
Ebba: An Embedded DSL for
Bayesian Inference
Chalmers, 28 May 2014

Henrik Nilsson

School of Computer Science

University of Nottingham

Joint work with Tom Nielsen, OpenBrain Ltd

Ebba: An Embedded DSL for Bayesian Inference – p.1/41

Baysig and Ebba (1)

• Baysig is a Haskell-like language for
probabilistic computation developed by
OpenBrain Ltd:

www.bayeshive.com

• Baysig supports parameter estimation; i.e.,
programs can in a sense be run both
“forwards” and “backwards”.

• This talk investigates the possibility of
implementing a Baysig-like language as a
(shallow) embedding in Haskell.

Ebba: An Embedded DSL for Bayesian Inference – p.2/41

Baysig and Ebba (2)

• The result is Ebba, short for Embedded
Baysig.

• Ebba is currently very much a prototype and
covers only a small part of what Baysig can do.

• Why an embedded version?

- Ease of experimentation

- Metaprogramming

- Ease of use as component

- Investigation into appropriate notion of
computation supporting both probabilistic
computation and parameter estimation.

Ebba: An Embedded DSL for Bayesian Inference – p.3/41

Bayesian Data Analysis (1)

A common scenario across science,
engineering, finance, . . . :

Some observations have been made.
What is/are the cause(s)?
And how certain can we be?

Example: Suppose a coin is flipped 10 times,
and the result is only heads.

• Is the coin fair (head and tail equally likely)?

• Is it perhaps biased towards heads? How much?

• Maybe it’s a coin with two heads?

Ebba: An Embedded DSL for Bayesian Inference – p.4/41

Bayesian Data Analysis (2)

Bayes’ theroem allows such questions to be
answered systematically:

P(X |Y) =
P(Y |X)× P(X)

P(Y)

where

• P(X) is the prior probability

• P(Y |X) is the likelihood function

• P(X |Y) is the posterior probability

• P(Y) is the evidence
Ebba: An Embedded DSL for Bayesian Inference – p.5/41

Bayesian Data Analysis (3)

Assuming a probabilistic model for the observations
parametrized to account for all possible causes

P(data | params)

and any knowledge about the parameters,
P(params), Bayes’ theorem yields the probability
for the parameters given the observations:

P(params | data) =
P(data | params)× P(params)

P(data)

I.e., exactly what can be inferred from the obser-
vations under the explicitly stated assumptions.

Ebba: An Embedded DSL for Bayesian Inference – p.6/41

Fair Coin (1)

A probabilistic model for a single toss of a coin is
that the probability of head is p (a Bernoulli
distribution); p is our parameter.

If the coin is tossed n times, the probability for h
heads for a given p is:

P(h | p) =

(

n

h

)

ph(1− p)n−h

(a binomial distribution).

Ebba: An Embedded DSL for Bayesian Inference – p.7/41

Fair Coin (2)

If we have no knowledge about p, except its
range, we can assume a uniformly distributed
prior:

P(p) =

{

1 if 0 ≤ p ≤ 1

0 otherwise

Ignoring the evidence, which is just a
normalization constant, we then have:

P(p |h) ∝ P(h | p)× P(p)

Ebba: An Embedded DSL for Bayesian Inference – p.8/41

Fair Coin (3)

Distribution for p given no observations:

Ebba: An Embedded DSL for Bayesian Inference – p.9/41

Fair Coin (4)

Distribution for p given 1 toss resulting in head:

Ebba: An Embedded DSL for Bayesian Inference – p.10/41

Fair Coin (5)

Distribution for p given 2 tosses resulting in 2 heads:

Ebba: An Embedded DSL for Bayesian Inference – p.11/41

Fair Coin (6)

Distribution for p given many tosses, all heads:

Ebba: An Embedded DSL for Bayesian Inference – p.12/41

Fair Coin (7)

Distribution for p once finally a tail comes up:

Ebba: An Embedded DSL for Bayesian Inference – p.13/41

Fair Coin (8)

After a fair few tosses, observing heads and tails:

Ebba: An Embedded DSL for Bayesian Inference – p.14/41

Fair Coin (9)

Distribution for p after even more tosses:

Ebba: An Embedded DSL for Bayesian Inference – p.15/41

Fair Coin (10)

As the number of observations grow:

• the distribution for the parameter becomes
increasingly sharp;

• the significance of the exact shape of the
prior diminishes.

Thus, if we trust our model, Bayes’ theorem tells
us exactly what is justified to believe about the
parameter(s) given the observations at hand.

Ebba: An Embedded DSL for Bayesian Inference – p.16/41

Probabilistic Models

In practice, there
are often many
parameters (dimen-
sions) and intricate
dependences.

Here, the nodes are
random variables
with (conditional)
probabilities P(A),
P(B |A), P(X |A),
P(Y |B,X).

Ebba: An Embedded DSL for Bayesian Inference – p.17/41

Parameter Estimation (1)

According to Bayes’
theorem, a function
proportional to the
sought probability
density function
pdfA,B|X,Y is obtained

by the “product” of
the pdfs for the
individual nodes
applied to the
observed data.

Ebba: An Embedded DSL for Bayesian Inference – p.18/41

Parameter Estimation (2)

pdfA : TA → R

pdfB|A : TA → TB → R

pdfX |A : TA → TX → R

pdfY |B,X :

(TB, TX)→ TY → R

Given observations x, y:
pdfA,B|X,Y a b ∝

pdfY |B,X (b, x) y

× pdfX |A a x

× pdfB|A b a

× pdfA a

Ebba: An Embedded DSL for Bayesian Inference – p.19/41

Parameter Estimation (3)

Problem: We only get a function proportional to
the desired pdf as the evidence in practice is
very difficult to calculate.

However, MCMC (Markov Chain Monte Carlo)
methods such as Metropolis-Hastings allow
sampling of the desired distribution. That in turn
allows the distribution for any of the parameters
to be approximated.

Ebba: An Embedded DSL for Bayesian Inference – p.20/41

Metropolis-Hastings

Let p̄ be the parameter vector and f(p̄) be the
function proprtional to the pdf of the distribution.

1. Pick a start state p̄ at random.

2. Generate a new candidate state p̄′ by
perturbing the current state p̄ a little.

3. If f(p̄′) ≥ f(p̄), keep p̄′ and make it the new
current state.

4. Otherwise keep p̄′ probabilistically, with lower
likelihood the worse p̄′ is compared with p̄.

5. Repeat from 2.
Ebba: An Embedded DSL for Bayesian Inference – p.21/41

Probabilistic Langauges and Estimation

It is straightforward to turn a general-purpose
language into one in which probabilistic models
can be expressed. In a pure functional setting,
we can use the probability monad:

coins :: Int → Prob [Bool]

coins n = do

p ← uniform 0 1

flips ← replicateM n (bernoulli p)

return flips

Ebba: An Embedded DSL for Bayesian Inference – p.22/41

Probabilistic Langauges and Estimation

However, for estimation, the static unfolding of
the structure of a computation must be a finite
graph.

This suggests that a monad is a too general
notion of computation for probabilistic models on
which we wish to perform estimation, at least in
combination with general recursion, as allows
computations to be computed dynamically.

Ebba: An Embedded DSL for Bayesian Inference – p.23/41

Probabilistic Languages and Estimation

Maybe something like arrows would be a better
fit?

• The structure of an arrow computation is
static (unless arrow application/similar is
available)

• Arrows makes the dependences between
computations manifest.

• Conditional probabilities, a → Prob b are an
arrow through the Kleisli construction.

Ebba: An Embedded DSL for Bayesian Inference – p.24/41

The Conditional Probability Arrow (1)

Central abstraction: CP o a b

• a: The “given”

• b: The “outcome”

• o: Observability. Describes which parts of the
given are observable from the outcome; i.e.,
for which there exists a pure function mapping
(part of) the outcome to (part of) the given.

Note: “Local”, modular, composable notion.
Does not mean “will be observed”.

Ebba: An Embedded DSL for Bayesian Inference – p.25/41

The Conditional Probability Arrow (2)

What kind of arrow?

• Clearly not a classic arrow . . .

• Probably a Constrained, Indexed,
Generalized Arrow.

(∗∗∗) :: CP o1 a b → CP o2 c d → CP (o1 ∗∗∗ o2) (a, c) (b, d)

(≫) :: Fusable o2 b

⇒ CP o1 a b → CP o2 b c → CP (o1 ≫ o2) a c

(&&&) :: Selectable o1 o2 a

⇒ CP o1 a b → CP o2 a c → CP (o1 &&& o2) a (b, c)

Ebba: An Embedded DSL for Bayesian Inference – p.26/41

Observability (1)

Observability is described by (nested) tuples of:

• data U : Unobservable

• data O (p :: [Nat]): Observable from position p.

E.g. (U ,O [1, 2]) means that fst of the given is
unobservable, while snd can be observed from
snd ◦ fst of the outcome.

Ebba: An Embedded DSL for Bayesian Inference – p.27/41

Observability (2)

Type functions are used to compute observability
of the arrow combinators. E.g. recall

(≫) :: Fusable o2 b

⇒ CP o1 a b → CP o2 b c → CP (o1 ≫ o2) a c

The type function (≫) is defined as:

type family o1 ≫ o2

type instance U ≫ o = U

type instance (O p) ≫ o = Prj p o

type instance (o1 , o2) ≫ o = (o1 ≫ o, o2 ≫ o)

Ebba: An Embedded DSL for Bayesian Inference – p.28/41

Implementation (1)

type Parameters = Map Name ParVal

data CP o a b = CP {

cp :: a → Prob b,

initEstim :: a → a → b

→ Prob (b, a,Double ,Parameters ,E o a b)

}

data E o a b = E {

estimate :: Bool → a → a → b

→ Prob (b, a,Double,Parameters ,E o a b)

}

Ebba: An Embedded DSL for Bayesian Inference – p.29/41

Implementation (2)

Arguments to initEstim and estimate:

• Keep (estimate only)

• Estimate of the given

• Fused estimate and observation of given (for
computation of summand of the logarithm of
the overall pdf for the parameters given the
data).

• Observation of the outcome

Ebba: An Embedded DSL for Bayesian Inference – p.30/41

Implementation (3)

Result from initEstim and estimate:

• Estimate of the outcome

• Observation of the given

• Summand of logarithm of overall pdf

• Parameters (estimated or observed)

• Continuation (Yampa-style)

Ebba: An Embedded DSL for Bayesian Inference – p.31/41

Implementation (4)

Implementation of the estimator of (≫):

e1 ≫ e2 = E $ λk x_e x_f z_o → do

fp ← mfix $ λ∼(, y_f ′)→ do

(y_e, x_o, lpds1 , ps1 , e1 ′)← estimate e1 k x_e x_f y_f ′

(z_e, y_o, lpds2 , ps2 , e2 ′) ← estimate e2 k y_e y_f ′ z_o

let y_f = fuse (obs e2) y_e y_o

return ((z_e, x_o, lpds1 + lpds2 ,M .union ps1 ps2 ,

e1 ′
≫ e2 ′),

y_f)

return (fst fp)

Ebba: An Embedded DSL for Bayesian Inference – p.32/41

Example: The Lighthouse (1)

Ebba: An Embedded DSL for Bayesian Inference – p.33/41

Example: The Lighthouse (2)

An analysis of the problem shows that the light-
house flashes are Cauchy-distributed along the
shore with pdf:

pdf lhf =
β

π(β2 + (x− α)2)

The mean and variance of a Cauchy distribution
are undefined!

Thus, even if we’re only interested in α, attempting
to estimate it by simple sample averaging is futile.

Ebba: An Embedded DSL for Bayesian Inference – p.34/41

Example: The Lighthouse (3)

The main part of the Ebba lighthouse model:

lightHouse :: CP U () [Double]
lightHouse = proc () do

α← uniformParam "alpha" (−50) 50−≺ ()
β ← uniformParam "beta" 0 20−≺ ()
xs ← many 10 lightHouseFlash −≺ (α, β)
returnA−≺ xs

Note:

• Arrow-syntax used for clarity: not supported yet.

• Ebba needs refactoring to support data and
parameters with arbitrary distributions.

Ebba: An Embedded DSL for Bayesian Inference – p.35/41

Example: The Lighthouse (4)

To test:

• A vector of 200 detected flashes was
generated at random from the model for
α = 8 and β = 2. (the “ground truth”).

• The parameter distribution given the outcome
sampled 100000 times using Metropolis-
Hastings (picking every 10th sample from the
Markov chain to reduce correlation between
samples).

Ebba: An Embedded DSL for Bayesian Inference – p.36/41

Example: The Lighthouse (5)

Resulting distribution for α:

 0

 0.5

 1

 1.5

 2

 2.5

 7 7.2 7.4 7.6 7.8 8 8.2 8.4 8.6 8.8

Ebba: An Embedded DSL for Bayesian Inference – p.37/41

Example: The Lighthouse (6)

Resulting distribution for β:

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Ebba: An Embedded DSL for Bayesian Inference – p.38/41

What’s Next? (1)

• Testing on larger examples, including
“hierarchical” models (nested use of many).

• Refactoring and the design, in particular:

- General data and parameter combinators
parametrised on the distributions.

- Framework for programming with
Constrained, Indexed, Generalised Arrows:
• Type classes CIGArrow1 , CIGArrow2
• Syntactic support through preprocessor

implemented using QuasiQuoting?

Ebba: An Embedded DSL for Bayesian Inference – p.39/41

What’s Next? (2)

Probably something like:

class (CIGArrow1 a1 ,CIGArrow1 a2)

⇒ CIGArrow2 a1 a2 where

type CompT a1 a2 :: ∗ → ∗ → ∗

type CompC a1 a2 b c d :: Constraint

type CompC a1 a2 b c d = ()

(≫) :: CompC a1 a2 b c d

⇒ a1 b c → a2 c d

→ (CompT a1 a2) b d

. . .
Ebba: An Embedded DSL for Bayesian Inference – p.40/41

What’s Next? (3)

• More robust implementation of Metropolis
Hastings

• Move towards a deep embedding for
estimation?

Idea: route a variable representation (name)
through the network in place of parameter
estimates.

Ebba: An Embedded DSL for Bayesian Inference – p.41/41

	Baysig and Ebba (1)
	Baysig and Ebba (2)
	Bayesian Data Analysis (1)
	Bayesian Data Analysis (2)
	Bayesian Data Analysis (3)
	Fair Coin (1)
	Fair Coin (2)
	Fair Coin (3)
	Fair Coin (4)
	Fair Coin (5)
	Fair Coin (6)
	Fair Coin (7)
	Fair Coin (8)
	Fair Coin (9)
	Fair Coin (10)
	Probabilistic Models
	Parameter Estimation (1)
	Parameter Estimation (2)
	Parameter Estimation (3)
	Metropolis-Hastings
	Probabilistic Langauges and Estimation
	Probabilistic Langauges and Estimation
	Probabilistic Languages and Estimation
	The Conditional Probability Arrow (1)
	The Conditional Probability Arrow (2)
	Observability (1)
	Observability (2)
	Implementation (1)
	Implementation (2)
	Implementation (3)
	Implementation (4)
	Example: The Lighthouse (1)
	Example: The Lighthouse (2)
	Example: The Lighthouse (3)
	Example: The Lighthouse (4)
	Example: The Lighthouse (5)
	Example: The Lighthouse (6)
	What's Next? (1)
	What's Next? (2)
	What's Next? (3)

