Switched-on Yampa:
Programming M odular
Synthesizersin Haskell

MGS Christmas Seminar 2007

Henrik Nilsson and George Giorgidze

School of Computer Science

The University of Nottingham, UK

Modular synthesizers?

Modular synthesizers?

-

Modern Modular Synthesizers

FitlerD1

Programming Modular Synthesizers in Haskell — p.3/31

Yampa?

° ° ° ° ° ° ° ° °
Programming Modular Synthesizers in Haskell — p.4/31

Yampa?

Domain-specific language embedded in
Haskell for programming hybrid (mixed
discrete- and continuous-time) systems.

Yampa?

Domain-specific language embedded in
Haskell for programming hybrid (mixed
discrete- and continuous-time) systems.
Key concepts:

Signals: time-varying values

Signal Functions: functions on signals

Switching between signal functions

Yampa?

Domain-specific language embedded in
Haskell for programming hybrid (mixed
discrete- and continuous-time) systems.
Key concepts:

Signals: time-varying values

Signal Functions: functions on signals

Switching between signal functions

Programming model:

What isthe point?

What isthe point?

Music can be seen as a hybrid phenomenon.
Thus interesting to explore a hybrid approach
to programming music and musical applications.

What isthe point?

Music can be seen as a hybrid phenomenon.
Thus interesting to explore a hybrid approach
to programming music and musical applications.

Yampa’'s programming model is very reminiscent
of programming modular synthesizers:

Programming Modular Synthesizers in Haskell — p.5/31

What isthe point?

Music can be seen as a hybrid phenomenon.
Thus interesting to explore a hybrid approach
to programming music and musical applications.

Yampa’'s programming model is very reminiscent
of programming modular synthesizers:

Fun application! Useful for teaching?

Programming Modular Synthesizers in Haskell — p.5/31

What have we done?

What have we done?

Framework for programming modular
synthesizers in Yampa:

What have we done?

Framework for programming modular
synthesizers in Yampa:

Sound-generating and sound-shaping
modules

What have we done?

Framework for programming modular
synthesizers in Yampa:

Sound-generating and sound-shaping
modules
Additional supporting infrastructure:
Input: MIDI files (musical scores), keyboard
Output: audio files (.wav), sound card

Reading SoundFont files (instrument
definitions)

What have we done?

Framework for programming modular
synthesizers in Yampa:

Sound-generating and sound-shaping

modules

Additional supporting infrastructure:
Input: MIDI files (musical scores), keyboard
Output: audio files (.wav), sound card
Reading SoundFont files (instrument
definitions)

Status: proof-of-concept, but decent performance.

Yampa: Signal functions

Yampa: Signal functions

Intuition:

Yampa: Signal functions

Intuition:
Time ~ R

Yampa: Signal functions

Intuition:

Time ~ R

Signal a ~ Time — a
r . Signal T'1

y :: Signal T2

Yampa: Signal functions

Intuition:

Time =~ R

Signal a ~ Time — a

r . Signal T'1

y :: Signal T2

SF' a b~ Signal a — Signal b
fSFT1 T2

Yampa: Signal functions

Intuition:

Time =~ R

Signal a ~ Time — a

x . Signal T1

y :: Signal T2

SF' a b~ Signal a — Signal b
fSFT1 T2

Additionally, causality required: output at time ¢
must be determined by input on interval |0, ¢|.

Programming Modular Synthesizers in Haskell 7/31

Yampa: Related languages

FRP/Yampa related to:

Synchronous dataflow languages, like
Esterel, Lucid Synchrone.

Modeling languages, like Simulink, Modelica.

.Yampa: Programming (1)

In Yampa, systems are described by combining
signal functions (forming new signal functions).

.Yampa: Programming (1)

In Yampa, systems are described by combining
signal functions (forming new signal functions).

For example, serial composition:

9

.Yampa: Programming (1)

In Yampa, systems are described by combining
signal functions (forming new signal functions).

For example, serial composition:

9

A combinator can be defined that captures this
idea:

(>>):SFab—SFbc— SFac

.Yampa: Programming (2)

What about larger networks?
How many combinators are needed?

9

.Yampa: Programming (2)

What about larger networks?
How many combinators are needed?

9

John Hughes’s Arrow framework provides a
good answer!

Yampa: The Arrow framework (1)

>(O—

arr f

I
L

-'_-
_

()

first f loop f
arr (e —b) — SF ab
(>>):SFab—SFbc— SFac
first - SF a b — SF (a,c) (b, c)
loop :: SF (a,c) (b,c) — SF a b

Yampa: The Arrow framework (2)

Some derived combinators:

ok g J &g

(#) = SF ab— SF cd— SF (a,c) (b,d)
(&) :: SF a b — SF a ¢ — SF a (b, ¢)

Yampa: Constructing a networ k

KN

Yampa: Constructing a networ k

Yampa: Constructing a networ k

loop (arr (M(z,y) — ((z,y),7))
S>> (first f
> (arr (Mz,y) — (z,(z,y))) > (g h))))

Yampa: Paterson’s Arrow notation

Yampa: Paterson’s Arrow notation

Yampa: Paterson’s Arrow notation

_

proc z — do
rec
u<— f—=(z,v)
Yy — g—= u
v «— h— (u,)
returnA— vy

Yampa: Discrete-time signals

Yampa'’s signals are conceptually
continuous-time signals.

Yampa: Discrete-time signals

Yampa'’s signals are conceptually
continuous-time signals.

Discrete-time signals: signals defined at
discrete points in time.

Yampa: Discrete-time signals

Yampa'’s signals are conceptually
continuous-time signals.

Discrete-time signals: signals defined at
discrete points in time.

Yampa models discrete-time signals by lifting the
co-domain of signals using an option-type:

data Event a = NoFEvent | Event a
Example:

repeatedly :: Time — b — SF a (Event b)

Programming Modular Synthesizers in Haskell — p.15/31

Yampa: Switching

The structure of a Yampa system may evolve

over time. This is expressed through switching
primitives.

Example:

switch :: SF a (b, Event ¢) — (¢ — SF a b)
— SF a b

Example 1. Sine oscillator

AVAVAV;

cV :
oscSnef

oscSine :: Frequency — SF CV Sample
oscSine f0 = proc cv — do
let [= f0 x (2 x* cv)
pht «— integral—< 2 *x pi * f
returnA— sin phi

constant 0 >> oscSine 440

Example 2: Vibrato

Y WAM

L e 50 J-w{agy oot

constant
S>> o0seSine 5.0

>> arr (x0.05)
S>> oscSine 440

Example 3: 50’'s Sci Fi

sciFi .2 SF () Sample

sciFi = proc () — do
und «— arr (¥0.2) << oscSine 3.0—< 0
swp «— arr (+1.0) < integral — —0.25
audio <— oscSine 440 — und + swp
returnA— audio

Envelope Generators (1)

envGen :: CV — [(Time, CV')| — (Maybe Int)
— SF (FEvent ()) (C'V, Event ())

envEx = envGen 0 [(0.5,1),(0.5,0.5),(1.0,0.5), (0.7,0)]
(Just 3)

Envelope Generators (2)

How to implement?

Envelope Generators (2)

How to implement?

ntegration of a step function yields suitable
shapes:

Envelope Generators (3)

afterEach :: [(Time, b)] — SF a (Event b)

hold 20 — SF (Fvent a) a

steps = afterEach [(0.7,2),(0.5,—1), (0.5,0), (1, —0.7), (0.7,0)]
>> hold 0

Envelope Generators (4)

Envelope generator with predetermined shape:

envGenAuz :: CV — [(Time, CV)| — SF a CV
envGenAux 10 tls = afterEach trs =>> hold r0

S>> antegral =>> arr (+10)
where

(r0, trs) = toRates 10 tls

Envelope Generators (5)

Envelope generator responding to key off:
envGen :: CV — [(Time, CV)| — (Maybe Int)
— SF (FEvent ()) (CV, Event ())
envGen 10 tls (Just n) =
switch (proc noteoff — do
| +— envGenAux 10 tls1— ()
returnA— ((I, noEvent), noteoff ‘tag‘l)
(A — envGenAuz | tls2
& after (sum (map fst tis2)) ())
where
(tls1, tls2) = splitAt n tis

Example 4. Bell

oscSne (f*2.33)

bell :: Frequency — SF () (Sample, Event)
bell f = proc () — do

m — oscSine (2.33 % f)— 0
audio «— oscSine f —< 2.0%xm
(ampl, end) < envBell — noFvent

returnA— (audio * ampl, end)

Example 5: Tinkling Bell

tinkle :: SF () Sample
tinkle = (repeatedly 0.25 84

>> constant ()
&arr (fmap (bell o midiNoteToFreq)
>> rSwitch (constant 0))

Example 6: Playing a C-major scale

scale :: SF () Sample
scale = (afterEach [(0.0,60), (2.0,62), (2.0, 64),
(2.0,65), (2.0,67), (2.0, 69),
(2.0,71),(2.0,72)]
>> constant ()
& arr (fmap (bell o midiNoteToFreq))
>> rSwitch (constant 0))
& after 16 ()

Example 7. Playing ssmultaneous notes

mysterySong :: SE () (Sample, Event ())
mysterySong = proc _ — do

t « tinkle —< ()

m «— mystery— ()

returnA— (0.4 x t + 0.6 x m)

A polyphonic synthesizer (1)

Sample-playing monophnic synthesizer:

Read samples (instrument recordings) from
SoundFont file into internal table.

Oscillator similar to sine oscillator, except sine
func. replaced by table lookup and interpolation.

SoundFont synthesizer structure:

Programming Modular Synthesizers in Haskell — p.29/31

A polyphonic synthesizer (2)

Exploit Yampa’s switching capabilities to:

create and switch in a mono synth instance Is
response to each note on event;

switch out the instance in response to a
corresponding note off event.

Switched-on Yampa?

SWltc:hed -0N Yampa’>

Software and paper vwwv cs nott ac. uk/ ~g99

°
Programmlng Modular Synthe3|zers in Haskell p. 31/31

	Modular synthesizers?
	Modern Modular Synthesizers
	Yampa?
	What is the point?
	What have we done?
	Yampa: Signal functions
	Yampa: Related languages
	Yampa: Programming (1)
	Yampa: Programming (2)
	Yampa: The Arrow framework (1)
	Yampa: The Arrow framework (2)
	Yampa: Constructing a network
	Yampa: Paterson's Arrow notation
	Yampa: Discrete-time signals
	Yampa: Switching
	Example 1: Sine oscillator
	Example 2: Vibrato
	Example 3: 50's Sci Fi
	Envelope Generators (1)
	Envelope Generators (2)
	Envelope Generators (3)
	Envelope Generators (4)
	Envelope Generators (5)
	Example 4: Bell
	Example 5: Tinkling Bell
	Example 6: Playing a C-major scale
	Example 7: Playing simultaneous notes
	A polyphonic synthesizer (1)
	A polyphonic synthesizer (2)
	Switched-on Yampa?

