong :: SE () (Sample, Event ())
mysterySong = proc _ — do

t « tinkle —< ()

m «— mystery— ()

returnA— (0.4 x t + 0.6 x m)



A polyphonic synthesizer (1)

Sample-playing monophnic synthesizer:

Read samples (instrument recordings) from
SoundFont file into internal table.

Oscillator similar to sine oscillator, except sine
func. replaced by table lookup and interpolation.

SoundFont synthesizer structure:
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A polyphonic synthesizer (2)

Exploit Yampa’s switching capabilities to:

create and switch in a mono synth instance Is
response to each note on event;

switch out the instance in response to a
corresponding note off event.




Switched-on Yampa?



SWltc:hed -0N Yampa’>

Software and paper vwwv cs nott ac. uk/ ~g99
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