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Foreword

Logics of knowledge and belief, as well as other attitudes such as desire or
intention, have been extensively studied. However, most of the treatments of
knowledge and belief make strong and idealised assumptions about the reason-
ers. For example, traditional epistemic logic says that agents know all logical
consequences of their knowledge. Similarly, logics of action and strategic in-
teraction are usually based on game theoretic models which assume perfect
rationality. Models based on such assumptions can be used to describe ideal
agents without bounds on resources such as time, memory, etc, but they fail to
accurately describe non-ideal agents which are computationally bounded.

The Workshop on Logics for Resource-Bounded Agents was held as a part of
the 18th European Summer School in Logic, Language and Information (ESS-
LLI, Malaga, 2006), in order to provide a forum for advanced PhD students
and researchers to present and discuss possible solutions to the problem of for-
mally capturing the properties of knowledge, belief, action, etc., of non-idealised
resource-bounded agents with colleagues and researchers who work in logic, com-
puter science and other areas represented at ESSLLI.

The workshop started with an invited talk by Rohit Parikh on Belief, Knowl-
edge, Sentences and Propositions.

10 contributed papers were accepted for presentation at the workshop. Ac-
tive logics, a logical framework for modeling resource bounded agents, receive
attention from several of the authors. Mikael Asker and Jacek Malec discuss,
in the paper Improving active consequence, notions of semantic consequence in
active logics. In A modal logic of time-bounded reasoning agents, Ayelet But-
man and Sarit Kraus present a modal active logic, describing how the beliefs of
non-ideal reasoners can evolve over time. Slawomir Nowaczyk also uses active
logic; in Partial planning for situated agents based on active logic he argues for a
combination of active logics and situation calculus. Time is of prime importance
for other contributions as well. Mark Jago, in Rule-based and resource-bounded:
A new look at epistemic logic, describes a modal logic of how the beliefs of
agents who reason by applying rules to their existing beliefs, change over time.
Michal Walicki, Marc Bezem and Wojtek Szajnkenig discuss logical aspects
of state change over dense linear time, in A strongly complete logic of dense
time intervals. Paul Egre, in Logical omniscience and counterpart semantics,
uses counterpart semantics to model belief, while in Impossible states at work,
Mikael Cozic extends the well known idea of using impossible worlds to model
non-ideal belief to the probabilistic case, in order to model non-ideal rational
choice. Aaron Kaplan, in Simulative inference in a computational model of be-
lief, describes how beliefs about beliefs can come about by modeling how one
reasoner can simulate the reasoning of another reasoner. In Commitment-based
decision making for bounded agents, Olivier Roy attempts to incorporate a con-
cept of intention, which has been argued can be useful for resource bounded
decision making, into utility theory. Resource bounded agents differ not only
from idealised agents, but also from each other. Fenrong Liu, in the paper
Diversity of agents, discusses several of the ways agents can be different.
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Thomas Ågotnes and Natasha Alechina
(Workshop organisers)

4/135



Table of Contents

Foreword 3

Table of contents 5

Rohit Parikh, Invited talk: Belief, knowledge, sentences and propositions 6

Mikael Asker and Jacek Malec, Improving active consequence 8

Ayelet Butman and Sarit Kraus, A modal logic of time-bounded reasoning
agents 22

Mikael Cozic, Impossible states at work 34

Paul Egre, Logical omniscience and counterpart semantics 50

Mark Jago, Rule-based and resource-bounded: A new look at epistemic logic 63

Aaron Kaplan, Simulative inference in a computational model of belief 78

Fenrong Liu, Diversity of agents 88

Slawomir Nowaczyk, Partial planning for situated agents based on active logic
99

Olivier Roy, Commitment-Based Decision Making for Bounded Agents 112

Michal Walicki, Marc Bezem and Wojtek Szajnkenig, A strongly complete logic
of dense time intervals 124

5/135



Belief, Knowledge, Sentences and Propositions

Rohit Parikh

Departments of Computer Science, Mathematics and Philosophy,

Brooklyn College of CUNY and CUNY Graduate Center

Abstract: Developments in reasoning about knowledge have picked up pace since the fundamental

work of Jaakko Hintikka [4] and David Lewis [5]. A great deal of purely technical work has since

come out of IBM [3], CUNY [7-13], Indiana, Amsterdam, and other places.

However, some philosophical issues like the justification of knowledge go back to Plato and have

recently received impetus since the work of Gettier, resulting in much activity in empistemology.

Issues about belief go back at least to Frege, and the nature of belief is another active area.

Finally, starting with Aumann’s work [1], there has been much activity in Game theory which is

related to the issues of knowledge and common knowledge.

We will try to give a bird’s eye view of some of these developments, and also say something about

what it is that we know or believe, whether it is sentences or propositions; and if the latter, what

they are. This will give us some insight into the thorny problem of logical omniscience.

Ultimately our (somewhat Wittgensteinian) view is that these notions like belief, knowledge, and

common knowledge must be firmly grounded in human activity, both at the personal level (where

notions like (subjective) probability, or the maximization of utility arise) and at the group level

where issues of common knowledge, co-ordination, levels of knowledge, and judgment aggregation

[6] arise.
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Improving Active Consequence

Mikael Asker, Jacek Malec
Department of Computer Science

Lund University

Abstract

Active consequence is a semantically defined consequence relation for active logics. It has recently been
shown that active consequence is not paraconsistent, contrary to the expectations. In this paper we study
a subset of the active consequence, local consequence, which turns out to be paraconsistent. The relation
between local consequence and classical logic is investigated by first observing that the active modus
ponens rule is locally unsound. But the part of the consequence relation generated by that rule which is
outside local consequence is exactly that part where the premises are inconsistent. We propose the name
semantic residual for this part, and interpret it as a reflection of artefacts in the proof theory. The residual
must be included in the semantic consequence relation to achieve soundness.

1 Introduction

Active logics [EDKM+99] is a family of logics intended to model awareness of resource limitations of
the reasoning process. Active logics can be used for reasoning in time, handling contradictions and for
introspection. Active logics are usually defined syntactically, as axiomatic theories, but until recently have
had no formally defined semantics.

A major property of a logic capturing common intuitions about resource-awareness is paraconsistency.
Speaking informally, this property guarantees that presence of a contradictory pair of sentences in a theory
does not necessarily lead to arbitrary consequences, i.e., that the logic is not explosive.

The first and so far the only serious attempt to build a semantics for active logics is active consequence
from [AGGP05b] and [AGGP05a], introduced below in Section 2. However, it has been shown in [Hov05]
that active consequence is indeed explosive.

In our opinion the active consequence relation can be modified in order to escape explosiveness. In this
paper we describe our attempt to constrain the active consequence so that an active logic based on it becomes
paraconsistent. The rest of the paper is divided as follows: Section 2 introduces briefly active consequence.
Although the paper is meant to be self-consistent, previous reading of [AGGP05b] and possibly [Hov05]
may make it more legible. Section 3 introduces local consequence, a subset of active consequence with
some reasonable properties, and shows that local consequence is paraconsistent. Section 4 discusses its
relation to classical logic and introduces the concept of semantic residual. Then a short review of related
work is presented in Section 5. Finally, Section 6 contains some conclusions and discusses how we can
continue towards a complete semantics for active logics.

2 Active consequence

Active consequence was defined in [AGGP05b] as an attempt to create a semantics for a simple active
logic. To make the task simple, the language is very limited. The language L is a sorted first-order language
defined in two parts: a propositional languageLw to express facts about the world, and a first order language
La used to express facts about the agent and its beliefs.

We will use SnL to denote the set of all sentences of a language L. For the languages mentioned above,
this defines the sets SnL, SnLw

and SnLa
.

Lw is built around a set S = {Si | i ∈ N} of sentence symbols, the propositional connectives ¬ and →
and parentheses. The semantics of Lw is defined using traditional truth assignments. An Lw-interpretation
h is a function h : SnLw

→ {�,⊥}.
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La is built around a set of constant symbols that can refer to points in time and to sentences in Lw and
in La itself, the predicates now, contra and bel and the propositional connective ¬. The intended meanings
of now(ci), contra(dϕ, d¬ϕ, ci) and bel(eϕ, ci) are to indicate the current time i, the existence of a direct
contradiction {ϕ,¬ϕ} at some time i and that the agent has a belief ϕ at some time i, respectively.

La is very primitive, for example it has no conjunction. As is pointed out in [Hov05], this heavily limits
its expressiveness. But the focus in [AGGP05b] is on contradiction handling in the Lw parts of the language.

The semantics of La is based on La-structures Ha
t , which describe the reasoning history of agent a at

time t. An La-structure Ha
t can be built from the time sequence 〈KBa

k〉
t
k=0

of the knowledge bases of
agent a up to time t.

The language L is defined so that SnL = SnLw
∪ SnLa

. Its semantics is based on active structures
Ma

t = 〈ht, H
a
t 〉, consisting of one Lw-interpretation ht and one La-structure Ha

t . More details about the
languages L, Lw and La can be found in [Hov05].

Two kinds of consistency are defined for knowledge bases containing L-formulas:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Definition 1 (Temporal consistency)
A set of sentences Σ ⊆ SnL is said to be

- temporally weakly consistent at time t, t-weakly consistent for short, if
∃Ma

t : Ma
t � (Σ ∩ SnLa

),

- temporally strongly consistent at time t, t-strongly consistent for short, if
∃Ma

t : Ma
t � Σ.

The sets of all finite t-weakly and t-strongly consistent subsets of SnL are
denoted Σω

t and Scons t, respectively.

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

As in [AGGP05b], most of our databases are assumed to be t-weakly consistent.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Definition 2 (Perception function)
A perception function at time t is a map pert : Σω

t → P(SnL′) that is
induced by an infinite sequence of non-negative integers 〈i1, i2, ...〉 :

1. Let Σ ∈ Σω
t and let Γ = Σ ∩ SnLw

. Order the sentences of Γ lexico-
graphically in a string, and let 〈Sj1 , Sj2 , ..., Sjn

〉 be the finite sequence of all
sentence-symbol tokens occurring in this string. Note that a symbol may be
repeated in this sequence a number of times. Let Γ′ be the set of L′

w-sentences
obtained by replacing the Lw-symbols Sjk

in the Lw-sentences in Γ with
L′

w-symbols Sik

jk
for 1 ≤ k ≤ n.

2. Let p : Γ → Γ′ be the bijection mapping every sentence of Γ to its
corresponding Γ′-sentence.

3. Let the set of perceived direct contradictions, denoted DC, be the set

{ϕ ∈ Γ | p(ϕ) ∈ Γ′ and ¬p(ϕ) ∈ Γ′}.

4. Finally, let pert(Σ) be the set

[(Σ \ Γ) ∪ Γ′]
\ [{p(ϕ) |ϕ ∈ DC} ∪ {¬p(ϕ) |ϕ ∈ DC}]
∪ {contra(dϕ, d¬ϕ, ct) |ϕ ∈ DC}.

Denote with PERt the set of all perception functions at time t.

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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With the languages described, we are now ready to describe active consequence itself. The basic idea
is that the agent perceives only a part of its database, and thus only some of the direct contradictions in the
database are visible at a given instant.

Active consequence models this by watching the database through a perception function, which maps
the L-sentences in the database to another language L′. By adding extra indexes to the sentence symbols
Sj in the Lw formulas in the database, they are mapped to sentence symbols Si

j in another language L′
w.

For a direct contradiction to be visible, the sentence symbols in both of the formulas involved in the
contradiction must be mapped to the same extra indexes. If they are not, then the L′

w-symbols are different
and there is no contradiction, so we can hide a direct contradiction by mapping the symbols in the L-
formulas involved to different extra indexes.

Perception functions are formally defined in Definition 2. A perception function maps a set of L-
formulas - a knowledge base - to a set of L′-formulas - the perception of that knowledge base.

Example 1 (Perception functions) Let Σ be the set {now(c5), S1,¬S2,¬S1}, and let per5 be the percep-
tion function (at time 5) determined by the infinite superscript sequence 〈1, 2, 1, ...〉 (only the first three
elements are shown). We now wish to apply per5 to Σ. With the terminology of Definition 2, we get
Γ = {S1,¬S1,¬S2} (presented in alphabetically ordered form). Hence the finite sequence of sentence-
symbol tokens is 〈S1, S1, S2〉, and thus we get Γ′ = {S1

1 ,¬S2
1 ,¬S1

2}. Since there are no direct contradic-
tions in Γ′, we have per5(Σ) = {now(c5), S1

1 ,¬S2
1 ,¬S1

2}.
Should instead both occurrences of S1 have been mapped to the same symbol, say S1

1 , we would have
had a direct contradiction and the resulting image would then have been the set

{now(c5),¬S1
2 , contra(dS1

, d¬S1
, c5)}.

Next, we define the model set of a database of world formulas from Lw or L′
w:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Definition 3 (Model set of a database of world formulas)

∀ Σ ∈ SnLw
: M(Σ) = {All Lw-interpretations h

such that h � Σ}

∀ Σ ∈ SnL′

w
: M(Σ) = {All L′

w-interpretations h

such that h � Σ}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

This will be useful later, when reasoning about the models.
We can now define active consequence itself. The basic idea is that one knowledge base follows from

another, if there are ways to perceive the knowledge bases (perception functions) for which there is classical
consequence between the perceptions. The following is Johan Hovold’s improved (compared to the one in
[AGGP05b]) definition of active consequence from [Hov05], with changed notation.

The agent index a is important, because there might be many different agents a with different histories
Ha

t+1, but with the same databases Σ at time t and Θ at time t + 1. [Hov05] contains a discussion about the
concept of Σ-determinism, which motivates the universal quantifier for a.

The “time stamps” used by the now, contra and bel predicates in this active logic are properties of the
databases and are incremented by the steps taken by the consequence relation, as described in the detailed
definition of La-structures in [AGGP05b].

Unfortunately, in [Hov05] it was proved that active consequence is explosive. This makes it less useful
as a semantic consequence relation in itself.
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Definition 4 (Active consequence)
Let Σ ∈ Σω

t be t-weakly consistent, and let Θ ⊆ SnL be arbitrary. We say
that Θ is a 1-step active consequence of Σ at time t, written Σ �a 1 Θ, if and
only if

∃ pert ∈ PERt : ∃ pert+1 ∈ PERt+1 : ∀a : [KBa
t = Σ →

[Ha
t+1 � (pert+1(Θ) ∩ SnLa

)∧
M(pert(Σ) ∩ SnL′

w
) �= ∅ ∧

(pert(Σ) ∩ SnL′

w
) � (pert+1(Θ) ∩ SnL′

w
)]]

n-step active consequence is defined recursively:

Σ �a n Θ ⇔ ∃ Γ ⊆ SnL : Σ �a n−1 Γ ∧ Γ �a 1 Θ

Finally, active consequence in general is defined as:

Σ �a Θ ⇔ ∃ n ∈ N : Σ �a n Θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3 Local consequence

The informal reasoning behind active consequence in [AGGP05b] is that the agent only perceives a part of
its knowledge base and thus only a part of the contradictions in it. We find that reasoning appealing and our
working hypothesis has been that the authors of [AGGP05b] did good informal background reasoning, and
just made some formal mistakes.

An analysis of the explosivity proof in [Hov05] shows that one important problem is that we can map
the same variable to two values at the same time. This is what causes the explosion, and in this sense, the
perceptions functions in active consequence are too general.

One idea about how to cure the problems is to restrict the choice of perception functions. In some active
logics systems, such as the memory model in [DMP86] and the Lmm system in [Ask03], the subdivision of
the knowledge base is done at the formula level, not at the term level. So one reasonable way to restrict the
choice of perception functions is to take subsets of the formulas at the left-hand side (lhs) and right-hand
side (rhs). This also eliminates the “two values at the same time” problem. If we require the subsets to
be consistent, then classical logical consequence between the perceptions is meaningful in the sense that
models do exist.

If we then have a consistent subset on the lhs, what should follow from it on the rhs? Classical logic
consequence requires that the models of the lhs are a subset of the models of the rhs. This means that new
models can be added, but old models can’t be deleted. The new formulas added to the rhs might possibly
restrict the model set, which is what we want to avoid. We may avoid it if the new formulas follow classically
from the subset. The old formulas on the rhs can’t add any new restrictions on the models, because they are
also present on the lhs.

So what we want to do is to take a consistent subset of the lhs and take the subset of the rhs which
contains the new formulas. Technically, this can be realized inside the framework of active consequence, by
mapping the symbols in a formula to index 1 iff the formula is a member of the subset. Otherwise its terms
are mapped to unique indexes different from 1 to avoid restricting the model set. One more requirement
which turns out to be necessary is that the old formulas on the right side are mapped to the same indexes
as on the left side. These restrictions on the perception functions are expressed formally in the following
definition.
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Definition 5 (Local perception function pair)
Let Σ ∈ Σω

t and Θ ⊆ SnL and denote with Γ1 the set Σ ∩ SnLw
and

with Γ2 the set Θ ∩ SnLw
. Order the sentences in Γ1 and Γ2 lexico-

graphically as ϕ11, ϕ12, ..., ϕ1m1
and ϕ21, ϕ22, ..., ϕ2m2

, respectively. Let
〈Sj11 , Sj12 , ..., Sj1n1

〉 and 〈Sj21 , Sj22 , ..., Sj2n2
〉 be the finite sequences of

all sentence-symbol tokens occurring in the strings ϕ11ϕ12...ϕ1m1
and

ϕ21ϕ22...ϕ2m2
, the concatenated formulas. For each k1 in {1, ..., n1} or k2

in {1, ..., n2}, there is a corresponding formula ϕ1l, 1 ≤ l ≤ m1 or ϕ2l,
1 ≤ l ≤ m2, to which the sentence symbol Sj1k1

or Sj2k2
belongs.

For each Δ ⊆ Γ1, we can define a sequence of positive integers 〈i11, i12, ...〉
by

i1k
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if ϕ1l ∈ Δ, where ϕ1l is

the formula in Γ1 containing Sj1k

or if k > n1

k + 1 otherwise

We also define the sequence 〈i21, i22, ...〉 of positive integers as

i2k
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if ϕ2l ∈ Γ2 \ Γ1, where ϕ2l is

the formula in Γ2 containing Sj2k

or if k > n2

otherwise ϕ2l ∈ Γ2 ∩ Γ1 ⊆ Γ1 - use the same value

as that used for ϕ2l in the i1k sequence

The sequences 〈i11, i12, ...〉 and 〈i21, i22, ...〉 above define together a pair of
perception functions (pert, pert+1).

The set PERl t(Σ, Θ) is the set of perception function pairs defined as above
for all consistent subsets Δ ⊆ Σ ∩ SnLw

. This defines the function

PERl t : Σω
t × P(SnL) → P(PERt) × P(PERt+1)

which generates the set of possible local perception function pairs from the
sets of premises and results.

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We can now use the PERl t restriction on the perception functions to define a new consequence relation:

⎡
⎢⎢⎢⎢⎢⎣

Definition 6 (Local consequence)
The consequence relation �l 1 is defined by restricting pert and pert+1 with
PERl t in the definition of �a 1. The consequence relation �l n is defined
recursively from �l 1, in the same way as �a n is defined from �a 1, and the
relation �l is defined from �l n in the same way as �a is defined from �a n.

⎤
⎥⎥⎥⎥⎥⎦

The term local is loosely derived from the idea that locally, between the visible consistent parts of the
databases, there is classical consequence.
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The following theorem shows that Definition 6 is correct, in the sense that the new consequence relation
has the desired properties:

Theorem 1 (Local consequence is local)

∀ (Σ, Θ) ∈ Σω
t × P(SnL) :

Σ �l 1 Θ ⇒ ∃ Σ′ ⊆ Σ ∩ SnLw
: M(Σ′) �= ∅ ∧ Σ′

� (Θ \ Σ) ∩ SnLw

∀ (Σ, Θ) ∈ P(SnLw
) × P(SnLw

) :
(∃Σ′ ⊆ Σ : M(Σ′) �= ∅ ∧ Σ′

� Θ \ Σ) ⇒ Σ �l 1 Θ

Proof: See Appendix A.

Next, we show that local consequence is a subset of active consequence:

Theorem 2 (Local consequence is active) �l ⊂�a.

Proof:

∀ (Σ, Θ) ∈ Σω
t × P(SnL) : PERl t(Σ, Θ) ⊂ PERt × PERt+1 (1)

So the set of perception functions used when defining �l 1 is a subset of the set of perception functions used
when defining �a 1.

�

This property is used in Section 4 when investigating the relation between local consequence and classical
logic.

In [Hov05], active consequence is said to be explosive because the explosive rule

t : ϕ,¬ϕ

t + 1 : ψ
, where ϕ, ψ ∈ SnLw

(2)

is active sound. By analogy, local consequence would be explosive if

∀ Σ ∈ Σω
t : ∀ (ϕ, ψ) ∈ SnLw

× SnLw
: {ϕ,¬ϕ} ⊆ Σ ⇒ Σ �l Σ ∪ {ψ} (3)

and otherwise paraconsistent. We will now show that it in fact is paraconsistent:

Theorem 3 (Local consequence is paraconsistent)

¬ ∀ Σ ∈ Σω
t : ∀ (ϕ, ψ) ∈ Sn2

Lw
: {ϕ,¬ϕ} ⊆ Σ ⇒ Σ �l Σ ∪ {ψ}

Proof: See Appendix B.

4 Relation to classical logic

In Section 3, we claimed that �l is paraconsistent. We will now show that the world part of local conse-
quence is classical, a property of �l which is used when proving its paraconsistency in Appendix B:

Theorem 4 (The world part of local consequence is classical)

∀ (Σ, Θ) ∈ Σω
t × P(SnL) : Σ �l 1 Θ ⇒ Σ ∩ SnLw

� Θ ∩ SnLw
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Proof:

If Σ �l 1 Θ, then by Theorem 1 we have

∃ Σ′ ⊆ Σ ∩ SnLw
: M(Σ′) �= ∅ ∧ Σ′

� (Θ \ Σ) ∩ SnLw
(4)

We have

Σ′ ⊆ Σ ∩ SnLw
⇒ Σ ∩ SnLw

� Σ′ (5)

and we get

Σ ∩ SnLw
� Σ′ ∧ Σ′

� (Θ \ Σ) ∩ SnLw
⇒

Σ ∩ SnLw
� (Θ \ Σ) ∩ SnLw

⇒

Σ ∩ SnLw
� Θ ∩ SnLw

(6)

�

Next, we show that for strongly consistent databases, �l has the same nice relation to classical logic as that
proved in [Hov05] for �a:

Theorem 5 For consistent world formulas, local consequence is equivalent to classical consequence:

∀ (Σ, Θ) ∈ [P(SnLw
)]2 : M(Σ) �= ∅ ⇒ (Σ �l 1 Θ ⇔ Σ � Θ)

Proof:

�l 1⇒� ) : Use Theorem 4 above.

�l 1⇐� ) :

We have

Σ � Θ ⇒ ∃ Σ′ ⊆ Σ : Σ′
� Θ (7)

and

Σ′
� Θ ⇒ Σ′

� Θ \ Σ (8)

So if M(Σ) �= ∅, we get

∃ Σ′ ⊆ Σ : M(Σ′) �= ∅ ∧ Σ′
� Θ \ Σ (9)

which by Theorem 1 implies that Σ �l 1 Θ.

�

Let �amp be the consequence relation which is generated by the active modus ponens inference rule, the
active logics variant of the traditional modus ponens rule:

t : ϕ, ϕ → ψ

t + 1 : ψ
, where ϕ, ψ ∈ SnLw

(10)

Active modus ponens is certainly a rule which we want to be local sound. But unfortunately, because

{¬(S1 → S1), (¬(S1 → S1)) → S2} �l {S2} (11)

it isn’t, �amp \ �l �= ∅ !
In the proof of active soundness for the active modus ponens rule in [AGGP05b], all variables in the

premises are mapped to different indexes, to guarantee that the premises are consistent and have models.
That can’t be done here, so in this sense local consequence is a too restrictive subset of active consequence.
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We want to handle active modus ponens, but still be paraconsistent. So we have to find a consequence
relation �x “between” �l and �a, with �l ⊂�x to include active modus ponens, but with �x ⊂�a to remain
paraconsistent.

The part of �amp that is inside �l is the part where the premises have models and the reasoning is
“truly meaningful”. The part of �amp that is outside �l, the semantic residual, is exactly the part where
the premises are inconsistent. We interpret the residual as a reflection of artifacts in the proof theory. The
residual models the proof theory when it is doing “meaningless” reasoning with inconsistent premises.

We believe that there is a reason for why the proof theory does this kind of “meaningless” reasoning,
and that the reason is that the inference rule has no way to find out that the reasoning is “meaningless”.
Inference rules are syntactic operations which can be implemented efficiently with simple pattern matching,
and are “too stupid” to discover inconsistency. Computationally, discovering inconsistency is expensive.
The residual part is present also in classical logic, it is just that nobody has thought of it before. The
behavior of classical logic with inconsistent databases is so ugly that nobody has bothered with the details.

The residual part must be included in a semantic consequence relation to achieve soundness, and because
active modus ponens is active sound, we can include the residual in the semantic consequence relation and
still have that relation being a subset of active consequence. Now the utility of being a subset of active
consequence as proved in Theorem 2 becomes apparent. That property enables us to go outside �l to other
parts of �a to cover the residual parts of the rules.

5 Related work

The work described in this paper directly builds on the earlier work on Active Logics: logics aware of
passage of time and the computational cost of inference. An early attempt in this direction has been reported
in [Lev84], further improved and extended in several ways by [FH88]. However, both approaches suffer
from the (possibly partial) omniscience problem: the systems cannot model agents with finite memory
resources. The next steps, attempting to overcome this issue, were the Memory Model [DMP86] and the
step-logic [EDP88] that evolved into a family of active logics [EDKM+99]. Active logics have been used
so far to describe a variety of domains, however, none of the proposed systems has been shown to overcome
the limitation of the exponential blow-up of the number of formulae produced in the inference process.
Another property of active logics is that until very recently they missed well-defined semantics.

The first effort to provide a natural semantics for an active logic system has been reported by [ED88],
but the semantics developed there was insufficient to characterize the logic properly. Another attempt to
address this complex issue has not been done until very recently [AGGP05b], where active consequence
relation has been introduced. Unfortunately, even this characterisation was not completely correct, as it has
been shown in [Hov05]. Yet another possibility, to embed active logics in labelled deductive systems, has
been reported in [AM05], but without any conclusive results. We are not aware of any other semantics for
an active logic or a similar system.

On a slightly larger perspective, active logics are one of the attempts to address the question of non-
omniscience of real agents. There exists a number of approaches that try to deal with this problem. Speak-
ing generally, any such solution must address the need to model bounded resources of agents and, indepen-
dently, its incomplete reasoning mechanisms.

The approach of Fagin, Halpern, Moses and Vardi [FHMV03], Interpreted multi-agent systems captures
in a nice way the evolution of an agent’s knowledge. The system consists of the usual knowledge/belief
modalities mixed with the classical temporal operators. The resulting system is interpreted on so called runs.
The system is too powerful for our needs, although it may be modified in the direction of non-omniscient
agents. The same remarks apply to the recent proposal of van der Hoek and Wooldridge, Alternating-time
Temporal Epistemic Logic (ATEL), [vdHW03], in which the usual knowledge/belief modalities (Kx) and
the classical temporal operators are extended with a dynamic-logic-like concept of cooperative actions. The
interpretations are based on concurrent game structures. Although the authors mention the possibility of
describing non-omniscient agents, the main system is developed for at least partially omniscient entities. A
similar system, based on active logic, has been proposed by Grant, Kraus and Perlis [GKP00].

The last two systems we would like to mention in this context are rather similar. The first is Timed
Reasoning Logics by Alechina et al. [ALW04], the second Logic of Finite Syntactic Epistemic States pro-
posed recently by Ågotnes [Ågo04]. His system is based on ATEL, but does not assume any structure in
the underlying language — the epistemic states of an agent are purely syntactical structures. Knowledge
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evolution mechanisms are modeled using rules; they need not to be necessarily sound nor complete. Al-
though appealing from the formal point of view, this system does not provide any hints about dealing with
the computational complexity of the problem.

There is a growing insight that logic, should it be considered as a useful tool for building autonomous
intelligent agents, has to be used in a substantially different way than before. Active logics are one example
of this insight, while other important contributions might be found, e.g., in [GW01] or [WL01].

6 Conclusions

Active consequence in its original form is not very useful as a semantics for active logics itself, because it
is explosive. But this text shows that it is indirectly useful, in that can be used as a framework for defining
other consequence relations which are subsets of active consequence, by restricting the choice of perception
functions.

One such subset is local consequence, which was defined and shown to be paraconsistent in Section 3.
As explained there, we probably want the world part of the reasoning to follow local consequence.

The following figure shows the relationships between some interesting consequence relations:

Figure 1: Some relationships between the different consequence relations. Σω
t ×

P(SnL) is the set of all possible relations between pairs of finite t-weakly con-
sistent databases. Scons t is the subset of all databases in Σω

t which are t-strongly
consistent, so Scons t × P(SnL) is the subset of Σω

t × P(SnL) where the origi-
nal database is strongly consistent. �amp is the consequence relation generated by
the active modus ponens rule, �expl is the consequence relation generated by the
explosive rule, � is classical consequence, �l is local consequence and �a is active
consequence.

As shown in Section 4, the active modus ponens inference rule is locally unsound, and the part of �amp

which is outside �l is exactly the part where the premises are inconsistent. And as explained in Section 4,
we interpret this as the inference rule being too “stupid” to realize that there are no models. By adding the
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semantic residual part to local consequence, we get a new consequence relation which covers active modus
ponens but still is paraconsistent. Hopefully, this procedure can be generalized to other world part inference
rules.

So what we want as our final semantic consequence relation is probably a part of local consequence,
plus some semantic residuals to compensate for the stupidity of our inference rules.
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A Correctness proof

First we need some help definitions:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Definition 7 (Mapping functions)
Let Σ ∈ Σω

t , Θ ⊆ SnL, (pert, pert+1) ∈ PERl t(Σ, Θ) and let
Σ′ ⊆ Σ ∩ SnLw

be the consistent subset used for (pert, pert+1) in the
PERl t definition.

pert maps the formulas in Σ ∩ SnLw
to L′

w-formulas, the formulas in Σ′

using index 1 and the other formulas using unique indexes �= 1. For a given
Σ′′ ⊆ Σ′, we let map1(Σ′′) denote the L′

w-formulas made by pert from Σ′′,
and for a given Σ′′ ⊆ (Σ ∩ SnLw

) \ Σ′, we let mapunique(Σ′′) denote the
same thing.

For pert+1, we define map1 and mapsame in the same manner.

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Proof of Theorem 1:

Part 1 : �l 1 ⇒�

We want to prove that

∀ (Σ, Θ) ∈ Σω
t × P(SnL) :

Σ �l 1 Θ ⇒

∃ Σ′ ⊆ Σ ∩ SnLw
: M(Σ′) �= ∅ ∧ Σ′

� (Θ \ Σ) ∩ SnLw

(12)

By the definition of �l 1 we have

Σ �l 1 Θ ⇒

∃ (pert, pert+1) ∈ PERl t(Σ, Θ) :
pert(Σ) ∩ SnL′

w
� pert+1(Θ) ∩ SnL′

w

(13)

Because (pert, pert+1) ∈ PERl t(Σ, Θ), there exists a consistent subset Σ′ ⊆ Σ ∩ SnLw
of Σ which

together with Σ and Θ generates the number sequences which generates the perception functions according
to the definition of PERl t. Because of the way the sequences are constructed, we get

map1(Σ′) ∪ mapunique((Σ \ Σ′) ∩ SnLw
) �

map1((Θ \ Σ) ∩ SnLw
) ∪ mapsame((Θ ∩ Σ) ∩ SnLw

)
(14)
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Because reducing a set of formulas enlarges its set of models, we can remove mapsame((Θ ∩ Σ) ∩ SnLw
)

from the right side of the �-expression:

map1(Σ′) ∪ mapunique((Σ \ Σ′) ∩ SnLw
) �

map1((Θ \ Σ) ∩ SnLw
)

(15)

Because there are no restrictions on variables with index other than one on the right side, we can safely
remove all such restrictions from the left side :

map1(Σ′) � map1((Θ \ Σ) ∩ SnLw
) (16)

Now we can remove the indexes and take the step from SnL′

w
to SnLw

:

Σ′
� (Θ \ Σ) ∩ SnLw

(17)

Part 2 : �⇒�l 1

We want to prove that

∀ (Σ, Θ) ∈ [P(SnLw
)]2 :

∃Σ′ ⊆ Σ : M(Σ′) �= ∅ ∧ Σ′
� Θ \ Σ ⇒

Σ �l 1 Θ
(18)

If Σ′ ⊆ Σ ∧ M(Σ′) �= ∅, then by the definition of PERl t, Σ, Σ′ and Θ together generate two number
sequences which generate a local perception function pair (pert, pert+1) ∈ PERl t(Σ, Θ).

If we have

Σ′
� Θ \ Σ (19)

then we can add indexes and go from SnLw
to SnL′

w
:

map1(Σ′) � map1(Θ \ Σ) (20)

Because enlarging a set of formulas reduces its set of models, we can add mapunique(Σ \ Σ′) to the left
side of the �-expression:

map1(Σ′) ∪ mapunique(Σ \ Σ′) � map1(Θ \ Σ) (21)

By using Σ′ = (Σ′ \ Θ) ∪ (Σ′ ∩ Θ) and Σ \ Σ′ = [(Σ \ Σ′) \ Θ] ∪ [(Σ \ Σ′) ∩ Θ], we get

map1(Σ′ \ Θ) ∪ map1(Σ′ ∩ Θ)∪
mapunique((Σ \ Σ′) \ Θ) ∪ mapunique((Σ \ Σ′) ∩ Θ) �

map1(Θ \ Σ)
(22)

We can add formulas from the left side of a �-expression to the right side :

map1(Σ′ \ Θ) ∪ map1(Σ′ ∩ Θ)∪
mapunique((Σ \ Σ′) \ Θ) ∪ mapunique((Σ \ Σ′) ∩ Θ) �

map1(Σ′ ∩ Θ) ∪ mapunique((Σ \ Σ′) ∩ Θ) ∪ map1(Θ \ Σ)
(23)

By using Σ ∩ Θ = (Σ′ ∩ Θ) ∪ [(Σ \ Σ′) ∩ Θ] and rewriting the left side back to its original form, we get

map1(Σ′) ∪ mapunique(Σ \ Σ′) �

map1(Θ \ Σ) ∪ mapsame(Θ ∩ Σ)
(24)

By the definition of PERl t, that is the same as

pert(Σ) ∩ SnL′

w
� pert+1(Θ) ∩ SnL′

w
(25)

and this means that by the definition of �l 1

Σ �l 1 Θ (26)

�
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B Paraconsistency proof

Proof of Theorem 3:

By the definition of paraconsistency, �l is paraconsistent if

∃ (ϕ, ψ) ∈ SnLw

2 : {ϕ,¬ϕ} �l {ψ} (27)

So we can prove paraconsistency by choosing ϕ = S1, Σ = {ϕ,¬ϕ} = {S1,¬S1}, ψ = S2 and Θ =
{ψ} = {S2} and proving that

Σ �l Θ (28)

which by the definition of �l is equivalent to

∀n ∈ N : Σ �l n Θ (29)

We have two cases :

Case 1 : n = 1

Σ = {S1,¬S1} has only three consistent subsets: ∅, {S1} and {¬S1}. Because none of these subsets
contain any restriction of the variable S2, all of these subsets have models in which S2 is false.

But in all models of Θ \ Σ = {S2} \ {S1,¬S1} = {S2}, the variable S2 is true. This means that

∀ Σ′ ⊆ Σ : M(Σ′) �= ∅ ⇒ M(Σ′) \ M(Θ \ Σ) �= ∅ ⇒ Σ′
� Θ \ Σ (30)

which means that

¬ ∃ Σ′ ⊆ Σ ∩ SnLw
: M(Σ′) �= ∅ ∧ Σ′

� (Θ \ Σ) ∩ SnLw
(31)

which by Theorem 1 means that

Σ �l 1 Θ (32)

So (29) is true for n = 1.

Case 2 : n > 1

Assume that (29) is false for n:

Σ �l n Θ (33)

By the definition of �l n, because n > 1 this is the same as

∃ Γ ⊆ SnL : Σ �l 1 Γ ∧ Γ �l n−1 Θ (34)

By Theorem 1, we have

Σ �l 1 Γ ⇒ ∃ Σ′ ⊆ Σ ∩ SnLw
: M(Σ′) �= ∅ ∧ Σ′

� (Γ \ Σ) ∩ SnLw
(35)

Because Σ ∩ SnLw
= Σ = {S1,¬S1} contains nothing except for a direct contradiction, all of it will

be removed by the direct contradiction removal mechanism in Σ �l 1 Γ, and we have Σ ∩ Γ = ∅ and
Γ ∩ SnLw

= (Γ \ Σ) ∩ SnLw
.

So from

Σ′
� (Γ \ Σ) ∩ SnLw

(36)

20/135



we get

Σ′
� Γ ∩ SnLw

⇔ M(Σ′) ⊆ M(Γ ∩ SnLw
) (37)

Above we found that Σ′ has a model in which S2 is false, so that must also apply to Γ ∩ SnLw
.

Because of Theorem 4, we have

Σ �l 1 Θ ⇒

Σ ∩ SnLw
� Θ ∩ SnLw

⇒

M(Σ ∩ SnLw
) ⊆ M(Θ ∩ SnLw

)
(38)

and because of the transitivity of ⊆, we get

Σ �l n−1 Θ ⇒ M(Σ ∩ SnLw
) ⊆ M(Θ ∩ SnLw

) (39)

So because Γ ∩ SnLw
has a model in which S2 is false, then that must also apply to Θ′ ∩ SnLw

. This
contradicts Θ = {S2} ⊆ Θ′, so assumption (33) was wrong and (29) is true for all n > 1.

�
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Abstract. Real agents must work within the limitations or bounds im-
posed by their environment and their own makeup. Among those re-
sources available only in limited quantities are time, space and explicit
information. Most formal attempts to model agents assume that an agent
is able to reason forever in a timeless present as if the world had stopped
for the agent’s benefit. This work is intended to narrow the gap between
formal models of agents and realistic agents. We consider the issue of
limitation of reasoning. The semantics we use are based upon Montague
semantics.

1 Introduction

All agents which function in the real world, whether human or automated, are
subject to the passage of time during the reasoning process. There are numer-
ous problems in AI-planning and common-sense reasoning in which the capacity
to reason and act in time is of paramount importance. Consider, for example,
the following problem in which the passage of time (while the agent reasons) is
crucial (taking from [Nir94]):
Examination problem: A student taking an examination must determine a strat-
egy for deciding on which problems to work, how much time to allocate for each,
etc. Yet every second spent in such decision-making is a second less for problem-
solving. Deliberation time is a significant amount of the total time available -
time which must be factored into the reasoning.

Most formal and commonsense reasoning approaches to modelling agents do
not have an appropriate representational framework for tackling time-situated
reasoning problem such as this above. They assume that an agent reasons forever
in a timeless present as if the world had stopped for the agent’s benefit. Resource
limitations for modeling reasoning agents have been of some concern in formal
logical work. In particular, the problem of logical omniscience has received atten-
tion in the epistemic logic literature (e.g., [GFV05,FHV95,FH88,Lev84,LL00]).
Work in temporal logic involves reasoning about time (e.g., [All84,McD82]). How-
ever, in temporal logic time is not treated as a crucial resource that must be
carefully rationed by the agent.

The syntactic approaches has been suggested by Konolige([Kon83], and an
influential recent approach to the problem of bounded reasoning agents uses the
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framework of Gabbay’s Labelled Deductive Systems (LDS) by Alechina, Logan
and Whitsey ([Ale04].

Formal system representing reasoning an agent’s ongoing process of reasoning
have been use for example in [NKPM97]. One of the important aspect of omni-
science logical problem is the limitation ability of artificial intelligence agents to
conclude. This paper focus on this problem.

In this study3 unlike the above mentioned approaches we pursue in this paper
a purely semantical approach to resource bounded reasoning.

Montague has given a possible world semantics that partially avoids the
problem of logical omniscience. We use the main idea of Montague’s model,
namely to define knowledge as a relation between a world and a set of sets of
possible worlds. However, we provide the distinction of incorporating time to the
model. Vardi [Var86] provides a co-relationship between restrictions on models
in the Montague semantics and the corresponding agent properties which they
characterize. We apply his results to our framework.

Fagin and Halpern [FH88] have presented a series of interesting approaches
to limited reasoning which merge the syntactic and semantic approaches. They
provide an extension to Levesque’s approach for the multi-agent case, and intro-
duce a notion of awareness. They also provide, what they refer to as a society
of minds approach approach to local reasoning. Fagin and Halpern’s awareness
notion, in their logic of general awareness, acts like a filter on semantic formula-
tions. A problematic feature of this model has been that an agent can compute
all logical consequences of which it is aware, given memory limitations.

There are a number of works which consider logics of knowledge and time
e.g., [KL88]. Fagin and Halpern discuss the possibility of capturing bounded and
situated reasoning by letting the awareness set vary over time. We will attempt
a systematic modeling of situations where the passage of time is a critical issue.

2 A time bounded approach to reasoning

The sources of our model is the approach of Active-logics, see e.g. [EDP90]. In
our modal A step is defined as a fundamental unit of inference time. Beliefs are
parameterized by the time taken for their inference, and these time parameters
can themselves play a role in the specification of the inference rules and axioms.
The most obvious way time parameters can enter is via the expression Now(i),
indicating that the time is now i. Each step of reasoning advances i by 1. At
each new step i, the only information available to the agent upon which to base
further reasoning is a snap-shot of his deduction process completed up to and
including step i − 1.

One of the main shortcomings of the original active-logics is the unrealistic
parallelism: it was assumed that during a given step i, the agent can apply all
available inference rules in parallel to the beliefs at step i − 1. A short-term
memory was introduced in the formalism of active-logic to handle the problem

3 This paper is based on the Master Thesis[Glo97].
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of unrealistic parallelism in the original active-logic [NKPM97]. In this logic,
during a given step i the agent applies its inference rules only to these beliefs
of step i − 1 which are in its short-term memory (denote ”focus”) at i − 1. The
main intuition behind our formalism is that an agent doesn’t draw conclusions
based on all of its beliefs. In each time period, only some of its beliefs are in
focus and it performs inferences only on these beliefs.

We note that we assume that the focus can consist of very long formulas.
In particular, in this paper we concentrate only on the issue of the number of
formulas in the focus and not on its size. Restricting the overall length of the
formulas in the focus is left for future work.

It is also important to note that our language is a first order modal language
and not a second order one, and thus its expression is limited: we are unable to
refer to a certain belief at a given reasoning step. For example, it is impossible
to express in our language a sentence such as: “There exists a belief in the focus
at time-step t”.

3 A modal active-logic for reasoning in time

This modal logic is based on Montague’s semantics [Mon70] which uses structures
referred to in the literature as neighborhood structures [Che80]. Montague gives
a possible world semantic to epistemic logic where, unlike in the Kripke model
that suffer omniscience in the form of the Kn axiom (Kφ ∧ K(φ → ψ) → Kψ),
knowledge is defined as a relation between a world and a set of sets of worlds. An
intension of a formula φ denoted by ‖φ‖ is the set of worlds where φ is satisfied.

up w q
w p

0 21

q

Fig. 1. An example of a time-line. In time-point 0: p, q and w are true, and in time-point
1: u and w are true, etc.

We prefer to use time-lines instead of possible worlds, since this gives us
a way to naturally incorporate time into our framework. L denotes the set of
discrete time-lines [TSSK91]. We consider restricted time-lines to be finite from
one side and infinite from the other (i.e., rays). At every time-point in each
time-line, some propositions are true and the rest are false (see figure 1).

We use two modal operators modeling belief and focus. The agent is provided
with a set of beliefs at time-step 0. This set will be called the initial set of beliefs.
The agent is limited – incapable of being aware of all its beliefs simultaneously.
Hence, the agent is assisted by the “focus” in order to focus on a limited set of
explicit beliefs which it uses in its reasoning process. Only through the focus the
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agent draws new beliefs. These new beliefs are entered into the set of beliefs of
the next time-point. For example, if the beliefs ψ and ψ → φ are in the focus at
time-step t, then the agent believes φ at the next time-step. We note that it is
possible that the conclusion φ is already a belief of the agent. However, if the
agent believes only φ → ψ and φ but not ψ, it would not believe ψ until φ → ψ
and φ are brought to focus simultaneously.

3.1 Syntax and semantics

The language G Formally, we assume that there is a set P of atomic propo-
sitions. Let N = {0, 1, 2, ...} denote the set of time constants and V denote the
set of time-point variables. We define a set of time terms, T , to be the smallest
set containing elements over N ∪V, closed under + sign. We define P × T to be
the set of primitive time propositions. In addition, we use two modal operators
B and F . The operator B denotes belief, and the operator F denotes focus of
attention.

The language G is the smallest set of formulas satisfying the following prop-
erties4:

1. If τ1, τ2 ∈ T then τ1 < τ2 ∈ G.
2. If ψ ∈ P × T then ψ ∈ G.
3. If ψ ∈ G then ¬ψ ∈ G.
4. If ψ, φ ∈ G then ψ ∧ φ, ψ ∨ φ, ψ → φ ∈ G.
5. If ψ ∈ G and τ ∈ T then Bτψ ∈ G and Fτψ ∈ G.
6. If ψ ∈ G and τ ∈ V then ∃τψ ∈ G and ∀τψ ∈ G.

For example, in this language one can express belief formulas such as Bτ1
p(τ2)

which means “at time τ1 the agent believes that p is true at time τ2”. It is possible
to express nested beliefs formulas such as Bτ1

(Bτ1+2p(τ2) ∨ Bτ1+2q(τ3)) which
means “at time τ1 the agent believes that two time-points later it will believe
p(τ2) or it will believe q(τ3)”. Similarly, Fτ1

p(τ2) means that “at time τ1, the
belief p(τ2) is in the focus”. Intuitively concluding new beliefs will be done only
on the sentences in F .

This language can easily be extended to include multiple agents, by the use
of an additional parameter i, so that Bi

τα denotes “at time τ agent i believes in
α”, where α may include beliefs of other agents.

Modal active-logic structures Let N to be the set of natural numbers,
namely, {0, 1, 2, ...}.

A structure in the modal active-logic is: M = 〈L,<,+, u, π,B,F〉 where

– L is the set of time-lines.
– < is a two-place predicate denoting the usual (strict) ordering relation on

N .
4 For simplicity, we allow only time variables and time terms. It is easy to extend our

language to full first order logic with time, belief and focus of attention.
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– + is the two-place function denoting the operation ‘addition’.
– u : T −→ N is a standard interpretation ration of the time terms of the

language with respect to the set of natural numbers5.
– π : P ×N ×L −→ {true, false} is a truth assignment to the atomic formula

p ∈ P for each time-line l, l ∈ L at the time-point integer t ∈ N . Thus π
defines the intension of the atomic formulas of our language.

– B : L×N −→ 22
L

is a belief accessibility relation, defined for each time-line
and time-point pair (l, t), where l ∈ L, t ∈ N .

– F : L×N −→ 22
L

, is a focus accessibility relation, defined for each time-line
and time-point pair (l, t), where l ∈ L, t ∈ N .

We denote by M, the set of all the modal active-logic structures. We will use
Bt(l), Ft(l) to denote B(l, t) and F(l, t) which are the sets of sets of time-lines
associated with l at time t through the B and F relations, respectively.

We impose restrictions on the accessibility relations of the structures to re-
flect the step-like reasoning behavior between successive time instances (see sec-
tion 3.4). We further characterize the modal active-logic by a sound and complete
set of axioms and inference rules (see section 3.3).

Satisfiability We formally define satisfiability, |=, for the structure M = 〈L,RA,V, v, π,B,F〉.
Given an extension u which is based on v and a time-line l ∈ L, we denote by
M, l |=u the satisfiability of l of M with respect to u. An intension of a formula
φ in a structure M , denoted by ‖φ‖M , is {l | l ∈ L, M, l |=u φ}. When M is
clear from the context, we will omit it and write ‖φ‖ (see for example figure 2).

Given a structure M , time-line l ∈ L, and u as described above, if p ∈ P ,
τ1, τ2, τ ∈ T , τ ′ ∈ V, φ, ψ ∈ G then:

1. M, l |=u (τ1 < τ2) iff u(τ1) < u(τ2).
This defines satisfiability of the relation formulas of our language.

2. M, l |=u p(τ) iff π(p(u(τ)), l) = true.
This defines satisfiability of the atomic formulas of our language.

3. M, l |=u ¬φ iff M, l �|=u φ.
This defines satisfiability of negated formulas.

4. M, l |=u (φ ∧ ψ) iff M, l |=u φ and M, l |=u ψ.
This defines satisfiability of formulas with the ∧ connective.

5. M, l |=u Bτφ iff ‖φ‖M ∈ Bu(τ)(l).
This defines the satisfiability of the belief formulas.

6. M, l |=u Fτφ iff ‖φ‖M ∈ Fu(τ)(l).
This defines the satisfiability of the focus formulas.

7. M, l |=u ∀τ ′φ iff M, l |=u′ φ for every u′ which agrees with u everywhere
except possibly on τ .
This defines the satisfiability of the quantified formula.

The satisfiability of ∨, → and ∃ is defined accordingly.
5 For example, u(τ + 5) = u(τ) + 5.
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u q
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p
q

2

q
q

21

p

0

||p(0)||

Fig. 2. In this example, we see two of the time-lines of the set ‖p(0)‖ in which the
sentence p is true at time-point 0.

3.2 The process of exposing implicit beliefs

The agent brings some of its beliefs into the focus and reasons with them. At
each step it needs to decide which beliefs to bring to the focus. Deciding about
the focus can affect the beliefs which the agent will acquire in time, since the
agent makes conclusions based only on the formulas in its focus. For example, if
the focus does not change over time, then his belief set will not grow over time.

The process presented below provides the agent with the following capability:
for each finite subset of beliefs, there exists a finite amount of time (unbounded)
within which the agent becomes aware of all the implicit beliefs of this subset.
For example, let us examine the finite subset of the initial set of beliefs Γ =
{ψ1, ..., ψn}. The agent will deduce all the implicit beliefs of this subset in a
finite amount time. Obviously, deducing all the possible consequences of Γ is
equivalent to finding all the possible consequences of ψ1 ∧ . . . ∧ ψn.

We use the following definition in the requirements described below.

Definition 1. Let ψ and φ be sentences of G. We say that ψ and φ are different

with respect to model M iff ‖ψ‖M �= ‖φ‖M .

At the following requirements the focus can include at most two beliefs at
each time-step. This restriction is arbitrary, and can be modified to any finite
number of sentences.
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The requirements on the focus are: (1) Each belief of the initial set of beliefs
will be in the focus at a certain time-step, (2) If two beliefs ψ1, ψ2 are different,
and are in the focus at different time-steps, t1 and t2 respectively, then there
exists a time-step t that is later than t1 and t2 such that both ψ1 and ψ2 are in
the focus at time-step t and (3) An additional reasoning ability of the agent is
that if the agent is aware of a certain belief, ψ, at the time-step t, i.e., ψ is in
the focus at time-step t, then the agent believes in all the possible consequences
of ψ at the successive time-step t + 1, i.e., all the possible consequences are in
the belief set at time-step t + 1. Then, if the agent has two different beliefs in
the focus at the same time-step t, then the agent adds their conjunction to its
beliefs set and its focus set at the next time-step.

To complete the discussion we describe the process of finding all the con-
clusions from the set {ψ1, ..., ψn}, where the set {ψ1, ..., ψn} is a subset of the
initial set of beliefs. According to the first requirement, there exist time-steps
t1, .., tn (not necessarily different), such that at time-step ti, belief ψi is in the
focus (1 ≤ i ≤ n). According to the second requirement and the agent behavior,
it is obvious that there exists a time-step t such that ψ1∧ . . .∧ψn is in the focus.
According to the third requirement, all the consequences of ψ1∧ . . .∧ψn become
beliefs of the agent at time-step t + 1. Thus, there exists a time-step in which
the agent explicitly believes in all the logical consequences of the set of explicit
beliefs {ψ1, ..., ψn} which is a finite subset of the initial set of beliefs. A detailed
proof appears in the full version of the paper.

3.3 Axiomatization

All axioms and inference rules of the predicate calculus, and the structure natural
numbers RA [End72] are axioms of our system.

Axiom 1. B0true.
This means that initially, the agent believes in all the tautologies.

Axiom 2. ¬Bτfalse.
This means that the belief operator is consistent at every time point.

Axiom 3. Bτφ → ¬Bτ (¬φ).
This ensure that the agent will not have conflicting beliefs in any time period.

Axiom 4. Bτφ → Bτ+1φ.
This avoid the forgetting of beliefs.

Axiom 5. Fτφ → Bτφ.
The focus operator allows focusing on a part of its beliefs in order to conclude

from them additional information.

Axiom 6. B0φ → ∃τFτφ.
This means that every formula the agent initially believes in will enter the

focus at a certain time.
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Axiom 7. Fτ (φ ∧ ψ) → Bτ+1φ.
In effect the axiom says that any consequence of a belief in focus should be

in implicit belief at the next time. This appears to be an indicated consequence
of taking a semantic approach to belief and awareness.

Axiom 8. ∀τ1, τ2, Fτ1
φ ∧ Fτ2

ψ → ∃τ(τ1, τ2 ≤ τ ∧ Fτφ ∧ Fτψ).
We need this axiom to insure that every belief or conclusion that the agent

has at any given time-point in the focus will not disappear, but rather will
continue to influence its reasoning process.

Axiom 9. Fτφ ∧ Fτψ → Fτ+1(φ ∧ ψ)
This means that the pairwise conjunctions of beliefs in the previous focus

enter the current step of focus.
We add the following rules:

Rule 1. If � φ ↔ ψ then � Bτφ ↔ Bτψ and � Fτφ ↔ Fτψ.
This rule is inherited by the intensional approach. The agent cannot distin-

guish between logically equivalent formulas.

Rule 2. If �� ψ ↔ φ and �� φ ↔ χ and �� ψ ↔ χ then � Fτφ∧Fτψ → ¬Fτχ.
This rule states that the number of different formulas in the focus at a given

time-point is limited to two. It is easy to change this axiom to limit the number
of different formulas that are in the focus to any given number.

Remark 1. This rule is of course more complicated than the usual logical rules,
but there seems to be no easy replacement for it. Still there is a sound possibility
of using this rule at least in the finite case (thanks to the reviewer for pointing
this out).

3.4 Restriction on the structures

We impose the following restrictions on our structures . These restrictions assure
soundness and completeness of the axioms and inference rules described in the
previous section.

Restriction 1. For every l ∈ L, L ∈ B0(l).
Note that ‖true‖ = L. This restriction reflects the characterization derived

from axiom 1.

Restriction 2. For every l ∈ L, and t ∈ N , ∅ �∈ Bt(l).
This restriction reflects the characterization derived from axiom 2.
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Restriction 3. For every l ∈ L, and s ∈ B0(l), there exists a sentence φ ∈ G such
that ‖φ‖ = s. For every l ∈ L, t ∈ N , t > 0, if s ∈ Bt(l), then there exists φ ∈ G
such that ‖φ‖ = s or there exists t′ ∈ N , t′ < t, s′ ∈ Ft′(l), and s ⊃ s′. For every
l ∈ L, t ∈ N , if s ∈ Ft(l), then there exists φ ∈ G such that ‖φ‖ = s.

This means that every initial belief is expressed by a sentence and every
other belief is either expressed by a sentence or is a super set of beliefs that
were brought to the focus. In addition, every belief in the focus is expressed by
a sentence.

Restriction 4. For every l ∈ L, t ∈ N , and for every s1, s2 ∈ Bt(l), if s1 �= s2

then s1 ∩ s2 �= ∅.
This restriction reflects the characterization derived from axiom 3.

Restriction 5. For every l ∈ L, and t ∈ N , Bt(l) ⊆ Bt+1(l).
This restriction reflects the characterization derived from axiom 4.

Restriction 6. For every l ∈ L, and t ∈ N ,Ft(l) ⊆ Bt(l).
This restriction reflects the characterization derived from axiom 5.

Restriction 7. For every l ∈ L, and s ∈ B0(l), exists t ∈ N such that s ∈ Ft(l).
This restriction reflects the characterization derived from axiom 6.

Restriction 8. For every l ∈ L, and t ∈ N , if s ∈ Ft(l), and s′ ⊇ s then
s′ ∈ Bt+1(l).

This restriction reflects the characterization derived from axiom 7 (since su-
persets correspond to detachments in active-logic).

Restriction 9. For every l ∈ L, and t1, t2 ∈ N , such that t1 < t2, if s1 ∈ Ft1(l),
s2 ∈ Ft2(l) and s1 �= s2, then s1, s2 ∈ Ft(l) for some t ≥ t2.

This restriction reflects the characterization derived from axiom 8.

Restriction 10. For every l ∈ L, and t ∈ N , if s1 ∈ Ft(l), s2 ∈ Ft(l) , and
s1 �= s2, then s1 ∩ s2 ∈ Ft+1(l).

This restriction reflects the characterization derived from axiom 9.

Restriction 11. For every l ∈ L, and t ∈ N , |Ft(l)| ≤ 2.
This restriction reflects the characterization derived from rule 2.

Restriction 12. For any sequence sets of atomic formulas SE6 , sequence of sets
of sets of time-lines SB 7 and sequence of sets of sets of time-lines SF 8 which
6 A sequence of events is a sequence of sets of atomic formulas, i.e., < P0, P1, P2, ... >

where for all t ≥ 0, Pt ⊆ P . The sequence of events of a time-line l ∈ L is <
P0, P1, ... > where for all t ≥ 0, Pt = {p | π(p, t, l) = true}.

7 A sequence of beliefs is a sequence of sets of sets of time-lines, i.e., < L0,L1, .. >
such that for all t ≥ 0, Lt ⊆ 2L. The sequence of beliefs of a time-line l ∈ L is
< B0(l),B1(l), ... >.

8 A sequence of a focus of attention is a sequence of sets of sets of time-lines, i.e.,
< L1,L2, .. > such that for all t ≥ 0, Lt ⊆ 2L. The sequence of the focus of attention
of a time-line l ∈ L is < F0(l),F1(l), ... >.
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satisfy restrictions 1-11 above, there is a time-line l ∈ L such that SE is its
sequence of events, SB is its sequence of beliefs and SF is its sequence of focus
of attention.

This restriction requires the set L of time-lines to be large enough.

p k q

t

l

t (l)Bt(l)F

Fig. 3. In this time-line example, at time-point t the atoms p, q, k are true. There are
also three different beliefs which are true at time t, while two of them are in the focus
set.

In Figure 3 we present an example of a time-point of a time-line in our model.
The Soundness and completeness proof for the modal active-logic appear in the
full version of the paper.

4 Conclusions and Perspectives

In this paper, we have presented a modal active-logic which accounts for some
aspects of the passage of time while the reasoning occurs. To avoid unrealistic
parallelism of the agent’s reasoning, we introduced the notion of a focus of at-
tention and discussed possible properties of such a system. We characterized the
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system by providing a sound and complete axiomatization. In the current model
the number of formulas in the focus is restricted, while their length is not. Model-
ing an agent in which the length of the formulas in its focus is restricted is left for
future research. This restriction provokes the question of which beliefs the agent
keeps from one step to the next. In particular, we can consider an agent with
a short term memory, meaning that it forgets beliefs after some period of time.
It will also be important to find a framework in which an agent may believe in
only a partial set of tautologies in its language and in which proving tautologies
takes time. Another issue to consider is agents able to resolve inconsistencies in
their beliefs.
Acknowledgments: We are grateful to Alexander Bochman for instructive

comments on this paper.
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Impossible States at Work: Logical Omniscience, Partial
Beliefs and Rational Choice

Mikaël Cozic∗†

Abstract

Logical omniscience is a never-ending problem in epistemic logic, the main model of full beliefs. It is
seldom noticed that probabilistic models of partial beliefs face the same problem. As far as choice models
are built on such doxastic models, they necessarily inherit the problem as well. Following some philo-
sophical ([Hac67]) and decision-theoretic ([Lip99]) contributions, we advocate the use of non-standard
or impossible states to tackle this issue. First, we extend the non-standard structures to the probabilistic
case ; an axiom system is devised, that is proved to be complete with respect to non-standard probabilistic
structures. Second, we show how to substitute weakened doxastic models for the idealized ones in choice
models, and discuss the questions raised by this "unidealization".

Keywords : logical omniscience, epistemic logic, probabilistic logic, bounded rationality.

Introduction
Let’s imagine an agent that could solve any stochastic decision process, whatever the number of periods,
states and alternatives may be ; that could find a Nash Equilibrium in any finite game, whatever the number
of players and strategies may be ; more generally, that would have a perfect mathematical knowledge and,
still more generally, which would know all the logical consequences of his or her beliefs. By definition,
this agent would be described as logically omniscient.

For sure, logical omniscience is an highly unrealistic hypothesis from the psychological point of view.
Yet, this is the cognitive situation of agents in the main current doxastic models, i.e. models of beliefs. The
issue has been raised a long time ago in epistemic logic ([Hin75], see the recent survey in [FHMV95]),
which is the classical model of full beliefs. In particular, it has been recognized that logical omniscience
is one of the most uneliminable cognitive idealizations, because it is an immediate consequence of the
core principle of the modelling : the representation of beliefs by a space of possible states.

What is the relevance for rational choice theory ? A standard decision model has three fundamental
building blocks :

1. a model of beliefs, or doxastic model ;

2. a model of desires, or axiological model, and

3. a criterion of choice, which, given beliefs and desires, selects the "appropriate" actions

In choice under uncertainty, the classical model assumes that the doxastic model is a probability
distribution on a state space, the axiological model a utility function on a set of consequences and the
criterion is the maximization of expected utility. In this case, the doxastic model is a model of partial
beliefs. But there are choice models which are built on a model of full beliefs: this is the case of models
like maximax or minimax ([LR85], chap.13) where one assumes that the agent takes into account the
subset of possible states that is compatible with his or her beliefs.

The point is that, in both cases, the choice model inherits the cognitive idealizations of the doxastic
model. Consequently, the choice model is cognitively at least as unrealistic as the doxastic model upon

∗ENS Ulm, Department of Philosophy and Paris IV Sorbonne. 45, rue d’Ulm, F-75005 Paris. Mikael.Cozic@paris4.sorbonne.fr.
†I would like to thank for their helpful comments D.Andler, A. Barberousse, A. Barton, D.Bonnay, I. Drouet, P. Egré, B. Kooi,

Ph. Mongin, C. Paternotte, B.Walliser and three anonymous referees. I am also indebted to the seminar participants of "Formal
Philosophy" and "Philosophy of Probability" (both at IHPST) ; and colloquium participants of ECCE1 (Gif-sur-Yvette, september
2004), the First Congress of the Society of Philosophy of Sciences (Paris, january 2005) and the First Paris-Amsterdam Meeting of
Young Researchers (Amsterdam, june 2005).
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which it is based. Indeed, a choice model is strictly more unrealistic than its doxastic model since it
assumes furthermore the axiological model and the implementation of the choice criterion. Hence, one
of the main sources of cognitive idealization in choice models is the logical omniscience of their doxastic
model ; the weakening of logical omniscience in a decision-theoretic context is therefore one of the main
ways to build more realistic choice models, i.e. to achieve bounded rationality.

Surprisingly, whereas there has been extensive work on logical omniscience in epistemic logic, there
has been very few attempts to investigate the extension of the putative solutions to the probabilistic repre-
sentation of beliefs (probabilistic case) and to models of decision making (decision-theoretic case)1.

The aim of this paper is to make some progress in filling this gap. Our method is the following one:
given that a huge number of (putative) solutions to logical omniscience have been proposed in epistemic
logic, we won’t start from scratch, but we will consider extensions of the main current solutions. Our
main claim is that the solution that we will call the "non-standard structures" constitute the best candidate
to this extension.

The remainder of the paper proceeds as follows. In section 1, the problem of logical omniscience
and its most popular solutions are briefly recalled. Then, it shall be argued that, among these solutions,
non-standard structures are the best basis for an extension to probabilistic and decision-theoretic cases.
Section 2 is devoted to the probabilistic case and states our main result: an axiomatization for non-standard
explicit probabilistic structures. In section 3, we discuss the extension to the decision-theoretic case.

1 Logical omniscience in epistemic logic

1.1 Epistemic logic
Problems and propositions related to logical omniscience are best expressed in a logical framework, usu-
ally called "epistemic logic" (see [FHMV95] for an extensive technical survey and [Sta91], reprinted in
[Sta98] for an illuminating philosophical discussion), which is nothing but a particular interpretation of
modal logic. Here is a brief review of the classical model: Kripke structures.

First, we have to define the language of propositional epistemic logic. The only difference with the
language of propositional logic is that this language contains a doxastic operator B : Bφ is intended to
mean "the agent believes that φ ".

Definition 1
The set of formulas of an epistemic propositional language LB(At) based on a set At of propositional
variables Form(LB(At)), is defined by

φ ::= p|¬φ|φ ∨ ψ|φ ∧ ψ|Bφ2

The interpretation of the formulas is given by the famous Kripke structures :

Definition 2
Let LB(At) an epistemic propositional language ; a Kripke structure for LB(At) is a 3-tuple M =
(S, π,R) where

(i) S is a state space,

(ii) π : At× S → {0, 1} is a valuation

(iii) R ⊆ S × S is an accessibility relation

Intuitively, the accessibility relation associates to every state the states that the agent considers possible
given his or her beliefs. π associates to every atomic formula, in every state, a truth value ; it is extended
in a canonical way to every formula by the satisfaction relation.

Definition 3
The satisfaction relation, labelled �, extends π to every formula of the language according to the follow-
ing conditions :

1One important exception is [Lip99].
2This formulation (the so-called Backus-Naur Form) means, for instance, that the propositional variables are formulas, that if ψ is

a formula, ¬ψ too, and so on.
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Figure 1: Kripke structures

(i) M, s � p iff π(p, s) = 1

(ii) M, s � φ ∧ ψ iff M, s � φ and M, s � ψ

(iii) M, s � φ ∨ ψ iff M, s � φ or M, s � ψ

(iv) M, s � ¬φ iff M, s � φ

(v) M, s � Bφ iff ∀s′ s.t. sRs′, M, s′ � φ

The specific doxastic condition contains what might be called the possible-state analysis of belief. It
means that an agent believes that φ if, in all the states that (according to him or her) could be the actual
state, φ is true : to believe something is to exclude that it could be false. Conversely, an agent doesn’t
believe φ if, in some of the states that could be the actual state, φ is false : not to believe is to consider
that it could be false. This principle will be significant in the discussions below.

Example 1
S = {s1, s2, s3, s4} ; p ("it’s sunny") is true in s1 and s2, q ("it’s windy") in s1 and s4. Suppose that
s1 is the actual state and that in this state the agent believes that p is true but does not know if q is true.
Figure 1 represents this situation, omitting the accessibility relation in the non-actual states.

Definition 4
Let M be a Kripke structure ; in M, the set of states where φ is true, or the proposition expressed by φ,
or the informational content of φ, is noted [[ϕ]]M = {s : M, s � ϕ}.

To formulate logical omniscience, we need lastly to define the following semantical relations between
formulas.

Definition 5
φM-implies ψ if [[φ]]M ⊆ [[ψ]]M. φ and ψ are M-equivalent if [[φ]]M = [[ψ]]M

There are several forms of logical omniscience (see [FHMV95]) ; the next proposition shows that two
of them, deductive monotony and intensionality, hold in Kripke structures :

Proposition 1
Let M be a Kripke structure and φ, ψ ∈ LB(At) ;

(i) Deductive monotony : if φM-implies ψ, then BφM-implies Bψ

(ii) Intensionality : if φ and ψ are M-equivalent, then Bφ and Bψ are M-equivalent

36/135



Both properties are obvious theorems in the axiom systemK, which is sound and complete for Kripke
structures :

System K

(PROP) Instances of propositional tautologies

(MP) From φ and φ→ ψ infer ψ

(K) Bφ ∧B(φ→ ψ) → Bψ

(RN) From φ, infer Bφ

1.2 Three solutions to logical omniscience
A huge number of solutions have been proposed to weaken logical omniscience, and arguably no consen-
sus has been reached (see [FHMV95])3. We identify three main solutions to logical omniscience, which
are our three candidates to an extension to the probabilistic or decision-theoretic case. There is proba-
bly some arbitrariness in this selection, but they are among the most used, natural and powerful existing
solutions.

1.2.1 Neighborhood structures

The "neighborhood structures", sometimes called "Montague-Scott structures" are our first candidate.
The basic idea is to make explicit the propositions that the agent believes ; the neighborhood system of an
agent at a given state is precisely the set of propositions that the agent believes.

Definition 6
A neighborhood structure is a 3-tuple M = (S, π, V ) where

(i) S is a state space,

(ii) π : At× S → {0, 1} is a valuation,

(iii) V : S → ℘(℘(S)), called the agent’s neighborhood system, associates to every state a set of
propositions.

The conditions on the satisfaction relation are the same, except for the doxastic operator :

M, s � Bφ iff [[φ]]M ∈ V (s)

It’s easy to check that deductive monotony is invalidated by neighborhood structures, as shown by the
following example.

Example 2
Let’s consider the first example and replace the accessibility relation by a neighborhood system ; V (s1)
contains {s1, s2} but not {s1, s2, s3}. Then, in s1, Bp is true but not B(p ∨ q). This is represented in
Figure 24.

As expected, one can regain deductive monotony by closing the neighborhood systems under su-
persets. Nonetheless, the axiomatization presented below5 makes clear that the power of neighborhood
system is limited: intensionality cannot be weakened.

3We have contributed to this industry by defending the use of substructural logics in [Coz06] ; this setting is not tractable enough
for the aim of the current paper.

4This reccuring example is not chosen for its cognitive realism, but because it makes the comparison of different solutions easy.
5The system E is strong and complete with respect to neighborhoods structures.
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Figure 2: Neighborhood structures
.

System E (Chellas, 1980)

(PROP) Instances of propositional tautologies

(MP) From φ and φ→ ψ infer ψ

(RE) From φ↔ ψ infer Bφ↔ Bψ

1.2.2 Awareness structures

The second solution, due to J. Halpern and R. Fagin ([FH88]6) , are the "awareness structures". The basic
idea is to put a syntactical filter on the agent’s beliefs. The term "awareness" suggests that this can be
interpreted as reflecting the agent’s awareness state, but other interpretations are conceivable as well.

Definition 7
An awareness structure is a 4-tuple (S, π,R,A) where

(i) S is a state space,

(ii) π : At× S → {0, 1} is a valuation,

(iii) R ⊆ S × S is an accessibility relation,

(iv) A : S → Form(LB(At)) is a function which maps every state in a set of formulas ("awareness
set").

The new condition on the satisfaction relation is the following:

M, s � Bφ iff ∀s′ s.t. sRs′, s′ ∈ [[φ]]M and φ ∈ A(s)

This new doxastic condition permits to weaken any form of logical omniscience ; in particular, our
example shows how to model an agent who violates deductive monotony.

Example 3
Let’s consider our example and stipulate that A(s1) = {p}. Then it is still the case that Bp is true in s1,
but not B(p ∨ q). This is represented in Figure 3.

If one keeps the basic language LB(At), one obtains as axiom system a minimal epistemic logic
which eliminate any form of logical omniscience:

6What we call "awareness structures" is called in the original paper "logic of general awareness".
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Figure 3: Awareness structures

Minimal Epistemic Logic (FHMV 1995)

(PROP) Instances of propositional tautologies
(MP) From φ and φ→ ψ infer ψ

1.2.3 Non-standard structures

We now switch to our last solution : the non-standard structures, which are sometimes called "Kripke
structures with impossible states". Contrary to the two preceding solutions, neither the accessibility re-
lation nor the doxastic condition are modified. What is revised is the underlying state space or, more
precisely, the nature of the satisfaction relation in certain states of the state space.

Definition 8
A non-standard structure is a 5-tuple M = (S, S′, π,R,�) where

(i) S is a space of standard states,

(ii) S′ is a space of non-standard states,

(iii) R ⊆ S ∪ S′ × S ∪ S′ is an accessibility relation,

(iv) π : Form(LB(At))× S → {0, 1} is a valuation on S

(v) � is a satisfaction relation which is standard on S (recursively defined as usual) but arbitrary on S′

In non-standard structures, there are no a priori constraints on the satisfaction relation in non-standard
states. For instance, in a non-standard state s′, both φ and ¬φ can be false. For every formula φ, one
might therefore distinguish its objective informational content [[φ]]M = {s ∈ S : M, s � φ} from its
subjective informational content [[φ]]∗M = {s ∈ S∗ = S ∪ S′ : M, s � φ}. In spite of appearances, this
generalization of Kripke structures is arguably natural as soon as one accepts the possible-state analysis
of beliefs. Recall that, according to this analysis,

• to believe that φ is to exclude that φ could be false, and

• not to believe that ψ is not to exclude that ψ could be false.

In consequence, according to the possible-state analysis, to believe that φ but not to believe one of its log-
ical consequences ψ is to consider as possible at least one state where φ is true but ψ false. By definition,
a state of this kind is logically non-standard. Non-standard structures is the most straightforward way to
keep the possible-state analysis of beliefs7.

7For a more extensive defense of the solution, see [Hin75] or, more recently, [Bar97].
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Figure 4: Non-standard structures

Example 4
Let’s consider our example but add a non-standard state in S′ = {s5} ; we stipulate that M, s5 � p, but
that M, s5 � (p ∨ q). Then in s1, Bp is true but not B(p ∨ q). This is represented in Figure 4.

2 The probabilistic case
Mainstream decision theory is based on doxatic models of partial beliefs, not of full beliefs. Hence
weakenings of logical omniscience in the framework of doxastic logic does not give directly a way to
weaken logical omniscience that is appropriate for decision theorists. The aim of this section is to study
the probabilistic extension of doxastic models without logical omniscience.

2.1 Probabilistic counterpart of logical omniscience
First, we have to define the probabilistic counterparts of logical omniscience. In the usual (non-logical)
framework, if P is a probability distribution on S8, then the following property is the counterpart of
logical omniscience : if E ⊆ E′, then P (E) ≤ P (E′),

But to be closer to the preceding section, it is better to work with an elementary9 logical version of
the usual probabilistic model :

Definition 9
Let L(At) a propositional language ; a probabilistic structure10 for L(At) is a 3-tuple M = (S, π,P )
where

(i) S is a state space,

(iii) π is a valuation,

(iv) P is a probability distribution on S.

We will say that an agent believes to degree r a formula φ ∈ Form(L(At)), symbolized by CP (φ) = r,
if P ([[φ]]M) = r11. We can state the precise probabilistic counterparts of logical omniscience:

Proposition 2
The following holds in probabilistic structures :

8In the paper, to avoid complications that are unnecessary for our purpose, we suppose that S is finite and that P is defined on
℘(S).

9"Elementary" because there is no doxastic operator in the object-language.
10See [FH91]. For a recent reference on logical formalization of probabilistic reasoning, see [Hal03].
11Note that CP (φ) = r is in the meta-language, not in the object-language.
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(i) deductive monotony : if φM-implies ψ, then CP (φ) ≤ CP (ψ).

(ii) intensionality : if φ and ψ are M-equivalent, then CP (φ) = CP (ψ).

One can check that these are indeed the counterparts of logical omniscience by looking at the limit
case of certainty, i.e. of maximal degree of belief : (i) if an agent is certain that φ and if φM-implies ψ,
then the agent is certain that ψ as well ; (ii) if φ and ψ are M-equivalent, then an agent is certain that φ
iff he or she is certain that ψ.

Which of the three solutions to choose for this extension ?
(a) First, we should eliminate neighbordhood structures because their power is limited: intensionality

is a too strong idealization. This is especially sensitive in a decision context, where, under the label of
"framing effects", it is has been recognized for a long time that logically equivalent formulations of a
decision problem could lead to different behaviors.

(b) Second, the extension of awareness structures seems intrisically tricky. Suppose that an agent
believes φ to degree rφ and ψ to degree rψ with φ M-implying ψ and rφ > rψ. This is a failure of
deductive monotony. Now, in an analogous situation, the way awareness structures proceed in epistemic
logic is by "dropping" the formula ψ. Let’s apply this method to the probabilistic case: we would say
that an agent believes that φ to degree r if P ([[φ]]M) = r and he or she is aware of φ. But no one could
model a situation like the preceding one: either the agent is aware of ψ and in this case necessarily he or
she believes that ψ to a degree rψ ≥ rφ ; or he or she is not aware of ψ, and it this case he or she has no
degree of belief toward ψ. This is not a knock-down argument, but it implies that if one wants to extend
awareness structures, one has to make it substantially more sophisticated.

(c) Lastly, the extension of awareness structure is problematic in our perspective, i.e. a perspective of
decision-theoretic application. To see why, let’s notice that a criterion choice like expected utility might
be seen as a function whose first argument is a doxastic model and second argument an axiological model.
If we would extend the awareness structures, the first value of an expected utility criterion would not be
any more a simple probability distribution. Consequently, we should have to revise our choice criterion.
For sure, nothing precludes such a move, but simplicity recommends another tactic.

We are therefore left with non-standard structures. Non-standard structures do not suffer from the
above mentioned troubles : they are as powerful as one can wish, the extension is intrinsically simple
and they should permit to keep usual choice criterion when embedded in a choice model. This is our
motivation, but now we have to turn to positive arguments12.

2.2 Non-standard implicit probabilistic structures
To give the basic insights and show the fruitfulness of the proposition, we will continue to work in the
elementary setting where no doxastic operators are in the object-language.

Definition 10
Let L(At) a propositional language ; a non-standard implicit probabilistic structure for L(At) is a
5-tuple M = (S, S′, π,�, P ) where

(i) S is a standard state space,

(ii) S′ is a non-standard space,

(iii) π : Form(L(At))× S → {0, 1} is a valuation on S,

(iv) � is a satisfaction relation which is standard on S but arbitrary on S′

(v) P is a probability distribution on S∗ = S ∪ S′.

As in the set-theoretic case, one can distinguish the objective informational content of a formula, ie
the standard states where this formula is true, and the subjective informational content of a formula, ie the
states where this formula is true.

To obtain the expected benefit, the non-standard probabilistic structures should characterize the agent’s
doxastic state on the basis of subjective informational content : an agent believes a formula φ to degree r,

12A similar idea has been defended a long time ago by I. Hacking who talks about "personal possibility", by contrast with "logical
possibility". We won’t develop the point here, but this contribution can be seen as a formalization of Hacking’s insights ([Hac67]).
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Figure 5: Probabilistic non-standard structures

CP (φ) = r, if P ([[φ]]∗M) = r. It is easy to check that, in this case, logical omniscience can be utterly
controlled.

Example 5
Let’s take the same space state as in the preceding examples. Suppose that the agent has the following
partial beliefs : CP (p) > CP (p ∨ q). This can be modelled in the following way : S′ = {s5},
s5 ∈ [[p]]∗M but s5 /∈ [[p ∨ q]]∗M, P (s1) = P (s2) = P (s3) = P (s4)1/8 and P (s5) = 1/2. This is
represented in Figure 5.

2.3 Special topics : deductive information and additivity
This extension of non-standard structures is admittedly straightforward and simple. It gives immediately
the means to weaken logical idealizations. Furthermore, it opens perspectives specific to the probabilistic
case; two of them will be briefly mentioned.

Deductive information and learning First, one can model the fact that an agent acquires not only
empirical information but deductive information; in non-standard structures, this corresponds to the fact
that the agent eliminates non-standard states.

Let’s come back to our generic situation. Suppose that our agent learns that φ implies ψ. This means
that he or she learns that the states where φ is true but ψ false are impossible. This is equivalent to say
that he or she learns the event

I = S∗ − ([[φ]]∗M − [[ψ]]∗M)

To be satisfying, such a notion of deductive information must respect a requirement of compatibility
between revising and logical monotony: if the agent learns that φ implies ψ and revise his or her beliefs
upon this fact, his or her new probability distribution should conform to logical monotony with respect to
φ and ψ. One can check that it is the case with the main revising rule, i.e. conditionalization.

Proposition 3
If I is learned following the conditionalization, then deductive monotony is regained, ie CPI(φ) ≤
CPI(ψ).

Example 6
This can be checked in the preceding example : I = S = {s1, s2, s3, s4}. By conditionalization,
CPI(p) = 1/2 whereas CPI(p ∨ q) = 3/4.
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Additivity A second topic is additivity. From a logical point of view, one can define additivity as
follows :

Definition 11
M is (logically) additive if, when φ and ψ are logically incompatible, CP (φ)+CP (ψ) = CP (φ∨ψ).

Additivity is of course the core of the probabilistic representation of beliefs, and alternative represen-
tations of beliefs depart often from probability on this point. For example, in the Dempster-Shafer theory
([Sha76]), the so-called belief function is superadditive (in our notation, CP (φ∨ψ) ≥ CP (φ)+CP (ψ))
whereas its dual, the plausibility function, is subadditive (CP (φ ∨ ψ) ≤ CP (φ) + CP (ψ)).

A noteworthy aspect of probabilistic non-standard structures is that the freedom of the connectives’
behavior in non-standard states permits us to have a very flexible framework with respect to additivity :
simple conditions on the connectives imply general properties concerning additivity.

Definition 12
Let M = (S, S′, π,�, P ) a non-standard probabilistic structure ; M is ∨-standard if for every formulas
φ, ψ, [[φ ∨ ψ]]∗M = [[φ]]∗M ∪ [[ψ]]∗M.

This means that the disjunction behaves in the usual way in non-standard states ; a trivial consequence
of this is that the structure M is (logically) subadditive.

Proposition 4
If M is ∨-standard, then it is (logically) subadditive.

To be a little bit more general, one can consider the (logical) inclusion-exclusion rule :

CP (φ ∨ ψ) = CP (φ) + CP (ψ) − CP (φ ∧ ψ)

One can define (logical) submodularity (resp. supermodularity or convexity) as : CP (φ ∨ ψ) ≤
CP (φ) +CP (ψ) − CP (φ ∧ ψ) (resp. CP (φ ∨ ψ) ≥ CP (φ) + CP (ψ) − CP (φ ∧ ψ)).

It’s clear that to control submodularity, we have to control the conjunction’s behavior.

Definition 13
Let M = (S, S′, π,�, P ) a probabilistic non-standard structure ;

(i) M is negatively ∧-standard if for every formulas φ,ψ, when M, s � φ or M, s � ψ, then
M, s � φ ∧ ψ.

(ii) M is positively ∧-standard if for every formulas φ, ψ, when M, s � φ and M, s � ψ, then
M, s � φ ∧ ψ.

Proposition 5
Suppose that M is ∨-standard ;

- if M is negatively ∧-standard, then submodularity holds.
- if M is positively ∧-standard, then supermodularity holds.

Proof : see the Appendix.

2.4 Non-standard explicit probabilistic structures
Implicit probabilistic structures are not very expressive ; to have a true analogon of epistemic logic, we
have to start from an object-language that contains (partial) doxastic operator.

Following R. Aumann ([Aum99]) and A. Heifetz and Ph. Mongin ([HM01]), we consider the operator
La

1314. The intuitive meaning of Laφ is: the agent believes at least to degree a that φ. Note that we add
the usual symbols �, ⊥: � is what the agent recognizes as necessarily true and ⊥ is what he or she
recognizes as necessarily false.

Definition 14
The set of formulas of an explicit probabilistic language LL(At) based on a set At of propositional
variables, Form(LL(At)) is defined by :

13Economists are leading contributors to the study of explicit probabilistic structures because they correspond to the so-called type
spaces used in games of incomplete information, in the same way that Kripke structures (with R as an equivalence relation). See
[AH02].

14Note that another language is used by J. Halpern in [FH91] or [Hal03].
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φ ::= p|⊥|�|¬φ|φ ∨ ψ|Laφ

where p ∈ At and a ∈ [0, 1] ⊆ Q.

The corresponding structures are an obvious extension of implicit non-standard structures:

Definition 15
A non-standard explicit probabilistic structure for LLa(At) is a 5-tuple M = (S, S′π,�, P ) where

(i) � is a satisfaction relation s.t.

(a) � is standard on S for all propositional connectives

(b) ∀s ∈ S, M, s � Laφ iff P (s)([[φ]]∗M) ≥ a

(c) ∀s ∈ S ∪ S′, M, s � � and M, s � ⊥

(ii) P : S∗ → Δ(S∗) assigns to every state a probability distribution on the state space.

In [Aum99], R. Aumann has failed to axiomatize (standard) explicit probabilistic structures, but
[HM01] have recently devised an axiom system that is (weakly) complete for these structures. In com-
parison with epistemic logic, one of the problems is that the adaptation of the usual proof method, i.e.
the method of canonical models, is not trivial. More precisely, in the epistemic logic’s case, it is easy to
define a canonical accessibility relation on the canonical state space. This is not case in the probabilistic
framework, where strong axioms are needed to guarantee that. Fortunately, the non-standard structures
permit huge simplifications, and one can devise an axiom system that essentially mimics the Minimal
Epistemic Logic above described.

Minimal Probabilistic Logic

(PROP) Instances of propositional tautologies
(MP) From φ and φ→ ψ infer ψ

(A1) L0φ
(A2) La�
(A2+) ¬La⊥ (a > 0)
(A7) Laφ→ Lbφ (b < a)

The axioms’ notation follows [HM01] to facilitate comparison. Axioms (A2) and (A2+) reflect our
semantic for � and ⊥: the agent believes to maximal degree what he or she considers as necessarily true
and does not believe to any degree what he or she considers as necessarily false. (A1) and (A7) reflect
principles specific to the probabilistic case. Note that both bear on a single embedded formula φ: there
is no doxastic reflection of a logical relation. They express something like a minimal metric of partial
beliefs.

If �NSEPS φ means that φ is true in every non-standard explicit probabilistic structure and �MPL φ
that φ is provable in the Minimal Probabilistic Logic, then we are ready to state our main result:

Theorem 1 (Soudness and Completeness of MPL)

|=NSEPS φ iff �MPL φ

Proof : see the Appendix.

3 Insights into the decision-theoretic case
We would like to end this paper by showing how to build choice models without logical omniscience, and
which are the challenges raised by such a project.

3.1 Choice models without logical omniscience
The basic method to build a choice model without logical omniscience is to substitute one of our non-
standard structures to the original doxastic model in the target choice model. We will now show how this
could be done.

One might generically see models of choice under uncertainty as based on

• a state space S
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• a set A of actions

• a consequence function C : S ×A→ C where C is a set of consequences

• a utility function u : C → R

• a criterion of choice

To complete the choice model, one adds a distribution P on S for models of choice under probabilistic
uncertainty, and a set K ⊆ S of states compatible with the agent’s beliefs under set-theoretic uncertainty.

To rigourously extend non-standard structures to choice models, one should translate the above de-
scribed notions in a logical setting. But to give some insights, we will, on the contrary, import non-
standard structures in the syntax-free framework of conventional decision theory. Let’s have a look at the
following, admittedly particular, target situation : an agent knows abstractly the consequence function C,
but, because of limited computational capacities,he or she is not able, at the moment of choice, to per-
fectly infer from the choice function the consequence of each action at each possible state. One can think
about a classic two-state example of insurance application 15. The consequence function is

C(s1, x) = w − πx
C(s2, x) = y + x,

where x, the choice variable, is the amount of money spent in insurance, s1 the state without disaster, w
the wealth in s1, s2 the state with a disaster and y the subsequent wealth, and π the rate of exchange. In
this case, a non logically omniscient agent with respect to the consequence function would be such that
he or she ignores the value of C for some arguments.

A simple way to model this target situation would be the following one. Let’s consider extended
states w, which are composed of a (primitive) state s and a local consequence function Cw : A → C:
w = (s,Cw). The set of extended states is intended to represent the beliefs of the agent, including his or
her logically imperfect beliefs. An extended state is standard if its local consequence function is conform
to the (true) consequence function: Cw(a) = C(a, s) ; if not, it is non-standard.

For instance, a logically imperfect agent could not know what is the consequence of action a in state
s, thinking that it is possible that this consequence is ci (let’s say, the true one) or cj . This situation would
be modeled by building (at least) two extended states :

• wi = (s,Cwi
) where Cwi

(a) = ci, and

• wj = (s,Cwj
) where Cwj

(a) = cj

A perfect logician wouldn’t have considered a possible state like wj . On this basis, one can build
choice models without the assumption of logical omniscience:

• in the case of choice under set-theoretic uncertainty, if one takes the maximin criterion, for a belief
set K ⊆W , the solution is :

Sol(A,S,W,C,C, u,K) = arg maxa∈Aminw∈K u(Cw(a))

• in the case of choice under probabilistic uncertainty, if one takes the maximization of expected
utility criterion, for a probability distribution P on W , the solution is :

Sol(A,S,W,C,C, u, P ) = arg maxa∈A
P
w∈W

P (w).u(Cw(a))

3.2 Open questions
From the decision theorists point of view, the substitution we have just described is only a first step. Two
fundamental questions remains.

(a) First, there is the question of the axiomatization of the new choice models, that is closely linked
with the behavioral implications of choice models without logical omniscience. In a recent paper, B.
Lipman ([Lip99]) has remarkably tackled this issue, advocating a very similar approach. But the choice
model he uses is quite specific (conditional expected utility), and one would like to compare choice models
based on non-standard structures with the savagean benchmark.

More precisely, one would like to obtain a representation theorem à la Savage: define conditions on a
preference relation � such that there exists (1) a space of extended statesW , (2) a probability distribution
P on W and (3) a utility function u such that the preference relation could be rationalized by the expected
utility defined over preceding notions.

15From [LM81].
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(b) Second, the non-standard choice models weakens only the cognitive assumptions of the (under-
lying) doxastic model. But there remains cognitive assumptions concerning the utility function and the
choice criterion. In the approach we just described, we still assume that the agent is able to assign a
precise utility to each consequence c ∈ C and to calculate the solution to its choice criterion. Therefore,
from the point of view of the bounded rationality programm, our proposition is strongly incomplete.

4 Conclusion
This paper has advocated the use of non-standard or impossible states as a general framework to "unideal-
ize" belief and choice models. This admittedly does not permit a complete treatment of the idealizations
underlying conventional choice models, but can be seen as a first step toward a fine-grained modelling of
bounded rationality.

5 Appendix
Proof of Proposition 5

The proof deals only with the case of submodularity ; the other is symmetric. If [[φ]]∗ and [[ψ]]∗ are
disjoint, then by hypothesis [[φ ∧ ψ]]∗ = ∅. Therefore CP (φ ∨ ψ) = CP (φ) + CP (ψ) − CP (φ ∧ ψ).

It follows from the definition that if M, s � ψ ∧ φ, then M, s � ψ and M, s � φ (the converse does
not hold). In other words,

(1) [[φ ∧ ψ]]∗ ⊆ [[φ]]∗ ∩ [[ψ]]∗.

This implies that

(2) P ([[φ ∧ ψ]]∗) ≤ P ([[φ]]∗ ∩ [[ψ]]∗).

Since M is ∨-standard, P ([[φ∨ψ]]∗) = P ([[φ]]∗)+P ([[φ]]∗)−P ([[φ]]∗∩ [[ψ]]∗). By (2), it follows
from this that

P ([[φ ∨ ψ]]∗) ≤ P ([[φ]]∗) + P ([[φ]]∗) − P ([[φ ∧ ψ]]∗). �

Proof of Theorem 1
(⇒). Soundness is easily checked and is left to the reader.
(⇐). We have to show that |=NSEPS φ implies �MPL φ. First, let’s notice that the Minimal

Probabilistic Logic (MPL) is a "modal logic" ([BdRV01], 191): a set of formulas (1) that contains every
propositional tautologies, (2) that is closed by modus ponens and uniform substitution. One can then
apply the famous Lindenbaum Lemma.

Definition 16
(i) A formula φ is deducible from a set of formulas Γ, symbolized Γ � φ, if there exists some formulas

ψ1, ..., ψn in Γ s.t. � (ψ1 ∧ ... ∧ ψn) → φ.

(ii) A set of formulas Γ is Λ-consistent if it is false that Γ �Λ ⊥

(iii) A set of formulas Γ is maximally Λ-consistent if (1) it is Λ-consistent and (2) if it is not included
in a Λ-consistent set of formulas.

Lemma 1 (Lindenbaum Lemma)
If Γ is a set of Λ-consistent formulas, then there exists an extension Γ+ of Γ that is maximally Λ-
consistent.

Proof. See for instance [BdRV01], p.199.

Definition 17
Let φ ∈ L ; the language associated with φ, Lφ is the smallest sub-language that

(i) contains φ,⊥ et � ;
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(ii) is closed under sub-formulas

(iii) is closed under the symbol ∼ defined as follows : ∼ χ := ψ if χ := ¬ψ and ∼ χ := ¬χ if not.16

In the language Lφ, one can define the analogon of the maximally Λ-consistent sets.

Definition 18
An atom is a set of formulas in Lφ which is maximally Λ-consistent. At(φ) is the set of atoms.

Lemma 2
For every atom Γ,

(i) there exists an unique extension of Γ in L, symbolized Γ+, that is maximally Λ-consistent ;

(ii) Γ = Γ+ ∩ Lφ

Proof. (i) is an application of Lindenbaum Lemma. (ii) is implied by the fact that Γ is maximally co-
herent. Suppose that there exists a formula ψ from Lφ in Γ+ but not in Γ, then Γ+ would be inconsistent,
that is excluded by hypothesis.�

Starting from atoms, one may define the analogon of canonical structures, i.e. structures where (stan-
dard) states are sets of maximally Λ-consistent formulas. In the same way, we will take as canonical
standard state space the language’s Lφ atoms.

The hard stuff is the definition of the probability distributions. The aim is to make true in sΓ every
formula Laχ in the atom Γ associated with the state sΓ. To do that, it is necessary that P (sΓ, χ) ≥ a ;
this is guaranted if one takes for P (sΓ, χ) the number b∗ s.t. b∗ = max{b : Lbχ ∈ Γ}. This can easily
be done with non-standard states. It will be the case if (1) the support of P (sΓ, .) is included in the set
of non-standard states, (2) P (sΓ, .) is equiprobable and (3) there is a proportion b∗ of states that make χ
true.

Suppose that I(Γ) is the sequence of formulas in Γ that are prefixed by a doxastic operator La ; for
every formula, one can rewrite b∗(χ) as pi/qi. Define q(Γ) =

Q
i∈I

qi ; q(Γ) will be the set of non-
standard states in which P (sΓ, .) will be included. If the i-st formula is χ, suffice it to stipulate that χ in
the first pi ×

Q
q−i states. One may check that the proportion of states χ is true is pi/qi.

Definition 19
The φ-canonical structure is the structure Mφ(Sφ, S

′
φ, πφ,�φ, Pφ) where

(i) Sφ = {sΓ : Γ ∈ At(φ)}

(ii) S′
φ =

S
Γ∈At(φ) q(Γ)

(iii) for all standard state, πφ(p, sΓ) = 1 iff p ∈ sΓ

(iv) for all non-standard state s, Mφ, s �φ ψ iff, if s ∈ q(Γ) and ψ is the i-st formula prefixed by a
doxastic operator in Γ, then s is in the pi ×

Q
q−i first states of q(Γ)

(v) Pφ(sΓ, .) is an equiprobable distribution on q(Γ)

As expected, the φ-canonical structure satisfies the Truth Lemma.

Lemma 3 (Truth Lemma)
For every atom Γ, Mφ, sΓ � ψ iff ψ ∈ Γ

Proof. The proof proceeds by induction on the length of the formula.

(a) ψ := p ; follows directly from the definition of πφ.

(b) ψ = ψ1 ∨ ψ2 ; by definition, Mφ, s �φ ψ iff Mφ, s �φ ψ1 or Mφ, s �φ ψ2. Case (b) will be
checked if one shows that ψ1 ∨ψ2 ∈ Γ iff ψ1 ∈ Γ or ψ2 ∈ Γ. Let’s consider the extension Γ+ of Γ ; one
knows that ψ1 ∨ ψ2 ∈ Γ+ iff ψ1 ∈ Γ+ or ψ2 ∈ Γ+. But Γ = Γ+ ∩ Lφ and ψ1 and ψ2 ∈ Lφ. It follows
that sΓ |= ψ1 ∨ ψ2 iff ψ1 ∨ ψ2 ∈ Γ.

16See [BdRV01], p.242.
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(c) ψ = ¬χ. Mφ, s �φ ¬χ iff Mφ, s �φ χ iff (by induction hypothesis) χ /∈ Γ. Suffice it to show
that χ /∈ Γ iff ¬χ ∈ Γ. (i) Let’s suppose that χ /∈ Γ ; χ is in Lφ hence, given the properties of maximally
Λ-consistent sets, ¬χ ∈ Γ+. And since Γ = Γ+ ∩ Lφ, ¬χ ∈ Γ. (ii) Let’s suppose that ¬χ ∈ Γ ; Γ is
coherent, therefore χ /∈ Γ.

(d) ψ = Laχ ; by definition sΓ |= Laχ iff P (sΓ, χ) ≥ a. (i) Let’s suppose that P (sΓ, χ) ≥ a ; then
a ≤ b∗ where b∗ = max{b : Lbχ ∈ Γ} since by definition of the canonical distribution, P (sΓ, χ) = b∗.
Now, let’s consider the extension Γ+ : clearly, L∗

bχ ∈ Γ+. In virtue of axiom (A7) and of the closure
under modus ponens of maximally Λ-consistent sets, La ∈ Γ+. Given that by hypothesis Laχ ∈ Lφ, this
implies that Laχ ∈ Γ. (ii) Let’s suppose that Laχ ∈ Γ ; then a ≤ b∗ hence P (sΓ, χ) ≥ a.�

To prove completeness, we need a last lemma.

Lemma 4
Let At(φ) the set of atoms in Lφ ;

At(φ) = {Δ ∩ Lφ : Δ is maximally coherent }.

Proof. At(φ) ⊆ {Δ ∩ Lφ : Δ is maximally coherent } follows from a preceding lemma. Let Γ+ a
maximally consistent set and Γ = Γ+ ∩Lφ. We need to show that Γ is maximally consistent in Lφ. First
Γ is consistent ; otherwise, Γ+ would not be. Then, we need to show that Γ is maximal, i.e. that for every
formula ψ ∈ Lφ, if Γ ∪ {ψ} is consistent, then ψ ∈ Γ. Let ψ such a formula. Let’s recall that Γ+ is
maximally consistent. Either ψ ∈ Γ+ and then ψ ∈ Γ ; or ¬ψ ∈ Γ+ (elementary property of maximally
consistent sets) and, if ψ := ¬χ, χ ∈ Γ+ as well. Hence, by definition of Lφ, χ or ¬¬χ ∈ Γ. But this is
not compatible with the initial hypothesis according to which Γ ∪ {φ} is consistent.�

We can now finish the proof : let φ a LPM -consistent formula. Then, there exists a maximally
LPM -consistent set Γ+ which contains φ. Let Γ = Γ+ ∩ Lφ. φ is in Γ therefore by the Truth Lemma,
φ is true in state sΓ of the φ-canonical structure. Then φ is satisfiable. �
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Logical Omniscience and Counterpart Semantics

Paul Égré∗

Institut Jean-Nicod, CNRS, Paris

Abstract

This paper proposes a pragmatic approach to the phenomenon of hyperintensionality of belief reports in

natural language, building on earlier work by J. Gerbrandy (2000) on counterpart semantics for first-order

epistemic logic. Counterpart relations are used by Gerbrandy to model the notion of mode of presentation

and to account for the context-dependency of de re beliefs. I propose to generalize Gerbrandy’s semantics

to a second-order epistemic logic, in which not only individuals, but also properties and complex relations

can have epistemic counterparts. The aim is to give a uniform treatment of cases of hyperintensionality in-

volving expressions of distinct syntactic categories (coreferential proper names, cointensional predicates,

logically equivalent sentences), by giving belief sentences a generalized de re logical form.

Key Words: de re Belief, Counterpart Semantics, Epistemic Logic, Hyperintensionality, Logical Omni-

science, Quantified Modal Logic, Pragmatics

The aim of this essay is to propound a new approach to the problem of hyperintensionality of belief con-

texts, using the apparatus of quantified modal logic and the machinery of counterpart semantics. Consider

the following sentence, in which we assume the conditional is a material conditional (but other examples

would do):

(1) Peter believes that if door A is locked, then door B is not locked, but he does not believe that if door

B is locked, then door A is not locked

In standard epistemic logic (Hintikka 1969) and in intensional logic (Montague 1970), an ascription of

belief like this one, which involves two logically equivalent sentences, is predicted to be inconsistent. In

Montague grammar, in particular, the proposition expressed by each embedded sentence is the same, and

since beliefs are conceived as relations between individuals and propositions, the beliefs of the agents are

predicted to be closed under logical equivalence, making them “logically omniscient” in that sense. In

modal epistemic logic, the situation is potentially more problematic, since beliefs are predicted to be closed

even under logical consequence. There clearly are, however, contexts in which a sentence like (1) above

can be uttered consistently. On the other hand, there is also a sense in which the same content is ascribed

(or denied) to Peter in either conjunct of (1). The aim of the present proposal is to reconcile these two

intuitions, by offering a pragmatic account of hyperintensionality: the basic idea, which I try to articulate

in this paper, is that Peter’s belief, even though opaque, can be analyzed as a de re belief about one and

the same proposition (or about the same objects and relation each time), but under different counterpart

relations, playing the role of modes of presentation, and acting as a pragmatic component in the evaluation

of sentences.

The prime inspiration for this essay comes from the work of J. Gerbrandy (2000) on counterpart se-

mantics for de re beliefs. In this paper, I propose to generalize Gerbrandy’s semantics to a second order

modal logic, in order to account for cases of hyperintensionality involving expressions of distinct syntactic

categories (coreferential proper names, cointensional predicates, logically equivalent sentences). Thus the

∗This paper is based on chap. 1 of my PhD. dissertation (Égré 2004). Thanks to M. Aloni, D. Bonnay, E. Maier, O. Roy, F. Récanati,

P. Schlenker, B. Spector and T. Williamson for helpful comments and criticisms on an earlier draft. Special thanks are due to D. Bonnay

for several stimulating and helpful discussions. I also thank audiences in Paris, Amsterdam and Bordeaux, and an anonymous referee

for detailed comments and suggestions.
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idea is that cases of hyperintensionality should be analyzed on a par with other classic instances of opacity

for belief sentences, and the aim is to get a uniform treatment of all those cases. My proposal, however,

rests on the idea that belief sentences can be given a de re logical form, even in situations which would

standardly be analyzed as de dicto. This idea raises problems of its own, which will be discussed along

the way, but it also contains some potential benefits (like avoiding the resort to impossible worlds beyond

standard belief worlds).

The paper is structured as follows. In the first section, I briefly review the de dicto treatment of opacity

given in Hintikka’s modal framework. In section 2, I give some arguments in favor of a de re analysis

of opacity, and review the treatment of Gerbrandy in section 3. Section 4 presents the generalization of

Gerbrandy’s semantics to cases of hyperintensionality involving predicates and full sentences. I state a

compositional semantics for an appropriate system of second-order modal logic in section 5. The last

section offers an evaluation of the benefits and limitations of this proposal, and a comparison with other

semantic theories of hyperintensionality.

1 Opacity in epistemic logic
Ordinary belief sentences are notoriously opaque, in the sense that expressions which seem to convey the

same information outside the scope of the belief verb are no longer intersubstitutable salva veritate under

the scope of a verb like “believe”. Let us consider the following three examples:

(2) Peter believes that Cicero is a philosopher, but does not believe that Tully is a philosopher.

(3) Peter believes that John is an eye-doctor, but does not believe that John is an ophthalmologist.

(4) Peter believes that if door A is locked, then door B is not locked, but he does not believe that if door

B is locked, then door A is not locked.

There is a clear sense in which, in each of these examples, the embedded sentences say the same thing,

and yet we do find contexts in which each of (2), (3) and (4) can be uttered consistently (which should

not be the case if the relevant expressions were always intersubtitutable salva veritate). Thus, the proper

names “Cicero” and “Tully” are synonymous in so far as they refer to the same individual. Likewise, the

predicates “eye-doctor” and “ophthalmologist” are synonymous in so far as they express the same concept.

Finally, under the assumption that the conditional is a material conditional in (4), the sentence “if door A

is locked, then door B is not locked” and its contrapositive are synonymous in so far as they are logically

equivalent. To clarify the problem raised by these sentences, let us represent them in a first-order modal

language, letting “�φ” stand for “Peter believes that φ”:

(5) �P (c) ∧ ¬�P (t)

(6) �E(j) ∧ ¬�O(j)

(7) �(L(a) → ¬L(b)) ∧ ¬�(L(b) → ¬L(a))

Relative to the standard semantics of modal logic (�φ is true at a world if φ is true at all accessible worlds),

a sentence like (5) is predicted to be inconsistent if one assumes Kripke’s thesis of the rigidity of proper

names, namely if c and t are taken to denote the same individual in every possible world. Likewise, (6) is

inconsistent if one assumes E and O to have the same intension, that is the same extension in each possible

world. Finally, (L(a) → ¬L(b)) and its contrapositive are logically equivalent, true together or false

together at every possible world, making (7) inconsistent as well. These examples all illustrate the problem

of hyperintensionality of belief contexts: given the standard semantics for epistemic logic, sentences which

express the same possible world proposition, that is sentences with the same intension, are predicted to be

substitutable salva veritate under the scope of a belief operator.1

1The concept of “hyperintensionality” was introduced by Cresswell 1973, to characterize contexts in which intensionally equiva-

lent sentences are not substitutable salva veritate. As a reviewer pointed out, one may distinguish two levels of hyperintensionality,

depending on how fine-grained one takes the notion of intensional equivalence to be. Strictly speaking, an operator ◦ is hyperinten-
sional if there are two formulas φ and ψ, a model M and a world w such that |= (φ ↔ ψ) (that is φ and ψ are logically equivalent),

M, w |= ◦ψ and M, w � ◦ψ. And following the reviewer’s suggestion, one may call an operator superintensional if there are two

formulas φ and ψ, a model M and a world w such that M |= (φ → ψ) (that is φ and ψ are model-equivalent), M, w |= ◦ψ
and M, w � ◦ψ. Hyperintensionality is stronger than superintensionality, since logical equivalence entails model-equivalence. What

example (3) suggests is that belief operators are at least superintensional (since the predicates E (“eye-doctor”) and O (“ophthal-
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The problem is in fact more dramatic in the case of epistemic logic (unlike in intensional logic), since

beliefs are predicted to be closed even under logical consequence, due to the monotonicity of the � operator.

Thus the following sentence is predicted to be inconsistent:

(8) Peter believes that John will come, but does not believe that John or Mary will come.

(9) �C(j) ∧ ¬�(C(j) ∨ C(m))

The hyperintensionality of belief sentences therefore suggests that belief verbs shift the ordinary semantic

value of sentences. For Hintikka (1969), for instance, two names like “Cicero” and “Tully” are not neces-

sarily coreferential in a belief context simply because an agent can fail to know or realize that they denote

the same individual. The same goes for predicates like “eye-doctor” and “ophthalmologist”, and also for

logically equivalent sentences. Faced with the phenomenon of opacity, it is therefore natural to assume that

words can take the meaning they have for the believer, rather than the meaning endorsed by the speaker.

Model-theoretically, thus, a sentence like (5) is satisfiable if c and t are allowed to take distinct values in

at least one of Peter’s belief worlds. Likewise a sentence like (6) is satisfiable if the predicates E and O,

although coreferential in the actual world, do not overlap in at least one of Peter’s belief worlds. Sentences

like (7) and (9) are prima facie more problematic, since the standard epistemic semantics gives logical

constants like →, ¬ and ∨ a uniform behavior throughout the models.

To go around this problem, a possibility (entertained successively by Montague, Cresswell, Rantala,

and advocated by Hintikka 1975) is to enrich the space of worlds with logically impossible worlds, where

logically equivalent sentences can take arbitrary values in a non-compositional way. In a way, made ex-

plicit by Muskens (1991) and anticipated by Thomason (1980), this solution can be seen as treating logical

constants as part of the non-logical vocabulary, and to allow some variation in the denotation of the logical

connectives at the belief worlds, in the same way in which constants and predicates are allowed to change

their denotation at the belief worlds of the agent. In that manner, a compositional semantics can be given

for beliefs, which accounts for opacity at all the relevant syntactic levels. Seen in this light, the problem of

logical omniscience is ultimately a problem of semantic competence: by allowing proper names, predicates,

and logical connectives to take on arbitrary values at special worlds, one accounts for the fact that agents

can be confused about the objective synonymity of certain expressions.

2 De re beliefs and opacity
Despite the coherence of Hintikka’s treatment of opacity, there remain several reasons to look for a different

solution. A first point of criticism, which has been recurrent on the side of the supporters of Kripke’s theory

of proper names, concerns the leeway that allows proper names, for instance, to take distinct denotations

at the belief worlds of the agent. For a strict Kripkean, proper names are rigid, which means that two

names that are coreferential at the actual world should have the same denotation at all the worlds, including

the epistemic worlds.2 A strict supporter of Kripke’s theory may allow the predicates “eye-doctor” and

“ophthalmologist” to take different values at the belief worlds of Peter, if he grants that those two predicates

have a descriptive content, about which Peter can make a mistake. But he will probably disagree with the

case of proper names, on the ground that proper names have no descriptive content. This piece of criticism

is not entirely convincing, however. For it is one thing to say that proper names are rigid and do not behave

like hidden definite descriptions in general, and another thing to acknowledge that, as a matter of plain fact,

one can fail to realize that two coreferential proper names are indeed coreferential.3

A second, more compelling objection relates to the representation of de re beliefs. So far we have

given each of the sentences (2)-(4) a de dicto logical form, giving the belief operator the largest possible

scope (over singular terms, in particular). Several authors, however, have defended the idea that a belief

mologist”) need not be equivalent at every world of every model – they are model-equivalent only in virtue of a meaning postulate).

Example (4), on the other hand, suggests that belief operators are hyperintensional in the strict sense.
2Such a view is expressed, in particular, by Recanati (2000: 395), who writes : “According to Hintikka (1962: 138-141), failures

of substitutivity in belief contexts show that two co-referential singular terms, though they pick out the same individual in the actual

world, may refer to different objects in the ascribee’s belief world. That option is ruled out in the present framework; for we want the

ontology to be that of the ascriber all along: we want the singular terms to refer to the same objects, whether we are talking of the

actual world, or about the ascribee’s belief world. That is the price to pay for semantic innocence.” Semantic innocence is the view

according to which an attitude verb does not shift the semantic value of expressions occurring in its scope. This position is criticized

in Égré (forthcoming), but I argue, as in what follows, that part of the intuition underlying this view can be reinterpreted.
3This is argued quite persuasively by Gerbrandy (2000: 151), and by Aloni (2001: 44-45).

52/135



report can be opaque, and nevertheless be de re at the same time (Kraut 1983, Heim 1992, Recanati 2000).

Recanati, for instance, quoting Loar (1972), insists that “even on the opaque reading of a belief sentence
in which a singular term occurs, reference is made to some particular individual” (2000, italics his).4 This

claim reflects the following intuition: when one makes a belief ascription like (2), one does not simply

mean, according to Recanati, that Peter makes a metalinguistic mistake on the meaning of the proper names

“Cicero” and “Tully”. In Recanati’s theory, the use of two distinct, although coreferential proper names, is

just a way of pragmatically indicating that Peter represents to himself one and the same individual under

two distinct modes of presentation. When I say in different contexts:

(10) Peter believes that Cicero is a philosopher

(11) Peter does not believe that Tully is a philosopher

I am each time talking about Cicero-Tully, namely about one and the same individual. When I utter the con-

junction of the two sentences, I’m still making reference to Cicero-Tully, but the names, being contrasted,

pragmatically point to distinct modes of presentation.

Taking this intuition seriously, and considering that a belief can be opaque and nevertheless de re, the

paraphrase of (2) in modal epistemic logic might therefore be:

(12) ∃x(x = c ∧ �P (x)) ∧ ∃y(y = t ∧ ¬�P (y))

The problem here is that, if c and t denote the same individual d in the actual world (the world of evaluation),

the standard semantics for first-order modal logic constrains the variables x and y to denote d across the

belief worlds of Peter. Given a first-order model 〈W,R, D, I〉, an assignment g and a world w, M, w, g |=
∃x�φ if and only if there is a d in Dw such that for every w′ such that wRw′, M, w′, g[d/x] |= φ. This,

however, is problematic. First, it makes the ascription a plain contradiction, since the statement then is

equivalent to ∃x(x = c ∧ �P (x)) ∧ ∃x(x = c ∧ ¬�P (x)). However, it seems that a sentence like (2) can

be uttered without contradiction.

Moreover, it makes a de re belief ascription incompatible with situations of mistaken identity, which

seems too strong. There are cases where a belief is clearly de re, and yet does involve a failure to make

a correct identification on the part of the ascribee. The paradigm case is Quine’s example of Ralph, who

believes of Ortcutt, thought of as “the man seen at the beach”, that he is not a spy, and who also believes of

Ortcutt, thought of as “the man in the brown hat”, that he is a spy. In this scenario, it seems one can make

the following belief ascription:

(13) Ralph believes of Ortcutt that he is a spy and Ralph also believes of Ortcutt that he is not a spy.

The conjunction of Ralph’s de re beliefs can be represented in modal logic by the following sentence, in

which the proper names take wide scope over the belief operator:

(14) ∃x(x = o ∧ �S(x)) ∧ ∃x(x = o ∧ �¬S(x)).

This paraphrase, however, is a problem for the standard semantics of first-order modal logic, since it should

then follow that Ralph believes of Ortcutt that he is and is not a spy (see Quine 1956, Aloni 2001), which

seems too strong in this context:

(15) ∃x(x = o ∧ �(S(x) ∧ ¬S(x)))

Quine’s example, as argued quite convincingly by Gerbrandy and Aloni, provides a good indication that

the standard semantics of first-order modal logic ought to be amended in order to account for de re beliefs

with mistaken identity. My suggestion here is that roughly the same semantic account which Gerbrandy

gives to analyze Quine’s example can be extended to parse a sentence like (2) as de re instead of de dicto.

I will first review Gerbrandy’s account, then I will attempt to show how to extend this analysis to cases of

hyperintensionality involving predicates and full sentences.

4By singular term, Recanati means a proper name in the passage under discussion.
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3 Counterpart semantics
The two sentences “Ralph believes of Ortcutt that he is a spy”, and “Ralph believes of Ortcutt that he is

not a spy” are intuitively compatible because the truth of each of them depends on a distinct underlying

mode of presentation. This mode of presentation need not be explicitly expressed in the sentence, but can

be salient to both the speaker and hearer in the discourse situation, so that the two sentences will be seen

as mutually compatible. In Gerbrandy’s analysis, a mode of presentation is analyzed as a method of cross-
identification, namely as a way of identifying an individual across epistemic alternatives.5 Thus one and the

same actual individual can have distinct counterparts in the epistemic alternatives of an agent, corresponding

to several identification methods. In Quine’s scenario, for example, there is one method of identification

which “connects objects in Ralph’s epistemic alternatives just in case they are the man that Ralph saw...at

the beach” (Gerbrandy 2000: 155), and another method which connects objects in Ralph’s belief worlds just

in case they are the man Ralph saw in the brown hat. Both methods connect objects in Ralph’s epistemic

alternatives to Ortcutt at the actual world.

In Gerbrandy’s semantics, epistemic sentences are evaluated relative to such identity relations, which

play the role of a pragmatic parameter. Let us define an epistemic structure as a quadruple 〈W,R, D, I〉,
where W is a set of worlds, R is an epistemic accessibility relation between the worlds, D is a function

which associates to each world w a domain of individuals Dw, and I is an interpretation function for the

non-logical vocabulary. Formally, a method of identification can be defined as a relation C between ordered

pairs (w, d) of worlds and individuals such that d ∈ Dw. If (w, d)C(w′, d′), d′ will be called a counterpart

to d in w′. In Gerbrandy’s semantics, methods of identification are defined as equivalence relations. A

further constraint, which is argued for quite persuasively in Aloni (2001), is to require those relations to be

functional, namely such that one individual at a world has at most one counterpart at another world by the

identification method, and also to be total, in the sense that if an individual has an epistemic counterpart at a

belief world, it has a counterpart at every belief world.6 Intuitively, the reason why an agent can be mistaken

about thinking there are two individuals whereas there is only one, is because this one individual is presented

to him in two different ways (there are two different modes of presentation of the same individual). In other

words, there should not be more counterparts of an actual individual at a belief world than there are modes

of presentation of that individual. But moreover, once a counterpart of an actual individual “inhabits” a

belief world, it should also persist at all the belief worlds.

Gerbrandy’s semantics for first-order modal logic is standard, except for the epistemic operators and the

assignment of variables, which both have to be made sensitive to the identification relations. Thus, given a

method of identification C and a pair of worlds w, w′, two assignment functions g and h for the variables

are in the counterpart relation induced by C if and only if h assigns to every x in w′ the counterpart of the

individual which g assigns to x in w:

• g �→w,w′
C h iff for every variable x, (w, g(x))C(w′, h(x)).

The specific satisfaction clauses are the following:

• M, w, g |=C ∃xφ iff there is a d ∈ Dw such that M,w, g[d/x] |=C φ

• M, w, g |=C �φ iff for every w′ such that wRw′, for every h such that g �→w,w′
C h :

M, w′, h |=C φ.

Given these definitions, Gerbrandy can account for the Ortcutt case. Take a model M with three worlds,

where w is the actual world, in which o denotes d, namely Ortcutt, and w′ and w′′ are the two epistemic

alternatives of Ralph. Let us call Cb the identification relation for the beach encounter, and Ch the identifi-

cation relation for the hat encounter. In w′ and w′′, db is Ortcutt as seen as the beach, namely the counterpart

of d under Cb, and in w′ and w′′, dh is Ortcutt as seen with the hat, namely the counterpart of d under Ch.

Supposing db is outside, and dh is within the denotation of S at both w′ and w′′, one then has:

(16) M,w |=Cb
∃x(x = o ∧ �¬S(x)) & M, w |=Ch

∃x(x = o ∧ �S(x))

5The notion of method of cross-identification originates from Hintikka (1969), and is taken up in Kraut (1983). Much of the

inspiration of Gerbrandy’s semantics stems from Kaplan (1969) on quantifying in. Counterpart relations originally appear in Lewis

(1968).
6In what follows, I thus write C(w, d)(w′) to denote the counterpart of d in w′, relative to w, or C(d)(w′) when the world in

which d lives is clear.
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Using Gerbrandy’s counterpart semantics, it is therefore possible to account for Ralph’s beliefs, without

ascribing a logical contradiction to Ralph.7

Now, I would like to suggest that this machinery can be used to give a de re analysis of the Tully-Cicero

example by which we started. Remember sentence (5), here repeated as (17):

(17) Peter believes that Cicero is a philosopher, but he does not believe that Tully is a philosopher.

We can note that here, unlike in the Ortcutt case, the negation takes wide scope over the belief verb. For-

mally, this is not a problem, since in the model described for the Ortcutt case, it also holds that:

(18) M,w |=Cb
∃x(x = o ∧ ¬�S(x))

that is Ralph does not believe that Ortcutt is a spy under the beach identification relation. In the Tully-Cicero

example, we can imagine in the same way that Peter’s modes of presentations are the names “Tully” and

“Cicero”: Peter is simply not sure whether those two names of English denote the same individual or not.

What this means is that there is at least one epistemic alternative where Cicero-thought-of-as-“Cicero” and

Cicero-thought-of-as-“Tully” are distinct individuals. In that situation, the names play the role of methods

of identification. It is therefore easy to define two identification relations, namely Cc and Ct, such that, in a

three-world model analogous to the previous one, it holds that:

(19) M,w |=Cc
∃x(x = c ∧ �P (x)) & M,w |=Ct

∃x(x = t ∧ ¬�P (x))

Using counterpart relations, the standard de dicto analysis of a sentence like (17) can therefore be cast

into a de re analysis, in the spirit of Recanati’s suggestions concerning the relational character of opaque

belief reports involving proper names. It has actually been suggested that proper names might systematically

outscope attitude verbs. This was suggested even for definite descriptions, for totally different reasons, in

Heim’s analysis of the presupposition projection of attitude verbs (Heim 1992).8 Other authors, like Kraut

(1983), have been even more radical, by defending the idea that there are no de dicto attitudes. In what

follows, I shall use in a systematic way the idea that de dicto belief reports can be restated as de re belief

reports involving specific modes of presentation or acquaintance relations on the part of the believer.9

4 Generalization
In the previous section, we have seen that a certain de dicto analysis of substitution failures of proper names

can be expressed in terms of a de re analysis of substitution failures, using the additional machinery of

counterpart semantics. In this section my aim is to show that this analysis can be extended to handle cases

of substitution failures involving predicates instead of proper names, and even full sentences, as in the

examples by which we started, by allowing higher-order quantification over properties.

This generalization presupposes that it does make sense to talk about de re belief about higher-order

entities. Two independent arguments can be given for that, however. The first concerns the fact that one

can devise scenarios analogous to Quine’s Ortcutt case of mistaken identity with properties. Imagine, for

instance, a situation in which Peter has two friends, Jack and Jill, having exactly the same profession,

namely being eye-doctor, but suppose that Peter is under the misconception that Jack’s job is scary (by

coincidence, whenever he visits Jack, he sees him perform delicate eye-surgery) while he thinks Jill’s job

is not (by coincidence, whenever he visits her, he sees her just testing people’s eyesight). Unbeknownst

to Peter, Jack and Jill perform exactly the same tasks, but at different times. Peter thinks moreover that

whoever does the same job has Jack does a scary job, and likewise whoever does the same job as Jill does

not do a scary job. As in Quine’s example, it seems correct to say:

7Gerbrandy gives a similar treatment to Kripke’s puzzle of belief (Kripke 1979), in which Pierre is confused about the meaning of

the proper names “Londres” and “London”.
8See Heim 1992: 210-211: “Another way of summarizing the suggestion I just made is this: there is not really just one de re reading

(for a given constituent), but there are many - one for each acquaintance relation that the context might supply. And some of those

many, namely those where the acquaintance relation happens to include the subject’s awareness that the res fits the same description

used by the speaker, are very similar to the de dicto reading: more precisely, they entail it. In a way, I am blurring the distinction

between de re and de dicto readings. But that may not be such a bad thing. More often that not, the two are impossible to tell apart.”
9While doing so, I do not mean to reject the well-foundedness of the de re-de dicto distinction in general. An important issue,

which I set aside here, concerns the syntactic restrictions that bear on the outscoping of constituents in a sentence, for instance in the

case of indefinites.
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(20) Peter believes that being an eye-doctor is scary and Peter believes that being an eye-doctor is not

scary.

The example invites to treat “being an eye-doctor” as a property about which Peter has two opposite de re
beliefs. The two conjuncts of (20) may then be analyzed as ∃X(X = E ∧ �Scary(X)) and ∃X(X =
E ∧ �¬Scary(X)) respectively.

A second reason to introduce higher-order quantification is that it is needed in order to account for the

so-called non-specific de re readings of indefinite descriptions in attitude contexts, as in the sentence “Peter

believes that some soccer player has a dog”, where “some soccer player” is taken de re by the speaker, but

does not refer to any particular soccer player relative to the believer (see Bonomi 1995). This would happen

in a context in which Peter sees a certain dog outside a restaurant, which he thinks belongs to one of the

people he saw inside the restaurant, but such that only I, the speaker, know that these people are soccer

players.10 In that case, both the first-order de dicto analysis, �∃x(S(x) ∧ D(x)), and the first-order de re
analysis, ∃x(S(x) ∧ �D(x)) are false, and the correct analysis seems to be: ∃X(X = S ∧ �∃x(X(x) ∧
D(x))), namely “there are soccer players such that Peter believes that one of them has a dog”.

Granting the legitimacy of higher-order de re beliefs, we are in a position to give a sentence like “Peter

believes that John is an eye-doctor” a generalized de re logical form, meaning that Peter believes of John

and of the property of being an eye-doctor, that the latter applies to the former, namely:

(21) ∃x∃X(x = j ∧ X = E ∧ �X(x))

The same analysis can be given for “Peter believes that John is an ophthalmologist”, that is: ∃x∃X(x =
j ∧X = O ∧�X(x)). In many contexts, the two attributions will be used interchangeably: for instance, if

someone tells me that “Peter believes that John is an eye-doctor”, without mentioning anything else about

Peter, I may repeat this information to someone else by saying : “Peter believes that John is an ophthalmol-

ogist”. In such a case, the words are endorsed by the speaker only. In a situation in which I would utter

(3), that is “Peter believes that John is an eye-doctor, but does not believe that John is an ophthalmologist”,

the two de re logical forms remain compatible by assuming that each predicate is associated with a distinct

counterpart relation, corresponding to a specific acquaintance relation on the part of the believer. Thus one

can have:

(22) M,w |=CE
∃x∃X(x = j ∧ X = E ∧ �X(x))

& M, w |=CO ∃x∃X(x = j ∧ X = O ∧ ¬�X(x))

The case of logically equivalent sentences like (4) can be dealt with in the same way, provided one makes

room for complex predicates. In the logic we define in the next section, a sentence like “Peter believes that

if door A is locked, then door B is not locked” can be given the following generalized de re representation:

(23) ∃x∃y∃X(x = a ∧ y = b ∧ X = λxy.(L(x) → ¬L(y)) ∧ �X(xy))

This means that Peter believes of door A, of door B, and of the relation such that if one object is locked,

then another is not locked, that this relation applies to those individuals. This generalized de re analysis

allows to use the machinery of counterpart semantics in order to handle the substitution failure of logically

equivalent sentences. All it takes is to suppose that the complex relation λxy.(L(x) → ¬L(y)) has different

counterparts in the belief worlds of Peter, depending on the situation in which he is. Thus there might be

two methods of identification (for relations), such that:

(24) M,w |=C1
∃x∃y∃X(x = a ∧ y = b ∧ X = λxy.(L(x) → ¬L(y)) ∧ �X(xy))

& M, w |=C2
∃x∃y∃X(x = a ∧ y = b ∧ X = λxy.(L(y) → ¬L(x)) ∧ ¬�X(xy))

Again, one can imagine that these methods of identification are made salient to the hearer by the use of

distinct syntactic expressions in each utterance. This reflects the intuition that Peter misperceives the identity

of a logical relation between two objects and properties. At the same time, this allows to preserve the idea

that Peter’s belief, although confused, can very well be a de re belief about the objects a and b (for instance

in a situation in which he perceives the two doors A and B).

In the same way, closure under logical consequence can be blocked, despite the upward monotonicity

of �, since if P ⊆ Q holds at the actual world, the epistemic counterpart of P need not be a subset of the

10I’m indebted to M. Aloni for pointing out Bonomi’s example to me. Non-specific de re readings have been discussed independently

by J. Fodor (1970) and R. Baüerle (1983). See Heim & von Fintel (2002).
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epistemic counterpart of Q. For instance, the sentence “Peter believes John will come, but does not believe

John or Mary will come”, can be paraphrased:

(25) ∃x∃y∃X∃Y (x = j ∧ y = m ∧ X = C ∧ Y = λxy.(C(x) ∨ C(y)) ∧ �X(x) ∧ ¬�Y (xy))

The sentence is consistent if one assumes that the counterpart of the relation denoted by Y in the actual

world does not hold of John and Mary (assuming those are correctly identified), even though in each of

Peter’s belief worlds John will come.

5 A second-order epistemic logic
The present section gives the details of the generalization of Gerbrandy’s semantics to a second-order modal

language. The language, which I call L2(�), is a second-order logic enriched with a unary modal operator

(intended as an epistemic modality), in which it is possible to name complex predicates by the usual mech-

anisms of lambda-abstraction. The present treatment is inspired in part by the presentation of higher-order

logic given in the first chapter of Fitting (2002). I only state the semantics here and do not investigate its

possible axiomatizations: since the logic is higher-order, we can’t expect to have a full completeness result,

but rather a Henkin-style completeness proof, but I shall leave this investigation for further work. Another

central issue concerns the treatment of quantifiers, and in particular whether we should work with fixed or

variable domains (see Fitting & Mendelsohn 1998). The use of counterpart relations makes it natural to

let the domains vary, if we think of quantifiers as ranging over objects actually existing at a world, and of

counterpart relations as establishing links between distinct ontologies (for instance that of the speaker, and

that of the agent whose belief is reported). In what follows we thus place no restriction on the domains

(except indirectly, by means of the conditions on counterpart relations), and likewise we give an actualist

interpretation to the non-logical vocabulary.

The language L2(�)

The definition of L2(�) is in two steps: first I introduce the language L1 of first-order logic with predicates

of arity 0 (propositional symbols), then the notion of a lambda-abstract, which is needed for the definition

of the second-order part. The construction is in two steps in order to exclude lambda-abstracts of the form

λx.�P (x), essentially for reasons of simplicity, so that only non-modal properties can be named. The

language is built on an alphabet which includes:

(i) A denumerable set V ar of individual variables: x, y, z, ...

(ii) For all n ≥ 0, a denumerable set V ARn of predicate variables of arity n: Xn, Y n, Zn, .... By definition,

V AR =
⋃

n V ARn

(iii) A denumerable set Cons of individual constants: c, c′, c′′, ...

(iv) For all n ≥ 0, a denumerable set CONSn of predicate constants of arity n: Pn, Qn, Rn, .... By

definition, CONS =
⋃

n CONSn.

(v) Logical connectives: ¬,∧, ∃
(vi) Additional symbols: λ, ., (, )

(vii) Modality: �

(viii) Equality symbol: =

Individual terms: every element of Cons or V ar is an individual term.

L1-formulas

If t and t′ are individual terms, t = t′ is a L1-formula

A predicate constant of arity 0 is a L1-formula
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If t1, ..., tn are individual terms, and P is a predicate constant from CONSn, then P (t1, ..., tn) is an L1-

formula.

If φ and ψ are L1-formulae, then so are ¬φ and (φ ∧ ψ).

If φ is an L1-formula, then ∃xφ is a L1-formula

Nothing else is an L1-formula.

Lambda-abstracts: if φ is an L1-formula, and x1, ..., xn are distinct variables from V ar, λx1, ..., xn.φ
is a lambda-abstract of arity n. We denote by ABSn the set of lambda-abstracts of arity n, and ABS the

set of lambda-abstracts.

If φ is an L1-formula, then λ.φ is a lambda-abstract of arity 0.

L2(�)-formulae

Every L1-formula is a L2(�)-formula, and if X ∈ V AR0, X is an L2(�)-formula.

If T and T ′ are respectively a variable in V ARn, a constant in CONSn, or a lambda-abstract in ABSn,

then T = T ′ is an L2(�)-formula.

If T is a variable in V ARn, a constant in CONSn, or a lambda-abstract of ABSn, and t1, ..., tn are

individual terms, then T (t1, ..., tn) is an L2(�)-formula.

If φ is an L2(�)-formula, and X is variable of V ARn(n ≥ 0), then ∃Xφ is an L2(�)-formula

If φ and ψ are L2(�)-formulae, then so are ¬φ and (φ ∧ ψ).

If φ is an L2(�)-formula, then �φ is an L2(�)-formula.

Nothing else is an L2(�)-formula.

Semantics for L2(�)

Model: An L2(�)-model M is a quadruple 〈W,R, D, I〉 where W is a non-empty set ; R is a relation on

W ; D is a function which to each world w associates a domain of individuals Dw; I is an interpretation

function with domain W × (Cons ∪ CONS), such that: Iw(c) ∈ Dw if c is an individual constant and

Iw(P ) ⊆ (Dw)n for P a predicate constant of arity n.

If P is a predicate symbol of arity 0 (a propositional symbol), then one notes: Iw(P ) = 0 instead of

Iw(P ) = ∅ and Iw(P ) = 1 instead of Iw(P ) = {∅}. More generally, if D is a set, one notes D0 = 1.

Assignment functions: An assignment function g assigns to a variable x an element in
⋃

w∈W Dw, and

to a variable X in V ARn an n-ary relation over
⋃

w∈W Dw (if X has arity 0, again one writes g(X) = 0
or g(X) = 1).

An assignment g′ is an x1, ..., xn-variant of an assignment g if g and g′ give the same values to all variables

except at most x1, ..., xn.

Method of identification: A method of identification C is an equivalence relation between couples (w, d)
such that w ∈ W and d ∈ Dw, and between couples (w, R) such that w ∈ W and R is an n-ary relation

over Dw. Thus the counterpart of an n-ary relation is an n-ary relation. One supposes moreover that C
is functional, that is, given (w, d) and w′, there is at most one d′ ∈ Dw′ such that (w, d)C(w′, d′), and

similarly in the case of relations. A further natural constraint is to suppose that C is total in the following

sense : if d has a counterpart at one world under C, then it has a counterpart at every other world under C.

Thus one can designate by C(w, d)(w′) and C(w,R)(w′) the respective counterparts in w′ of individual d
and relation R of w.

Definition: g �→w,w′
C h iff for every variable x ∈ V ar and X ∈ V AR, (w, g(x))C(w′, h(x)) and

(w, g(X))C(w′, h(X)).
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Satisfaction of the formulae

In what follows, I note T (n) to mean that T is a predicate constant, a predicate variable, or a lambda-

abstract of arity n. Similarly, P (n) means that P is a predicate constant of arity n, and X(n) means that X
is a predicate variable of arity n.

If t is an individual term: one notes 〈t〉M,w,g,C = Iw(t) if t is a constant, and 〈t〉M,w,g,C = g(t) if t is a

variable.

Likewise, one writes 〈T 〉M,w,g,C = Iw(T ) if T is a predicate constant, and 〈T 〉M,w,g,C = g(T ) if T
predicate variable.

Finally, if T = λx1...xn.φ, then 〈T 〉M,w,g,C = {(g′(x1), ..., g′(xn)); g′ is an x1, ..., xn-variant of g and

g′(xi) ∈ Dw (1 ≤ i ≤ n), and M, w, g′ |=C φ}

If T = λ.φ, then 〈T 〉M,w,g,C = 1 if M, w, g |=C φ and 〈T 〉M,w,g,C = 0 if M, w, g �C φ.

M, w, g |=C t = t′ iff 〈t〉M,w,g,C = 〈t′〉M,w,g,C

M, w, g |=C T = T ′ iff 〈T 〉M,w,g,C = 〈T ′〉M,w,g,C

M, w, g |=C T (0) iff 〈T 〉M,w,g,C = 1, for T ∈ V AR0 ∪ CONS0.

M, w, g |=C T (n)(t1, ..., tn) iff (〈t1〉M,w,g,C , ..., 〈tn〉M,w,g,C) ∈ 〈T 〉M,w,g,C .

M, w, g |=C ¬φ iff M, w, g �C φ

M, w, g |=C (φ ∧ ψ) iff M, w, g |=C φ and M,w, g |=C ψ

M, w, g |=C ∃xφ iff there exists d ∈ Dw such that M, w, g[d/x] |=C φ

M, w, g |=C ∃X(n)φ if there exists an n-ary relation R ⊆ (Dw)n such that M, w, g[R/X] |=C φ

M, w, g |=C �φ iff for all w′ such that wRw′, and for all h such that g �→w,w′
C h : M, w′, h |=C φ

6 Evaluation

6.1 Comparisons
In principle, the present framework affords the same kind of fine-grainedness that is found in other ap-

proaches to hyperintensionality, as in Thomason’s treatment in terms of primitive propositions (Thomason

1980), and Muskens’ related treatment using impossible worlds (Muskens 1991). The reason is that coun-

terpart relations can be determined by any syntactic component in the embedded sentence. For instance, a

sentence like “John believes that if door A is locked then door B is not locked” can be given several de re
logical forms, as we have seen, including one form in which all the embedded material is scoped out by

means of a propositional variable (a variable of arity 0):

(26) ∃X(X = λ.((L(a) → ¬L(b)) ∧ �X)

This means that of the proposition that if door A is locked then door B is not locked, Peter believes that it

holds. Using appropriate counterpart relations, it is possible to say that Peter believes of that proposition,

under one counterpart relation that it holds, and under a different counterpart relation that it does not hold.

In Thomason’s framework, this corresponds to the fact that the sentences “if door A is locked then door B is

not locked” and its contrapositive can very well express different primitive propositions within a model, or

be true and false at different non-standard worlds in the case of the impossible worlds approach. However,

unlike Thomason or Muskens, our approach of hyperintensionality in terms of counterpart relations does

not commit us to a domain of primitive propositions, or of impossible worlds. Ontologically, this is a gain,

since all we need are the standard belief worlds of the agent, without having to treat logical constants as

non-logical constants.

The closest antecedent to the present approach is Cresswell and von Stechow’s (1982) own generaliza-

tion of the notion of de re belief, which they use in particular to represent mathematical beliefs. Thus they

observe that the same sentence “Poirot believes that 2+2=4” can be given several distinct logical forms,
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depending on the material that is taken de re or de dicto in the sentence. The present analysis, however, is

closer to Hintikka’s original motivation, since we see substitution failures first and foremost as failures of

the believer to grasp the identity of a property, or of a logical link, as represented by the use of epistemic

counterparts.

Also, we do not have to suppose that two syntactically distinct sentences necessarily express different

propositions: by default, two logically equivalent sentences will be substitutable in belief contexts, and

non-substitutability is seen as a context-dependent phenomenon. This is the sense in which this analysis

is fundamentally pragmatic: if φ and ψ are intensionally equivalent sentences (in the classic sense), then

in some contexts, when uttered after “Peter believes”, the clauses “that φ” and “that ψ” do express the

same information, whereas in other contexts they don’t. By giving belief sentences a generalized de re
logical form, one accounts for the intuition that the belief is about certain entities whose value is determined

first relative to the speaker. When I say : “Peter believes that John is an eye-doctor”, there is a sense in

which I say exactly the same thing as in: “Peter believes that John is an ophthalmologist”. In other words,

the same literal content is ascribed to Peter. As Recanati argues, situations in which it is appropriate to

utter “Peter believes that John is an eye-doctor but does not believe that John is an ophthalmologist” are

situations where this content is pragmatically enriched. For Recanati, this pragmatic enrichment does not

imply a modification of the basic semantic value of the predicates “ophthalmologist” and “eye-doctor”,

which should remain constant in the model. The nice feature of Gerbrandy’s semantics, in this respect, is

that this pragmatic enrichment is materialized by the additional parameter of cross-identification relations,

and that the value of lexical terms for which substitution fails needs only to be fixed relative to the speaker.

One can always assume, moreover, that the default parameter for contexts where substitution is not at stake

is the relation of plain identity. When I utter: “Peter believes that Cicero was poor”, without saying more

about Peter, the hearer should assume that Peter’s belief is about Cicero as commonly identified.

6.2 Refinements
Along with the benefits that we claim for this treatment of hyperintensionality, several imperfections may be

pointed out. One of them concerns the treatment we made of conjunction in all the examples we presented

so far. This limitation is already present in Gerbrandy’s treatment of Quine’s example, but is inherited in the

other examples we discussed. In order to get a consistent paraphrase of a sentence like (13) above, namely

“Ralph believes of Ortcutt that he is a spy, and Ralph believes of Ortcutt that he is not a spy”, we have used

a metalinguistic conjunction in the form:

(27) M,w |=Cb
∃x(x = o ∧ �S(x)) & M, w |=Ch

∃x(x = o ∧ �¬S(x))

There is no way, in that system, to get a consistent reading of the conjunctive sentence ∃x(x = o∧�S(x))∧
∃x(x = o ∧ �¬S(x)), since sentences are evaluated with respect to only one counterpart relation, which

we assumed to be functional. A possible way out would be to relax functionality, but this undermines the

intuitive one-to-one correspondence with modes of presentation. Furthermore, it will not be adequate to

handle non-conjunctive sentences of mistaken identity like “Peter does not believe that Cicero is Tully”, if

one analyzes the latter de re as ∃x∃y(x = c ∧ y = t ∧ ¬�(x = y)).
To go around both problems, another possibility is to allow reference to modes of presentation directly

at the sentential level, by indexing variables, as done in Aloni (2001, 2005).11 In Aloni’s system, a sentence

like (13), that is “Peter believes that Ortcutt is a spy, and he believes that Ortcutt is not a spy”, is represented

as: ∃xn(xn = o ∧ �S(xn)) ∧ ∃ym(ym = o ∧ �¬S(ym)). Likewise, “Peter does not believe that Cicero

is Tully” can be paraphrased as “∃xn∃ym(xn = c ∧ ym = t ∧ ¬�(xn = ym)). In Aloni’s system, the

indices are indices of different conceptual covers. In the same way, we could let the indices denote different

counterpart relations supposed to be salient in the discourse context, and evaluate sentences with respect

to a family of counterpart relations. Given a family C of identification methods, we let Ci denote the

identification method indexed by i. We write g �→w,w′
C h iff for every index i and every variables xi and

Xi, (w, g(xi))Ci(w′, h(xi)) and (w, g(Xi))Ci(w′, h(Xi)). Using this mechanism, one can account for the

consistency of mistaken beliefs about identity, and still maintain that the belief is about one and the same

actual entity, seen under different modes of presentation.

11I am indebted to M. Aloni for these suggestions.
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7 Conclusion
In this paper I have defended the view that from a linguistic point of view, that is from the perspective of

ordinary belief attributions, the problem of logical omniscience is to be treated on a par with the problems of

opacity involving non-logical expressions of other syntactic categories, such as synonymous proper names

or predicates, arguing that this problem calls for a pragmatic approach. From the point of view of epistemic

logic, the present account can be seen as an extension of Hintikka’s original account, since the logic we used

allows to give a de re representation of sentences that would standardly be analyzed as de dicto, and to get

a consistent interpretation by means of counterpart relations instead of using impossible worlds. The inspi-

ration remains fundamentally the same, however, since expressions which are synonymous for the speaker

are allowed to take arbitrary denotations at the believer’s worlds, modulo the counterpart relations. While

so doing, we have moved to a much more expressive logic, however. Further work needs to be done, in this

respect, to investigate the proof-theoretic properties of the logic, and see what kinds of completeness results

can be obtained. More fundamentally, it may be that the best reason we have to hold on to a plain de dicto
analysis of the examples by which we started is that in all those situations, belief reports have a quotational

component without which the ascription simply could not be made. In the present framework, however, this

syntactic component is not eliminated, it is simply deferred to the level of counterpart relations.

References
[1] Aloni M. (2001), Quantification under Conceptual Covers, ILLC Dissertations Series.

[2] Aloni M. (2005), Individual Concepts in Modal Predicate Logic, Journal of Philosophical Logic, 34,

1, pp. 1-64 .

[3] Bonomi A. (1995), Transparency and Specificity in Intensional Contexts, in P. Leonardi & M. San-

tambrogio eds., On Quine, New Essays, Cambridge UP: 164-185.

[4] Cresswell M.J. (1973), Hyperintensional Logic, Studia Logica 34, pp. 25-38.

[5] Cresswell M.J. & von Stechow A. (1982), De Re Belief Generalized, Linguistics & Philosophy 5:

503-535.
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Rule-based and Resource-bounded:
A New Look at Epistemic Logic∗

Mark Jago

Abstract

Syntactic logics do not suffer from the problems of logical omniscience but are often thought to lack
interesting properties relating to epistemic notions. By focusing on the case of rule-based agents, I develop
a framework for modelling resource-bounded agents and show that the resulting models have a number
of interesting properties.

1 Introduction

Logical omniscience is a well-documented problem for epistemic logics based on a possible worlds seman-
tics (first presented in Hintikka’s seminal Knowledge and Belief [21]). In this paper, I concentrate on the
concept of belief, as believing φ is a necessary condition on knowing φ. Belief is defined as truth in all
epistemically accessible worlds and as a consequence, belief is closed under consequence and agents auto-
matically believe all valid sentences. This is clearly inadmissible as a general analysis of belief.1 Several
authors take the view that, in a number of situations, logical omniscience is unproblematic, “in particular
for interpretations of knowledge that are often appropriate for analyzing distributed systems . . . and certain
AI systems.” However, “it is certainly not appropriate to the extent that we want to model resource-bounded
agents” [16, p. 41]. I will therefore take as my starting point the requirement that the beliefs of resource-
bounded agents be modelled accurately.

To avoid the problem of logical omniscience, a syntactic approach is required: that is, one which takes
the truth-conditions of belief ascriptions to be given, at least in part, in terms of sentences.2 Contrary to
the impression one receives from the logical literature, syntactic accounts of belief receive support from
the current philosophical literature.3 An objection is that syntactic epistemic logics merely give us “ways
of representing knowledge [and belief] rather than modelling knowledge [and belief]”. If so, the thought
runs, “[o]ne gains very little intuition about knowledge [or belief] from studying syntactic structures” [15,
p. 320]. The syntactic approach “lacks the elegance and intuitive appeal of the semantic [possible worlds]
approach” [14, p. 40]. My aim in this paper is therefore to present an elegant and intuitively appealing
syntactic logic of belief which allows us to accurately model resource-bounded reasoners.

The key idea is to model inference as a nondeterministic step-by-step process. Each time an inference
rule is applied and a new belief derived, the agent moves into a new belief state. This is a very fine-grained
notion of belief change. It allows models to be built in which perfectly rational reasoning is possible, in the
sense that the agent’s logical abilities need not be depleted in any way, but in which logical omniscience
never arises. This framework models agents that, as [22] has it, are neither logically omniscient nor logi-
cally ignorant. The lesson to be taken is that, in order to model real AI agents without making unrealistic
assumptions about their resource bounds, an epistemic logic must be able to represent an agent’s reasoning
at the level of individual inferences (the title of the paper is intended to reinforce this point). My strategy in
this paper is to investigate step-by-step inference in a simplified setting. The only inferential action that will
be modelled here is the act of deriving new beliefs from old using (a generalised version of) modus ponens.

∗Thanks to Natasha Alechina for incisive comments, to Brian Logan for guidance and to three anonymous referees for the Logics
for Resource Bounded Agents workshop for their helpful suggestions.

1See [34, 35, 24] for discussions of logical omniscience and related problems.
2Many authors seem to dispute this claim, especially [27, 14, 16, 15]. However, none of the approaches presented there genuinely

solve the problem. See [24]. The approach based on awareness given in [14] unwittingly concedes the point (see [24].
3See Perry [30, 31] and Corazza [11, 10] for accounts of belief in terms of an accepted sentence. Further support comes from

accepting the language of thought hypothesis: see Fodor [17, 18].
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Actions such as making assumptions or instantiating axiom schema are not modelled here (but see [24] in
which such actions are modelled in the current framework).

I take as a working example a prominent case from the AI literature: the case of rule-based agents.
These agents consist of a program—a set of condition-action rules—and a rule interpreter. Rule-based
agents have been more or less ignored by the literature on epistemic logic4 but play an important rôle in
other areas of AI. There are several rule-based agent architectures available, e.g. SOAR [26] and SIM-
AGENT [33] which allow a great degree of abstraction in specifying behaviour. Rule-based programming
extensions are also increasingly being offered as add-ons to existing, lower-level, agent toolkits, e.g., JADE
[7] and FIPA-OS [32]. Rule-based behaviour is also playing an important rôle in analysing domains such
as business. Business rules (statements that define or constrain an aspect of a business [9], e.g. every visitor
of the conference gets a 20 per cent discount on the first product purchase) are being used by companies
to analyse the behaviour and improve the efficiency of their business. As the business rules community
puts it, “business rules are the very essence of a business. They define the terms and state the core business
policies. They control or influence business behaviour. They state what is possible and desirable in running
a business—and what is not” [9].

In general, a rule-based agent’s program will contain condition-action rules of the form

P1, . . . , Pn ⇒ Q1, . . . , Qm

Pi are the conditions, Qi the resulting actions, and each Pi, Qi may contain unbound variables or possibly
even logical connectives.5 Here, I treat both rules in the agent’s program and literals held in its working
memory as beliefs (the working memory does not play a significant rôle in the formalism). In the modal
systems discussed below, an agent’s rules are represented in the states of those models. An equivalent
formulation could be given by encoding rules as conditions on the arcs between states. Intuitively, it makes
sense to encode inference rules as conditions on arcs and beliefs as the sentences supported by states (the
question is whether to treat the rules that appear in the agent’s program as inference rules). On the alternative
formulation, each rule is treated as an inference rule in its own right whereas on the account presented here,
rules are formulae and the agent reasons using a generalised form of modus ponens:

λ1, . . . , λn, (λ1, . . . , λn ⇒ λ)
λ

In this way, agents are modelled as having many beliefs and only the one rule of inference.
I focus on an agent’s reasoning process by assuming that the agent has an initial stock of beliefs (which

might be observations) that are neither revised nor added to, other than by firing rules and adding their
consequents as new beliefs. I make three further simplifying restrictions: (i) to rules which produce a single
action; (ii) to propositional rules and (iii) to rules which contain no disjunctions (thus, on agents who have
no disjunctive beliefs). The first two are inessential;6 (iii) is a restriction on the expressiveness of the logic
presented here, but is by no means a limitation of the general framework.7

The remainder of the paper proceeds as follows. In section 2, I present syntax and semantics for a
logic which models a single rule-based agent and then, in section 3, discuss the properties of such models.
In section 4, I consider an agent with a fixed program and, in section 5, present an axiomatization and
complexity analysis of the resulting logic. Related and future work is discussed in sections 6 and 7.

2 Modelling Rule-Based Agents

We fix a denumerable set of propositions P = {p1, p2 . . .}. A literal is either a proposition or its negation;
literals are written λ1, λ2 . . .. Rules are of the form λ1, . . . , λn ⇒ λ and in general rules are denoted
ρ, ρ1, ρ2, . . .. Since it is often useful to know which belief a rule adds when fired, we use the abbreviation

4A notable exception is [25]; see section 6.
5For example, in the ‘definition’ rule person(x) ⇒ man(x) ∨ woman(x).
6Because negation may only appear before a predicate—the agent does not believe the negation of any rule—a program in which

rules contain unbound variables can be modelled using a denumerable set of propositions, so long as both the set of predicates and
the set of constants is denumerable (in any practical case, both will be finite). Using a propositional logic allows us to use a far more
readable notation without limiting the underlying logic—all results given below also hold for the predicate case. A logic that deals
with predicate-style rules is considered in [4].

7Disjunction is ignored here merely to reduce the complexity of the presentation. See [24] for the extended framework, including
disjunctions.
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cn(ρ) for λ, given that ρ = (λ1, . . . , λn ⇒ λ). The agent’s internal language LP over P contains only
rules and literals; no other formulae are considered well-formed. Since P will be fixed throughout, the
superscript may be informally dropped. Arbitrary formulae of L are denoted α, α1, . . ..

The modal language MLP , which is used to reason about the agent’s beliefs, is built from formulae of
LP (again the superscript may informally be dropped). ML contains the usual propositional connectives
¬,∧,∨,→, the ‘�’ modality and a belief operator B. Given a literal λ and a rule ρ, ‘Bλ’ and ‘Bρ’ are
primitive wffs of ML, and all primitive wffs are formed in this way. If φ1 and φ2 are both ML wffs, the
complex wffs of ML are then given by

¬φ1 | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 → φ2 | �φ1

The dual modality ‘�’ is introduced by definition: �φ
df
= ¬�¬φ. Note that the primitive formulae of ML

are all of the form ‘Bα’, where ‘α’ is a L-formula, hence the problem of substitution within belief contexts
does not arise in logics based on ML.

Models are graphs of states, with each arc representing a change in an agent’s belief state. Although
time is not explicitly represented in these models, each arc is thought of as a transition from an agent’s belief
state at one time to a (possible) belief state at a future moment in time, arrived at by firing a rule and adding
its consequent as a new belief. A model M is a structure 〈S, T, V 〉 where S is a set of states; T ⊆ S × S

is a transition relation on states; and V : S −→ 2L is the labelling function, assigning a set of sentences of
the agent’s internal language to each state. Where there is a transition from s to s′, s′ will be said to be a
successor of s; s′ is reachable from s when there is a sequence of states ss1s2 · · · sns′ such that each is the
successor of the one before.

Definition 1 (Labelling) Given a model M = 〈S, T, V 〉, a sentence α ∈ L is said to label a state s ∈ S

when α ∈ V (s). Given models M = 〈S, T, V 〉 and M ′ = 〈S′, T ′, V ′〉 (which need not be distinct), states
s ∈ S and s′ ∈ S′ are said to be label identical, written s �L�s′, when V (s) = V ′(s′).

The definition of a formula φ of ML being true, or satisfied, by state s in a model M (written M, s � φ) is
as follows:

M, s � Bα iff α ∈ V (s)

M, s � ¬φ iff M, s �� φ

M, s � φ1 ∧ φ2 iff M, s � φ1 and M, s � φ2

M, s � φ1 ∨ φ2 iff M, s � φ1 or M, s � φ2

M, s � φ1 → φ2 iff M, s �� φ1 or M, s � φ2

M, s � �φ iff there exists a state s′ ∈ S such that Tss′ and M, s′ � φ

Such models are known as Kripke models. ‘M, s � φ’ is read as s supports the truth of φ in M , or s

supports φ for short (if it is clear which model is being talked about). The definitions of global satisfiability
and validity are standard, and these notion extend to sets for formulae in the usual way. States s, s′ ∈ S are
said to be modally equivalent in M , written s � s′, when {φ | M, s � φ} = {ψ | M, s′ � ψ}.

Because these models are common to modal logics in general, they need to be restricted in certain ways
to model rule-based agents. In particular, the rules which an agent believes do not change; rules are neither
learnt nor forgot. This is standard practise in rule-based AI systems (cf condition S4 below). Secondly, T

must relate states s and u when some rule ρ can be fired at s, and u is just like s except the agent has gained
one new belief, the consequent of ρ. Here, ρ is said to be an s-matching rule.

Definition 2 (Matching rule) Let ρ be a rule of the form λ1, . . . , λn ⇒ λ. ρ is then said to be s-matching,
for some state s ∈ S, iff ρ ∈ V (s), each λ1, . . . , λn ∈ V (s) but λ �∈ V (s).

Whenever ρ is s-matching for some state s, then the agent can move into a new state u in which it has
gained a new belief. u is said to extend s by that new belief, namely cn(ρ).

Definition 3 (Extension of a state) For any rule ρ and states s, u ∈ S, u extends s by cn(ρ) iff V (u) =
V (s) ∪ { cn(ρ)}.
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If there are no matching rules at a state (and so no rule instances to fire), that state is a terminating
state and has a transition to itself (or to another identical state, which amounts to much the same in modal
logic). This ensures that every state has an outgoing transition; in other words, T is a serial relation. As a
consequence, the question ‘what will the agent be doing after n cycles?’ may always be answered, even if
the agent ran out of rules to fire in less than n cycles.

Definition 4 (Terminating state) A state s is said to be a terminating state in a model M iff no rule ρ is
s-matching.

Transitions relate terminating states to identically labelled terminating states and, whenever there is a match-
ing rule ρ at a state s, a transition should only be possible to a state u which extends s by cn(ρ). We capture
such transition systems in the class S (for single agent models).

Definition 5 The class S contains precisely those models M which satisfy the following:

S1 for all states s ∈ S, if a rule λ1, . . . , λn ⇒ λ is s-matching, then there is a state s′ ∈ S such that Tss′

and s′ extends s by λ.

S2 for any terminating state s ∈ S, there exists a state s′ ∈ S such that V (s′) = V (s) and Tss′

S3 for all states s, s′ ∈ S, Tss′ only if either (i) there is an s-matching rule λ1, . . . , λn ⇒ λ and s′ extends
s by λ; or (ii) s is a terminating state and V (s) = V (s′).

S4 for all rules ρ and states s, u ∈ S, ρ ∈ V (s) iff ρ ∈ V (u).

It is clear that this definition ensures that T is a serial relation for any model M ∈ S. For any state s ∈ S,
either there is at least one matching rule or there is not. In the former case, S1 ensures that s is related to
some extension of itself by T ; otherwise, s is a terminating state and is related to an identically labelled
state by T .

There may, of course, be many matching rules at a given state, and for each there must be a state u such
that Tsu. Each transition may be thought of as corresponding to the agent’s nondeterministic choice to fire
one of these rule instances. ‘�φ’ may then be read as ‘after some such choice, φ will hold.’ We can think of
the agent’s reasoning as a cycle: (i) match rules against literals; (ii) choose one matching rule; (iii) add the
consequent of that rule to the set of beliefs; repeat. By chaining diamonds (or boxes), e.g. ‘���’ we can
express what properties can (and what will) hold after so many such cycles. We can abbreviate sequences of
n diamonds (or n boxes) as �

n and �
n respectively. ‘�nφ’, for example, may be read as ‘φ is guaranteed

to hold after n cycles.’ Note that the agent’s set of beliefs grows monotonically state by state and that the
agent never revises its beliefs, even if they are internally inconsistent.

Example

Before investigating the properties that models in the class S have, an example may help to illustrate the
concepts that have been introduced. Typically, the rules in rule-based programs will contain variables which
are matched against the contents of the agent’s working memory to produce instances of the rule. In this
example, the agent’s program contains just two rules:

R1 PremiumCustomer(x), Product(y) ⇒ Discount(x, y, 10%)

R2 Spending(x, >1000) ⇒ PremiumCustomer(x)

However, a first-order language is not needed to model this agent. Instead, we can consider the language
that contains all instances of the rules and all ground literals that appear in these instances.8

Now suppose that the agent’s initial working memory contains the beliefs

Product(iBook) Spending(Jones, >1000) Product(Sunglasses)

When the agent begins executing, R2 can be matched against Jones to produce

Spending(Jones, >1000) ⇒ PremiumCustomer(Jones) (1)

8When considering a program R (section 4) or the axiomatization given in section 5, we must also assume that the set of constants
used to instantiate the variables in rules is finite.
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Since no other instances of either R1 or R2 are possible, there is then a unique next state in which

PremiumCustomer(Jones)

is added to the agent’s working memory. At the agent’s next cycle, R1 can be matched against Jones and
either Sunglasses or iBook to produce the instances

PremiumCustomer(Jones), Product(Sunglasses)⇒ Discount(Jones, Sunglasses, 10%) (2)

PremiumCustomer(Jones), Product(iBook) ⇒ Discount(Jones, iBook, 10%) (3)

Note that (1) is no longer counted as a matching rule instance, since its consequent has already been added
to the working memory. The agent can then move into a state in which the working memory contains
either Discount(Jones, Sunglasses, 10%) or else contains Discount(Jones, iBook, 10%) in addition
to its previous contents. If the agent fires (2), adding Discount(Jones, Sunglasses,10%) to working
memory, (3) remains a matching rule instance and Discount(Jones, iBook, 10%) is added at the next
state. Similarly, if the agents fires (3), adding Product(iBook) ⇒ Discount(Jones, iBook, 10%), then
(2) remains matching. There is then a next state adding Discount(Jones, Sunglasses, 10%) to working
memory. Figure 1 shows a branching time model in which new beliefs are added to the working memory
(only new beliefs are shown). The agent can derive Discount(Jones , iBook , 10%) in 2 cycles, whereas it
must derive it in 3 cycles. If this model is M and its root s, then M, s � ��Discount(Jones, iBook, 10%)
and M, s � ���Discount(Jones, iBook, 10%).

{
Product(iBook), Spending(Jones, 0), Product(Sunglasses)

}

PremiumCustomer(Jones)

Discount(Jones, iBook, 10%) Discount(Jones, Sunglasses, 10%)

Discount(Jones, Sunglasses, 10%) Discount(Jones, iBook, 10%)

Figure 1: New literals added to WM

3 Properties of Models

Now we need to know, how well do these models capture a rule-based agent’s reasoning process? Below I
give a number of simple yet powerful results. Firstly, there is a strong relationship between the way states
are labelled, the modal formulae which hold at those states and bisimulation. Secondly, models have a belief
convergence property. The remainder of section is fairly technical.

When a bisimulation relation Z holds between states s, s′, we write s � s′.9 Intuitively, all bisimilar
models describe the same reasoning process. It is sometimes convenient to work with models in which the
transition relation T forms a tree on the states S. Such models are known as tree models.

Proposition 1 Some standard properties of models M = 〈S, T, V 〉 and M ′ = 〈S′, T ′, V ′〉:

a. For all s ∈ S and s′ ∈ S′, s � s′ implies s � s′. [8, p.67]

b. Every model M has a bisimilar tree model (obtained by unravelling M ).

c. Any satisfiable formula φ of depth d is satisfiable in a tree model of height no greater than d.

9See, for example, [8] for an explanation of bisimulation.
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d. (Hennessy-Milner Theorem) If M and M ′ are image finite,10 then, s � s′ implies s � s′ for all
s ∈ S and s′ ∈ S. [8, p.69]

These are standard properties of all Kripke models. From (a) and (b), whenever we are working with a
model M , we can always switch to a tree model M ′ which satisfies the same formulae (if M, s � φ, then
there is a state s′ ∈ M ′ : M ′, s′ � φ.) The converse to (b) does not hold in general.11 (c) gives a restricted
version of the converse to (b). I now list a few properties which models M ∈ S in particular possess (I
don’t give a proof here as each proof is more or less immediate).

Proposition 2 (Properties of S Models) Assume that a model M = 〈S, V, T 〉 is a tree model with root r.
Then:

a. For all states s, s′ of depth n, |V (s)| = |V (s′)|. If V (r) is finite and s, s′ are not terminating states,
then |V (s)| = n + |V (r)|.

b. If V (r) is finite, then V (s) is finite for all s ∈ S.

c. If s �L�s′ and s, s′ are not terminating states, then s and s′ are of the same depth.

d. All siblings of terminating nodes are also terminating nodes.

e. If two children s1 and s2 of s are such that V (s1) − {λ1} = V (s2) − {λ2} then each has a child s′

such that V (s′) = V (s) ∪ {λ1, λ2}.

Lemma 1 For tree models M, M ′ ∈ S and states s in M , s′ in M ′: if s �L�s′ and Tsu, then there is a
u′ ∈ S′ such that Ts′u′ and u �L�u′.

Proof: If s is a terminating state then this is trivial; so assume that this is not the case. Then there is an
s-matching rule ρ such that V (u) = V (s){ cn(ρ)}. Since s �L�s′, ρ is also s′-matching, hence there is a
u′ such that Ts′u′ and V (u′) = V (s′) ∪ { cn(ρ)}; hence u �L�u′. �

Theorem 1 For any models M, M ′ ∈ S and all states s in M and s′ in M ′: s �L�s′ iff s � s′.

Proof: Clearly, s � s′ implies s �L�s′. The converse: M, s � φ iff M ′, s′ � φ, whenever s �L�s′, is
shown by induction on the complexity of φ. The base case is trivial so assume that M, v � ψ iff M ′, v′ � ψ

for all v ∈ S, v′ ∈ S′ and ψ of lower complexity than φ whenever v �L�v′. The cases for Booleans are
also trivial, so consider φ := �ψ. Then s �L�s′ and M, s � �ψ implies that there is a state u ∈ S such
that Tsu and M, u � ψ. By lemma 1, there is a state u′ ∈ S′ such that Ts′u′ u′

�L�s′. By hypothesis,
M ′, u′

� ψ and hence M ′, s′ � �φ. The converse holds by a similar argument, hence s � s′. �

Theorem 2 For any models M, M ′ ∈ S and all states s in M and s′ in M ′: s � s′ iff s � s′.

Proof: From proposition 1(a), s � s′ implies s � s′, so it only remains to show the converse. Assume
s � s′ and that there is a u ∈ S such that Tsu; we must show that there is a state u′ ∈ S′ such that T ′s′u′

and u � u′. If s is a terminating state, this is trivial; so assume that s is non-terminating. There must be
an s-matching rule ρ. Since s′ �L�s, ρ must also be s′-matching and so, by S1, there is a state u′ ∈ S′

such that T ′s′u′ extending s′ by cn(ρ). Hence u′
�L�s′ and so, by theorem 1, u′

� s′. �

Corollary 1 Let M = 〈S, T, V 〉 ∈ S. For any s, s′ ∈ S and any descendant u of s, if s �L�s′ then there
is a descendant u′ of u such that u �L�u′.

Proof: The proof is immediate from theorem 2. �

We can thus partition states into equivalence classes (s, s′ ∈ [s] whenever s �L�s′) and transform any
model M into a bisimular model M≡ just by comparing the labels on states in M . The domain of M≡

is the set of label equivalence classes in M such that T≡[s][u] whenever Tsu and V ≡([s]) = V (s) for
some s ∈ [s]. Any formula satisfiable in M is then satisfiable in M≡, and M≡ has the handy property that
[s] �L� [u] implies [s] = [u].

10A model is image finite iff
S
s∈S{u | Tsu} is finite.

11Given a model M , we can construct a modally equivalent model N containing an infinite branch for which there can be no
bisimulation Z : M � N (if we suppose there is, we will eventually come to a point on the infinite branch in N for which the
corresponding point in M has no successor; hence they cannot be bisimilar states).
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Definition 6 Let M = 〈S, T, V 〉 ∈ S and n ∈ N. Define T nsu to hold iff there are states s0 · · · sn such
that s = s0, u = sn and, for each i < n, Tsnsn+1.

Now we show that models in S have the property of belief convergence.

Theorem 3 (Belief Convergence) For any model M = 〈S, T, V 〉 ∈ S, any state r ∈ S and any n ∈ N, if
T nrs and T nru, then there is a state s′ reachable from s and u′ reachable from u such that s′ �L�u′.

Proof: Without loss of generality, consider a tree model M ∈ S whose root is r. Let s, u both be reachable
from r in a finite number of transitions. Then there are equinumerous sets X, Y such that V (s) = V (r)∪X

and V (u) = V (r)∪Y . Now consider the subbranch from r to s: for each transition Tvv′ on the branch, pick
a v-matching rule ρ such that v′ extends v by cn(ρ). Enumerate the selected rules ρ for which cn(ρ) /∈ V (u)
as ρ1, . . . , ρn (from r to s). It is easy to see that there must be a state u′ reachable from u, on the branch
that results from firing first ρ1 and then . . . and then ρn. Thus V (u′) = V (u) ∪ { cn(ρ1), . . . , cn(ρn)} =
V (u) ∪ X ′ = V (u) ∪ X = V (r) ∪ Y ∪ X . By similar reasoning, there must be a state s′ reachable from s

with V (s′) = V (s) ∪ Y = V (r) ∪ X ∪ Y . Hence, s′ �L�u′. �

4 Finite Models and Programs

Because of our motivating interest in resource boundedness, we will sometimes want to restrict ourselves
to models in which each state is labelled by only finitely many L-formulae, for these are the sentences
representing the agent’s basic explicit beliefs, of which any real agent may have only finitely many at any
one time. We capture this intuition in the class of finite memory models.

Definition 7 (Finite memory model) A model M ∈ S is a finite memory model iff V (s) is finite for each
s ∈ S. Cfm is the set of all finite memory models in some class C.

An interesting feature of finite memory models in S is that each is bisimilar to a finite state model in S. This
is the finite model property:

Theorem 4 (Finite Model Property) For any finite memory model M = 〈S, T, V 〉 ∈ Sfm, there is a
model M ′ containing only finitely many states and a bisimulation Z : M � M ′.

Proof: For any state s ∈ S, if V (s) is finite, s may only have finitely many children, each of which
are labelled by only finitely many formulae. Let R be the set of rules which label each state (by S4, all
states are labelled by precisely the same rules); clearly R is finite. Then any state s ∈ S can have at
most |{ cn(ρ) | ρ ∈ R}| matching rules. Thus a finite memory model with infinitely many states must
have an infinite branch, on which only a finite initial segment is generated by matching rules, i.e. only
the first n states on the branch are non-terminating states, for some n ≤ |{ cn(ρ) | ρ ∈ R}|. By S3ii,
s �L�s′ whenever Tss′ and s, s′ are terminating states. A model M ′ can be obtained by selecting the first
terminating state s on each branch in M , removing all the descendants of s and adding a transition Tss. M ′

satisfies S2 and is clearly bisimilar to M . Moreover, since s occurred on a finite initial segment of a branch
in M , M ′ only contains branches of finite length. It follows that M ′ only contains finitely many states. �

The above has been a general characterisation of rule-based agents which execute fixed but unspecified
set of rules. However, we are often interested in restricting our attention to agents reasoning with a specific
set of rules. Following the usual terminology, a program is simply a finite set of rules. One of the uses of
the current approach is testing for properties of particular programs.12 Given a program R for the agent, we
can define a subclass SR as containing just those models in S in which the agent believes all the rules in R
and no further rules.

Definition 8 (The class SR) Let R be a program (i.e. a finite set of rules). A model M = 〈S, T, V 〉 ∈ SR

iff M ∈ S and, for all states s ∈ S, R ⊆ V (s). An L-formula φ is said to be SR-satisfiable iff it is satisfied
at some state s in some model M ∈ SR.

12In [24] I discuss adding additional temporal operators and path quantifiers from computational tree logic (CTL), a common input
language for model checking technology. This extension allows rule-based programmers to use current model checking technology to
verify their programs.
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Each class SR is a subclass of S and each model in S is in exactly one class SR. S and its subclasses differ
with respect to (semantic) entailment and satisfiability. If R = {p ⇒ q}, then Bp ∧ ¬�Bq is S-satisfiable
but not SR-satisfiable; similarly, �Bq is a SR-consequence but not a S-consequence of Bp. The remainder
of this section surveys some properties of the class SR, including a decidability result.

Theorem 5 Let R be a program, φ be any ML formula and n = |{ cn(ρ) | ρ ∈ R}|. If φ is SR-satisfiable
at all, then it is satisfiable in a finite model M ∈ SR containing at most nn states.

Proof: Suppose φ is satisfiable at s in a model in SR; then it is satisfied by a tree model M ∈ SR whose
root is s (proposition 1). By S3, any state u in M can have at most |R| children. Now, take any state s

in M of depth n. No ρ ∈ R can be s-matching, for otherwise, some ancestor of s must have extended its
parent by some λ /∈ { cn(ρ) | ρ ∈ R}; but S3 prohibits this. Then any state at depth n or greater must be a
terminating state. There is then a model M ′ ∈ SR forming a rooted directed acyclic graph, bisimilar to M ,
in which s �L�u implies s = u (e.g. by taking equivalence classes from M , as described above). For any
state s in M ′, |{s′ | Tss′}| ≤ n and, for states u, u′ at depth n or greater, T ′uu′ implies u = u′. Therefore
M ′ can contain at most nn states. �

In any state in a model M ∈ SR, only the labels in the sets R and {λ1, . . . , λn, λ | (λ1, . . . , λn ⇒ λ) ∈ R}
can have any effect on which rules do and do not match at that state. Thus, it is only these formulae that
affect the structure that T forms on S. Labels that are not from these sets may be removed without changing
which states are accessible from which in the model. We can combine this with standard techniques to get
a notion of filtration for SR models.

Definition 9 (R-filtration) Let Γ be closed under both subformulae and negation; and set

LΓ = R∪ {α | Bα ∈ Γ} ∪ {λ1, . . . , λn, λ | (λ1, . . . , λn ⇒ λ) ∈ R}

An R-filtration of M = 〈S, T, V 〉 through Γ is then a model MΓ = 〈S, T, VΓ〉 where VΓ(s) = V (s) ∩ LΓ.

Filtration here is rather different than in regular modal logic. Here, we must ensure that rules and the beliefs
needed for them to match are not removed from states when we filter, hence the use of LΓ.

Lemma 2 Let Γ be as above, M = 〈S, T, V 〉 ∈ SR and MΓ be the R-filtration of M through Γ. Then for
any φ ∈ Γ and s ∈ S: M, s � φ iff MΓ, s � φ.

Proof: By induction on the complexity of φ. If φ is an ML primitive this is trivial. So assume that, for
all ψ ∈ Γ of complexity k < n and any state s ∈ S: M, s � ψ iff ML, s � ψ. We show this holds for all
φ ∈ Γ of complexity n. The only if direction is trivial; in the if direction, consider these cases:

φ := ¬ψ. Then M, s � ψ and, by hypothesis, MΓ, s � ψ, hence MΓ, s � φ.

φ := ψ1 ∧ ψ2. Then M, s � ψ1 and M, s � ψ2. By hypothesis, MΓ, s � ψ1 and MΓ, s � ψ2, hence
MΓ, s � φ.

φ := �ψ. Then there is a s′ ∈ S such that M, s′ � ψ and Tss′. By hypothesis, MΓ, s′ � ψ and
hence MΓ, s � φ.

The other Boolean cases are similar; it follows that MΓ, s � φ. �

Lemma 3 Let Γ be as above, M ∈ SR and MΓ be the R-filtration of M through Γ. Then MΓ ∈ SR.

Proof: It follows from lemma 2 that any rule ρ is s-matching in M iff it is s-matching in MΓ and that
ρ ∈ VΓ(s) iff ρ ∈ V (s). Since T is common to both M and MΓ, S1-4 are satisfied and hence MΓ ∈ SR.�

Definition 10 Let sub(φ) be the set of subformulae of φ, i.e.:

sub(Bα) = {Bα}

sub(¬φ) = sub(�φ) = sub(φ)

sub(φ ∧ ψ) = sub(φ ∨ ψ) = sub(φ → ψ) = sub(φ) ∪ sub(ψ)
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and let Cl(φ) be sub(φ) closed under negation.

Theorem 6 (Finite Memory Property) Let R be a program and φ be any ML formula. If φ is R-
satisfiable, then it is satisfiable in a finite memory model M ∈ Sfm

R
.

Proof: Assume that M, s satisfies φ. Let MΓ be the R-filtration of M through Γ = Cl(φ). By lemma 2,
MΓ, s � φ and, by lemma 3, MΓ ∈ SR. Since Cl(φ) and R are both finite, V (s) is finite for every s ∈ S,
hence MΓ ∈ Sfm

R
. �

Theorem 7 (Decidability) Let R be a program and φ be any ML formula. Then it is decidable whether
φ is SR-satisfiable.

Proof: Suppose φ is R-satisfiable; then it is satisfied at the root r of some tree model M ∈ SR. Let MΓ

be the R-filtration of M through Γ = Cl(φ). By inspecting the proof of theorem 6, MΓ, r � φ, MΓ ∈ Sfm
R

and VΓ(r) = V (s) ∩ LΓ, with LΓ as definition 9. Let n = |{ cn(ρ) | ρ ∈ R}|. By inspecting the proof of
theorem 5, a model M ′

Γ
can be obtained that has at most nn states (e.g. by taking equivalence classes from

MΓ, as described above). Thus if φ has an S-model, one can be found by considering each model with no
more then nn states whose root is labelled by a subse t of LΓ. Since LΓ is bounded by the size of φ and R,
we have an upper bound on the search for a model. We therefore have a terminating algorithm that will find
an SR model for φ if one exists. �

5 Axiomatization and Complexity

Given some such program R, it is easy to axiomatize the logic of the class SR. The abbreviation

match(λ1, . . . , λn ⇒ λ)
df
= Bλ1 ∧ · · · ∧ Bλn ∧ ¬Bλ

is helpful. The axiom system shown in figure 2 is called ΛR. A6 says that, when a belief is added, it must
have been is added by some matching rule instance in R. A7 says that, if all matching rule instances in the
current state are ρ1, . . . , ρn, then each of the successor states should contain the consequent of one of those
instances.

Cl all classical propositional tautologies

K �(φ→ ψ) → (�φ→ �ψ)

A1 Bρ where ρ ∈ R

A2 ¬Bρ where ρ �∈ R

A3 Bα→ �Bα

A4 B(λ1, . . . , λn ⇒ λ) ∧ Bλ1 ∧ · · · ∧ Bλn ⇒ �Bλ

A5 �(Bα ∧ Bβ) → Bα ∨ Bβ

A6 �Bα → (Bα ∨
_

λ1,...,λn⇒λ∈R,λ=α

Bλ1 ∧ · · · ∧ Bλn)

A7 matchρ1 ∧ · · · ∧ matchρn ∧
^

ρ �=ρi≤n,ρ∈R

¬matchρ→ �

“
Bcn(ρ1) ∨ · · · ∨ Bcn(ρn)

”
n > 1

A8 ��

MP
φ φ→ ψ

ψ

N
φ

�φ

Figure 2: Axiom schemes for ΛR
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A derivation in ΛR is defined in a standard way, relative to R: φ is derivable from a set of formulae
Γ (written Γ �R φ) iff there is a sequence of formulae φ1, . . . , φn where φn = φ and each φi is either an
instance of an axiom schema, or a member of Γ, or is obtained from the preceding formulae by MP or N.
Suppose an agent’s program R contains the rules ρ1, . . . , ρn. This agent is guaranteed to reach a state in
which it believes α in k steps, starting from a state where it believes λ1, . . . , λm, iff

Bρ1 ∧ . . . ∧ Bρn ∧ Bλ1 ∧ . . . ∧ Bλm ⇒ �
k
Bα

is derivable in ΛR (again, �
kα is an abbreviation for �� · · ·�α, k times). We now show that ΛR is the

logic of the class SR (the proofs of lemmas 4 and 5 are standard).

Lemma 4 (Lindenbaum lemma) Any set of formulae Γ can be expanded to a ΛR-maximal consistent set
Γ+.

A canonical model MR = 〈S, T, V 〉 is built in the usual way. States in S are ΛR-maximal consistent sets;
Tsu iff {φ | �φ ∈ s} ⊆ u (or equivalently, iff {�φ | φ ∈ u} ⊆ s). Finally, V (s) = {α ∈ L | Bα ∈ s}, for
each s ∈ S.

Lemma 5 (Existence and Truth lemma) For any φ and any state s in MR: (i) if there is a formula �φ ∈
s then there is a state u in MR such that Tsu and φ ∈ u; and (ii) MR, s � φ iff φ ∈ s.

Lemma 6 Let MR be a canonical model and let α ∈ L and s, u ∈ S. Then (i) if Tsu and α ∈ V (u) but
α /∈ V (s), then V (u) = V (s) ∪ {α}; and (ii) α in part (i) must be a literal.

Proof: Part (i) follows from the definition of ‘�’ together with the truth lemma and the fact that states are
closed under axioms A3 and A5. The former axiom ensures that s is a subset of u, the latter ensures that α

is the only new belief. For part (ii), if we suppose α were some rule we would have α ∈ R and so α ∈ s,
contrary to hypothesis. �

Theorem 8 (Completeness) ΛR is strongly complete with respect to the class SR: given a program R, a
set of ML-formulae Γ and an ML-formula φ, Γ �R φ only if Γ �R φ.

Proof: Expand Γ to a ΛR-maximal consistent set Γ+ from which we build a canonical model MR. From
the truth lemma, it follows that MR, Γ+

� Γ. It remains only to show that MR is in the class SR, i.e. that
MR satisfies S1–S4. S4 is clearly satisfied; the remaining cases are:

MR satisfies S1: Assume there is an s-matching rule ρ. Given the truth lemma, it is easy to see that each
of its antecedents is a member of s, whereas its consequent is not. A4 and the existence lemma guarantee
an accessible state u which, given lemma 6, is the extension of s by cn(ρ).

MR satisfies S2: Suppose s is a terminating state. By axiom A8, there is an accessible state s′. By axiom
A6, α ∈ V (s′) implies α ∈ V (s) for any literal α (this holds because there are no matching rules at s). It
then follows from axioms A1–A3 that V (s′) = V (s), hence S2 is satisfied.

MR satisfies S3: Suppose Tsu for states s, u in MR. By definition, {φ | �φ ∈ s} ⊆ u. By axiom A7,
there must be one literal believed in u but not in s, namely the consequent of either ρ1 or . . . or ρn. Then
by the argument just used, it follows that u is the extension of s by this new belief. �

Theorem 9 Given a particular program R, the problem of deciding whether a formula φ is satisfiable in a
model M ∈ SR is NP-complete.

Proof: Clearly the problem is NP-hard. Let n = |{ cn(ρ) | ρ ∈ R}|. From theorem 5, any SR-satisfiable
sentence φ has a tree model M ∈ SR containing no more than nn states which, given the proof of theorem
6, is no larger than |φ|nn. Given any Kripke structure M ′, state s in M ′ and a modal formula ψ, it takes
time polynomial in the size of M ′ and ψ to check whether M ′, s � ψ [8]. The crucial point here is that
|R|, and hence nn, is constant in SR. Thus, we can guess a model M ∈ SR of size no greater than |φ|nn

and check whether φ is satisfied at the root of M in time polynomial in |φ|. It follows that the problem of
deciding whether φ is SR-satisfiable is in NP. �
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One of the main practical uses of models in a class SR is to check whether R satisfies certain properties,
specified as an input formula φ. One may want to check a range of different programs against a different
property: for example, suppose a developer requires an agent which can never move into a state in which
φ holds. On discovering that φ is SR1

-satisfiable, she must reject R1. If R2 is the next generation of
the program, then φ needs to be checked for SR2

-satisfiability. The evolution from R1 to R2 may have
added a large number of rules to the program. This example highlights that it is not just the scalability of
satisfiability checking given φ as an input that should concern us. How the problem scales with the size of
the agent’s program is also crucial.13 An interesting problem to consider, therefore, is the one that takes
both a formula φ and a program R as its input and determines whether φ is SR satisfiable. I call this the
S-SAT problem. The complexity of the problem should be investigated in terms of |R| and |φ| rather than
in terms of |φ| alone.

Theorem 10 S-SAT is in PSPACE.

Proof: The proof is similar to the proof that the K-satisfiability problem has a PSPACE-implementation
in [8]. An S-Hintikka set over a program R and a set Σ is like a standard Hintikka set but, in addition,
contains all instances of axiom schemes A1–A8 over Σ. A witness set is then defined as in [8]. The key
result is that a S-Hintikka set H over R and Σ is SR-satisfiable iff there is a witness set generated by H

over R and Σ. A formula φ can then be tested for satisfiability by setting Σ = Cl(φ)∪ {Bα | α ∈ Cl(R)}.
A correct algorithm called witness can then be given which returns true on input H,R, Σ iff H is a SR-
satisfiable S-Hintikka set over R and Σ. The final stage establishes that witness has an implementation on
a non-deterministic Turing machine that only requires space polynomial in |φ| and |R|. Since NPSPACE =
PSPACE, this establishes that S-SAT is in PSPACE. The full proof is given in [24]. �

6 Related Work

Early work in epistemic logic on rule-based system, influenced by work in AI, is found in Konolige’s
Deduction Model of Belief [25]. As here, semantics is given in terms of sets of formulae, with Biα true iff
agent i has α in its belief set. Each agent i is assigned a set of deduction rules ρi, which need not be logically
complete (and in fact must not be to avoid closure of belief under classical consequence). A belief set is
then obtained by closing an agent’s knowledge base under its rules. This is what [13] term a “final tray”
model of belief (p. 1), reporting what an agent would derive, given unlimited time and memory. Agents
with a functionally complete set of deduction rules are therefore modelled as believing all tautologies and
all consequences of their beliefs and so logical omniscience is only avoided by considering agents with
depleted logical ability.

In [22, 23], Ho Ngoc Duc presents an epistemic logic based on dynamic logic. If r is an inference
rule that the agent can use, then 〈r〉 is the usual dynamic modality ‘after executing (i.e. reasoning using)
r, it is possible that . . . ’ where the blank will usually be filled with a belief ascription. Ho introduces a
future modality 〈F 〉, defined as the iterated set of all choices of actions r1, . . . , rn available to the agent:
F = (r1 ∪ · · · ∪ rn)∗. 〈F 〉Bφ then says that the agent can come to believe that φ and [F ]Bφ says that the
agent must believe that φ at some point in the future. The notion of the future here is thus an idealised one,
considering all the states in a temporally unbounded reasoning process. For example, if p is a propositional
(modality-free) tautology, then 〈F 〉Bp is a theorem. It is not even correct to read 〈F 〉Bp as ‘the agent can
believe p at some point in the (idealised) future’ (just consider a tautology p so large that no agent could
come to hold the sentence in its memory). The 〈F 〉 operator thus ignores resource bounds.

This highlights an important point. Avoiding logical omniscience is not an end in itself. Evidently,
what is therefore required is a logic which not only avoids logical omniscience, but that captures the stages
of reasoning are captured, rather than just the idealised endpoint. Step logic [13] attempts to overcome
this problem by indexing beliefs by time points or steps. Each step corresponds to a cycle in the agent’s
reasoning. Step logic deduction rules take the form:

t: α1 · · · αn

t + 1: α

13In fact, this can often be the more important factor of the two, for the size of many programs currently in use far exceeds the size
of the formulae that it is useful to check for satisfiability.
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However, a semantics is not provided for any step logic in [13]. A minimal possible worlds semantics for
step logic are found in [29] and [12]. Belief is defined as a relation between a world and a set of sets of
worlds, based on Scott-Montague (or neighbourhood/minimal) structures; an axiomatization is found in
[29]. However, agents are modelled as believing all propositional tautologies and their beliefs as closed
under equivalence. This is a limitation of Scott-Montague semantics, which deals with the intensions of
believed sentences (equivalent sentences necessarily have identical intensions). Grant, Kraus and Perlis
provide a first-order axiomatization and model theory for step logic in [20]. Not all of the models they
describe are adequate representations of an agent’s beliefs, in that a particular model may contain ‘extra’
sentences not derivable from the agent’s previous beliefs. Accordingly, they introduce the notion of knowl-
edge supported models. This suggests that the framework is not ideally suited to modelling belief obtained
by rule-based reasoning.

Timed Reasoning Logic (TRL) is introduced in [5, 6]. The focus is on modelling different rule applica-
tion and conflict resolution strategies in rule-based systems, building on the step logic approach. Semantics
are provided in terms of syntactic local models. TRL uses labelled formulae rather than the modal met-
alanguage adopted here. In [36], TRL is used to model assumption-based reasoning in resource-bounded
agents. Such ways of reasoning cannot be modelled by step logic, in which implications must be deal with
by forming instances of Hilbert axioms. One major difference between TRL and the present approach is
that an agent’s current state together with its rules determines a unique next state. It is thus not possible
to distinguish between the beliefs that an agent can derive from those it must derive in a certain number of
steps. This is a limitation of TRL (and step logic) that has been addressed int he present work.

Ågotnes [1] considers a logic of finite syntactic epistemic states. As with TRL and the Deduction Model,
the semantics is based on sets of sentences. An unusual feature of [1] is that syntactic operators take sets
of sentences as their arguments. �i{φ1, . . . , φn} says that agent i believes at least that φ1, . . . , φn are true.
Similarly, �i{φ1, . . . , φn} says that agent i believes at the most that φ1, . . . , φn are true. The syntax of what
an agent believes at a time thus closely follows the semantics. A semantics is provided by game-theoretic
structures, allowing expressive ATL modalities to be incorporated in the logic. Given a set of agents G,
the path quantifier 〈〈G〉〉 allows sentences to express co-operation between members of G to achieve some
result. This approach forms the basis of [3] and [2].

7 Future Work

This paper has presented a basic framework for modelling rule-based agents in a simplified, monotonic
setting. One of the principal applications of the logic that has been developed is to verify that a rule-based
program satisfies certain criteria. To this end, the addition of computational tree logic (CTL) modalities
would constitute an increase in expressivity and allow the resulting language to be used as an input to
model checkers. Note that the � modality discussed here corresponds to the CTL modality EX (EXφ

holds iff φ holds at the next step of some branch). This is a minor amendment to the syntax; the models
themselves remain identical. The aim in this paper was explicitly to restrict attention to a single rule-based
agent. As with most modal logics, it is surprisingly easy to add multiple agents to the formalism (add a
valuation Vi for each agent i and plausible rules about communication between agents); see [4].

A more challenging development would be to drop the monotonicity requirement. Nonmonotonic rea-
soning is important in many areas of AI: see [19]. In fact, a good deal of practical reasoning is nonmono-
tonic. Makinson comments that “almost all of our everyday reasoning is nonmonotonic; purely deductive,
monotonic inference takes place only in rather special contexts, notably pure mathematics” [28, p. 19].
Nonmonotonic reasoning in rule-based systems can arise in a number of ways. One is when certain condi-
tions determine which rule should be fired in the next cycle. Situations can arise in which ρ may fire but,
if the agent were to know more information, ρ would not be fired. The resulting consequence relation is
nonmonotonic.

Another route to nonmonotonicity in rule-based systems is to consider rules of the form

P1, . . . , Pn ⇒ ∼Q

where ∼Q instructs the agent to remove Q from its working memory. Firing such a rule does not lead
to a new belief; but it can lead to the agent having one less belief. Amending the current framework to
allow for such nonmonotonic rule-based inference would increase its applicability in many areas of AI. A
starting point is to amend the requirement that one state extends another when there is a transition to the
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first from the second. Instead, define an amend operation ‘◦’ on 2L × L such that X ◦ p = X ∪ {p} and
X ◦ ∼p = X − {p}. Then, whenever there is an s-matching rule ρ, there is a state u such that Tsu and u

amends s by cn(ρ). In this system, the order in which rules fire matters. Moreover, it is no longer the case
that if Γ entails φ then Γ ∪ {ψ} entails φ. It would be interesting to see which of the properties discussed
above hold of this logic; this is left for future work.

8 Summary

This paper presents a framework for modelling resource bounded reasoners that derive new beliefs from
old through inference. The approach is designed to handle inference rules of many types. The example of
rule-based programs was chosen here as it allows a simple testbed for the framework. The resulting models
of rule-based agents have a number of interesting properties: the equivalence between label identity, modal
equivalence and bisimulation, and the belief convergence property. When a particular program is specified,
a logic with a decidable satisfaction relation is obtained, which can be easily axiomatized. The interesting
satisfiability problem in the resulting logics is in PSPACE.

Not all reasoners are rule-based in the restricted sense used here. Many agents revise their beliefs (and
indeed their rules); conclusions can be withdrawn as well as asserted; agents reason inductively and abduc-
tively as well as deductively; agents make assumptions and see what follows. These forms of reasoning have
not been addressed here. Nevertheless, resource-bounded reasoners using any of these forms of reasoning
will amend their set of beliefs in a step-by-step way according to their chosen set of rules. By treating these
transitions from one belief state to the next as the foundation for a semantics, a fine-grained account of
resource-bounded reasoning is possible in which the problems of logical omniscience never arise.
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Simulative Inference in a Computational Model of Belief

Aaron Kaplan
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Abstract

Upon learning something new, a person generally draws some conclusions from it, but will miss or
ignore some logically valid conclusions (people are not logically omniscient), and furthermore may draw
conclusions that do not logically follow from the new information (people’s beliefs are not derived purely
by deduction). Therefore, in order to reason accurately about what someone believes, it is necessary to
know something about how he or she thinks.

We propose a family of logics in which belief is modeled as the result of applying an algorithm to
a set of input sentences. We define inference rules that can be used to reason about what others believe
by simulating the application of their belief algorithm, and we explore conditions under which these
inference rules are sound and complete.

1 Introduction

The human mind is a complex system about whose internal workings we understand very little. Never-
theless, one person can predict with a useful degree of accuracy how another will behave in a wide range
of circumstances. It seems plausible that we make such inference by analogy to ourselves, using a kind
of introspection: “If I were in such a situation, I would . . . .” Let us call this type of reasoning simulative
inference.

In this paper we focus on simulative inference about belief, i.e. inference of the form “If I were in a’s
position, then I would believe ψ; therefore, a believes ψ.” In order to formalize this, we posit that beliefs
are generated by the application of a reasoning algorithm, and that believers all share the same reasoning
algorithm. Simulative inference can then be described as follows:

• Agent a believes that ϕ1, . . . , ϕn.

• If I run my belief algorithm (which is the same one a uses) on background information ϕ1, . . . , ϕn

and query ψ, it answers “yes.”

• Therefore, a believes that ψ.

Classical models of belief such as Hintikka’s provide a simple axiomatization of belief, but in so doing
provide a poor approximation of the real thing, the logical omniscience problem being one notable symptom.
Describing belief realistically with a purely axiomatic approach is clearly infeasible—the axiomatization
would have to be as complex as the human brain itself. Our approach is thus simply to stipulate that there
is some algorithm that believers use for reasoning, and then, without choosing a particular algorithm, to
explore the logical properties of belief that result from imposing various constraints on the algorithm. In
particular, we will determine a class of algorithms for which simulative inference about belief is sound.

This model is particularly relevant to artificial intelligence applications. If an AI system is endowed
with a mechanism intended to simulate how humans reason, then intuitively it seems that the system should
be able to reason about humans’ beliefs by simulating their thought processes with this mechanism. The
logic we present in this paper provides a formal framework for describing this sort of inference, and allows
us to define conditions in which it is sound.

2 Overview of main definitions and results

We will now outline the main definitions of our logic and the theorems that follow from them. For the most
part we will give only informal descriptions; for details and proofs, the reader is referred to [13].
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2.1 Syntax

We define the language L as ordinary first-order logic (FOL) with the addition of a modal belief operator
B. Where α is a term and ϕ is a formula, B(α, ϕ) is a formula whose intended meaning is that α believes
ϕ. “Quantifying in” is allowed, meaning that a variable within a belief formula can be bound by a quantifier
outside of that formula, e.g. ∃x.B(a, P (x)).

2.2 Semantics

Our model of belief is built around the concept of a belief machine, which is an abstraction of a compu-
tational inference mechanism. In the model, each agent has a belief machine that it uses for storing and
retrieving information. The agent enters facts it has learned into its belief machine, and can then pose
queries to it. Input and queries are expressed as logical sentences, but the model does not constrain the form
in which the machine stores and manipulates the information internally. For example, the machine might
use diagrammatic representations, or might have knowledge “hard-coded” into its functional behavior in
addition to information it has been given in symbolic form. The machine may perform some inference in
answering queries, but it must be guaranteed to give an answer in a finite amount of time. An agent believes
a sentence ϕ if its belief machine is in a state such that the query ϕ is answered affirmatively.

A belief machine is characterized by two functions, TELL and ASK. TELL describes how the state of
the machine changes when a new sentence is stored: if S is the current state of the belief machine, and ϕ is
a sentence, then the value of TELL(S, ϕ) is the new state the belief machine will enter after ϕ is asserted to
it. The value of ASK(S, ϕ) is either yes or no, indicating the response of a machine in state S to the query
ϕ.

Given a particular belief machine m whose set of possible states is Γ, we define the class of m-models
as the set of structures 〈D, I, γ〉, where

• D is the domain of individuals,

• I is an interpretation function that maps variables and individual, predicate, and function constants to
set-theoretic extensions, as in ordinary FOL,

• γ : D → Γ is a function that assigns each individual a belief state.

A model assigns truth values to formulas of ordinary FOL as usual. A sentence B(α, ϕ) is true in m-model
M = 〈D, I, γ〉 if α’s belief machine answers yes to ϕ, i.e. when

ASK(γ(I(α)), ϕ) = yes.

We omit the details relating to the semantics of quantification. To summarize, ∃x.B(a, P (x))∧B(b, Q(x))
is true in M if there is some individual, and two terms τ1 and τ2 that both denote that individual in M , such
that B(a, P (τ1)) and B(b, Q(τ2)) are both true in M .

2.3 Some metalogical notation

The notation B · S means the belief set of a machine in state S, i.e.

B · S = {ϕ|ASK(S, ϕ) = yes}.
A sentence ϕ is acceptable in state S if TELLing the machine ϕ while it is in state S causes it to believe

ϕ, i.e. if
ϕ ∈ B · TELL(S, ϕ).

A sentence ϕ is monotonically acceptable in state S if it is acceptable in S and TELLing the machine ϕ
while it is in state S does not cause it to retract any beliefs, i.e. if

B · S ∪ {ϕ} ⊆ B · TELL(S, ϕ).

A sequence of sentences ϕ1, . . . , ϕn is monotonically acceptable in state S if each element ϕi of the
sequence is monotonically acceptable in the state TELL(S, ϕ1, . . . , ϕi−1). A sequence ϕ1, . . . , ϕn is ac-
ceptable in state S0 (we do not define acceptability of sequences in other states) if

ASK(TELL(S0, ϕ1, . . . , ϕn), ϕi) = yes
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for all 1 ≤ i ≤ n, and if all initial subsequences of ϕ1, . . . , ϕn are also acceptable (defined recursively).
That is, a sequence is acceptable if, as each of its elements is TELLed to a belief machine starting in the
initial state, the machine accepts the new input and continues to believe all of the previous inputs (though it
might cease to believe sentences that were inferred from the previous inputs).

2.4 Inference rules

Our logic includes most of the standard inference rules for FOL. Restricted variants are used for the rule
of substitution of equals (B(a, P (b)) and b = c do not entail B(a, P (c))), the rule of ∀-substitution
(∀xB(a, P (x)) does not entail B(a, P (c))), and Skolemization (for some belief machines, ∃xB(a, P (x))
is satisfiable yet B(a, P (k)) is unsatisfiable—in particular, belief machines that have hard-coded beliefs
about k). We also add two new rules for reasoning about belief:

Positive simulative inference: Simulative inference about belief, as we characterized it in the introduc-
tion, is formalized by the following natural deduction-style inference rule, where the formulas above the
line are the premises, the formula below the line is the conclusion, and the rule can be applied only when
the condition written below it holds:

B(α, ϕ1), . . . , B(α, ϕn)
B(α, ψ)

if ASK(TELL(S0, ϕ1, . . . , ϕn), ψ) = yes.

Although the function TELL may be sensitive to the order of its arguments, we will see below that the
positive simulative inference rule is only sound for belief machines that satisfy certain constraints; and these
constraints entail that if a set of sentences ϕ1, . . . , ϕn can all be believed simultaneously, then then the order
in which they are TELLed is not significant.

Negative simulative inference: In order to have a proof system that is complete (in a restricted sense; see
below) with respect to the model theory we have defined, we also need another form of simulative inference,
one that allows us to detect by simulation that a set of sentences is not simultaneously believable. As in the
former rule, the ϕi in this rule must be sentences, not open formulas; α may be any term.

B(α, ϕ1), . . . , B(α, ϕn)
⊥

if ASK(TELL(S0, ϕ1, . . . , ϕn), ϕi) = no for some i, 1 ≤ i ≤ n.

This rule says that if TELLing a set of sentences to a belief machine in its initial state doesn’t cause it to
believe all of those sentences, then no agent can believe all of them simultaneously.

2.5 Soundness and completeness

The inference rules we have defined may or may not be sound, depending on the choice of belief machine.
We will state a number of soundness and completeness results that hold for particular classes of belief
machines. The classes are defined using various combinations of the following five constraints.

2.5.1 Constraint definitions

Closure: The closure constraint says that TELLing the machine something it already believed does not
increase its belief set (though the belief state may change).

C1 (closure) For any belief state S and sentence ϕ, if

ASK(S, ϕ) = yes

then
B · TELL(S, ϕ) = B · S.
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This rules out, for example, machines that cut off reasoning after a fixed time or number of inference
steps. Positive simulative inference, as we have defined it, is unsound for such machines because in effect
they make a distinction between “base beliefs,” sentences that have been explicitly TELLed to the machine,
and “derived beliefs,” those to which the machine assents as a result of inference. Since the logic has
only a single belief operator, which describes both base beliefs and derived beliefs, such machines lead to
contradictions.

Commutativity: The commutativity constraint says that if a sequence of sentences is acceptable, then it
is acceptable in any order, and the belief set of the resulting state does not depend on the order.

C2 (commutativity) For any belief state S and acceptable sequence of sentences ϕ1, . . . , ϕn, and for any
permutation ρ of the integers 1 . . . n, the sequence ϕρ(1), . . . , ϕρ(n) is also acceptable, and

B · TELL(S, ϕ1, . . . , ϕn) = B · TELL(S, ϕρ(1), . . . , ϕρ(n)).

It is clear that some form of commutativity is necessary for our positive simulative inference rule to be
sound, since a pair of premises B(a, ϕ) and B(a, ψ) gives no information about which of ϕ and ψ came to
be believed first. However, the constraint we have stated here stops short of requiring commutativity for all
sequences of TELLs. It permits the belief machine to take order into account when deciding how to handle
input sequences that are not acceptable. Typically these would be sequences in which the machine detects
a contradiction.

Monotonicity: This constraint requires that if a TELL causes the retraction of some previously held be-
liefs, then some previously TELLed sentence must be among the retracted beliefs.

C3 (monotonicity) If a sequence ϕ1, . . . , ϕn is acceptable, then it is monotonically acceptable.
Suppose a machine, having been TELLed ϕ, assents to ψ by default unless it can prove χ. The rule of

simulative inference is not sound for such a machine: it licenses the conclusion B(a, ψ) from the premise
B(a, ϕ), but the conclusion is not entailed by the premise, since there is a belief state in which ϕ is believed
but ψ is not, namely TELL(S0, ϕ, χ). The monotonicity constraint rules out such a machine, since the
sequence ϕ, χ is acceptable but not monotonically acceptable (ψ is believed after the first TELL, and no
longer believed after the second).

The monotonicity constraint does not completely eliminate the possibility of retraction of beliefs. While
it rules out defeasible inference, it does permit machines that, when they discover that their input contains a
contradiction, choose some part of the input to ignore.

Acceptable basis: The acceptable basis constraint says that for each belief state, a state with the same
belief set can be reached from the initial state by TELLing the machine a finite, acceptable sequence of
sentences.

C4 (acceptable basis) For any belief state S, there exists an acceptable sequence of sentences ϕ1, . . . , ϕn

such that
B · TELL(S0, ϕ1, . . . , ϕn) = B · S.

The monotonicity constraint stated that when retraction occurs, a TELLed sentence must be among the
retracted beliefs; the acceptable basis constraint further requires that the effect of the retraction must be the
same as that of ignoring part of the input. Note that the effect is not necessarily that of ignoring an entire
input sentences—for example, the sequence ϕ ∧ ψ,¬ψ might induce the belief set {ϕ}.
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Monotonicity under substitution: A belief machine may have “special terms” that it treats differently
from others. For example, if a machine has routines for performing mathematical calculations, it may have
beliefs about terms like “15” that it doesn’t have about terms like c, even in the initial state when it has not
yet been TELLed any input sentences. The following constraint requires that even if there are some terms
that receive special treatment, the machine still has an infinite supply of “ordinary constants,” i.e. constants
for which the machine has no a priori beliefs.

C5 (monotonicity under substitution) There must be infinitely many individual constants κ such that for
any ground term τ and sentences ϕ1, . . . , ϕn,

1. if
ASK(TELL(S0, ϕ1, . . . , ϕn), ψ) = yes

and ϕ1τ/κ, . . . , ϕnτ/κ is monotonically acceptable in S0, then

ASK(TELL(S0, ϕ1τ/κ, . . . , ϕnτ/κ), ψτ/κ) = yes

2. if
ASK(TELL(S0, ϕ1, . . . ϕn), ϕi) = no

for some 1 ≤ i ≤ n, then

ASK(TELL(S0, ϕ1τ/κ, . . . , ϕnτ/κ), ϕjτ/κ) = no

for some 1 ≤ j ≤ n.

The intuition behind this constraint is that if one set of sentences contains no less information than an-
other, then the belief machine should draw no fewer conclusions from the first set than from the second.
An assertion about a term that has already been used in other assertions, or about a functional term contain-
ing function and/or individual constants that have been used in other assertions, conveys more information
than the same assertion about a previously unseen constant (such as a Skolem constant). For example, if
we know P (c) but know nothing about d, then the assertion Q(c) conveys more information than Q(d),
because it makes a connection to other knowledge. The first half of the constraint says that if the belief
machine draws the conclusion ψ after being TELLed something about a Skolem constant κ, then it must
draw the corresponding conclusion ψτ/κ if it is TELLed the same thing about any term τ , unless ψτ/κ is
inconsistent with its previous beliefs. The second half of the constraint says that if a sequence of assertions
about a Skolem constant is not acceptable, then the sequence must still not be acceptable if the Skolem
constant is replaced by any other term.

2.5.2 Soundness and completeness properties

We simply list the soundness and completeness theorems here. For proofs, see [13].

• The positive simulative inference rule is sound for any belief machine that satisfies constraints C1–C4
(closure, commutativity, monotonicity, acceptable basis).

• The negative simulative inference rule is sound for any belief machine that satisfies constraints C1,
C3, and C4 (closure, commutativity, and acceptable basis).

• The Skolemization rule is sound for any belief machine that satisfies constraint C5 (monotonicity
under substitution).

• The entire logic, which includes the above three rules, is sound for any belief machine that satisfies
constraints C1–C5.

• The logic is not complete under constraints C1–C5. This is related to the fact that it lacks the com-
pactness property: there are infinite theories that are unsatisfiable yet have no unsatisfiable finite
subset.

• The logic is complete for a syntactically restricted subset of the language. Loosely stated, the restric-
tion is that universal quantification into a positively embedded belief context, e.g. ∀xB(a, P (x)), is
not allowed.
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2.6 Introspection and nonmonotonic belief machines

A believer has the property of positive introspection if, for each sentence ϕ that it believes, it also believes
that it believes ϕ; negative introspection means that when the agent doesn’t believe ϕ, it believes that it
doesn’t believe ϕ. If we add an indexical constant me to the logic (which can be interpreted using standard
semantic machinery, see [13]), then it becomes possible to construct introspective belief machines: when
queried about a sentence of the form B(me,ϕ), a belief machine can simply run the query ϕ, and return the
result of that query. Negative introspection can be implemented similarly.

Though negative introspection is useful and easily implemented, belief machines with this property
violate the monotonicity constraint (negative introspection is a form of nonmonotonic reasoning). Thus
if we wish to allow negative introspective belief machines, we are forced to discard the rule of positive
simulative inference.

Fortunately, the rule of negative simulative inference is sound even for nonmonotonic belief machines;
and in fact it turns out to be particularly useful for such machines. Note that if a belief machine is negative
introspective, then the following inference rule is sound:

¬B(α, ϕ)
B(α,¬B(me,ϕ))

By chaining this rule with the negative simulative inference rule and reductio ad absurdum, we can derive
the following new rule, which is sound even for negative introspective machines:

B(α, ϕ1), . . . , B(α, ϕn)
B(α, ψ)

if ASK(TELL(S0, ϕ1, . . . , ϕn,¬B(me,ψ)), χ) = no for some χ ∈ {ϕ1, . . . , ϕn,¬B(me,ψ)}
Note that this derived rule’s premises and conclusion are of the same form as those of the original positive
simulative inference rule, but the simulation condition is different.

3 Related work

3.1 Possible Worlds Theories

The point of departure for much work on reasoning about belief is the possible worlds model of Hintikka
[11], with important refinements by Kripke [18]. Several authors have used the ideas of the possible worlds
model, but modified in such a way as to eliminate logical omniscience. In the classical model, a possible
world is essentially an ordinary first-order model. Levesque’s influential model of “explicit belief” [20], in
contrast, uses situations which are models of a four-valued logic: a situation can support the truth or falsity
of an atomic sentence, or both, or neither. Levesque’s proposal has been extended by Lakemeyer [19] to a
first-order logic, and by Delgrande [2] to allow nested belief.

In Levesque’s model, believers can be seen as perfect reasoners in a weaker-than-ordinary logic which
is decidable. Since the logic is decidable, there is a belief machine that implements a sound and complete
inference procedure for it, and so there is an instantiation of our logic that is equivalent to Levesque’s.

Fagin and Halpern [6] suggest a version of possible worlds semantics in which an agent may have many
frames of mind. If an agent believes both ϕ and ψ, but in different frames of mind, then he believes all of
ϕ’s consequences and all of ψ’s consequences, but not necessarily any consequences of their combination.
The entailments concerning belief are therefore even weaker than those in Levesque’s model.

Some authors, for apparently aesthetic reasons, prefer “purely semantic” models like Levesque’s to ones
like ours in which syntactic entities (sentences of a language of belief) are part of the semantics. But to us,
it seems unlikely that belief can be fully explained or described without making reference to the mental
representations of the believer, and so it seems entirely appropriate for knowledge representations to be part
of a model of belief.

3.2 Sentential Theories

We now turn to models which, like ours, define belief in terms of sentences, and use the concept of inference
in the definition of belief.
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Our logic can be viewed as a refinement of that of Eberle [4]. That logic has an inferability predicate
I , where I(ϕ1, . . . , ϕn;ψ) means that ψ is inferable from ϕ1, . . . , ϕn. The inferability relation can be an
arbitrary relation over sentences, so logical omniscience needn’t obtain. An axiom of the logic says that if
ϕ1, . . . , ϕn are believed, and ψ is inferable from ϕ1, . . . , ϕn, then ψ is believed. This is clearly analogous
to our rule of positive simulative inference. Eberle also shows that if a constraint analogous to our closure
constraint is placed on the inferability relation, then his logic is sound and complete. Our model extends that
of Eberle by treating the premises of simulative inference as a sequence rather than a set, and by defining
the inferability relation in computational terms.

Halpern, Moses, and Vardi [10] describe a model of “algorithmic knowledge” that is similar to our model
in that an agent is modeled has having a reasoning algorithm, and its beliefs are taken to be the sentences that
the algorithm can verify given the information encoded in the agent’s knowledge state. Simulative inference
has not been discussed in the framework of algorithmic knowledge. In addition, Halpern et al’s logic is a
propositional logic, whereas ours is first-order. Soundness and completeness proofs are significantly more
complicated in the first-order case.

The mode of reasoning described by Haas [8, 9] is also simulative reasoning, but of a different kind. It
can be summarized as follows: if α believes ϕ at time t, and I can prove ψ from ϕ in n time units, then
α believes ψ by time t + n. Since beliefs are indexed with a time at which they are known to be believed,
this simulative technique is sound for a broader class of reasoning mechanisms than ours. Specifically, the
closure constraint is not required for soundness, because the logic differentiates between base beliefs and
derived beliefs. However, implicit in Haas’ presentation is the assumption that belief computation is simply
the enumeration of conclusions that can be reached from a set of premises, not goal-directed inference that
attempts to verify or refute a particular query sentence. If the mechanism being used in simulative reasoning
were a goal-directed theorem prover, then one would not be justified in concluding that another agent with
similar inferential ability had reached the same conclusion in the same amount of time. For simulation to be
justified, one would have to know, in addition, that the agent had had occasion to “wonder” about the query
sentence, i.e. had begun attempting to prove it.

Related ideas of time-bounded inference can be found in the “step logics” (later renamed “active logics”)
of Elgot-Drapkin et al. [5]. In these logics, an agent’s beliefs are seen as a set of sentences that changes
over time, at integral time steps, as a result of both observation and inference. Inference can introduce new
sentences derived (via sound or unsound rules) from sentences believed in the previous time step, and can
also cause the retraction of beliefs held in the previous step, as a result of contradictions discovered in the
earlier belief set. It may well be possible to develop a form of simulative inference in this framework, but
Elgot-Drapkin et al. have not done so. Instead, they deal with reasoning about others’ beliefs by using
axiomatic descriptions of belief, e.g. an axiom that says “if a believes ϕ and ϕ → ψ at time t, then he
believes ψ at time t+1.” Note the difference between this rule and Haas’ simulative inference rule described
in the previous paragraph: Elgot-Drapkin et al.’s reasoning paradigm requires one application of the belief
rule for every step of the proof being attributed to the other agent, whereas a simulative inference rule
attributes an entire chain of reasoning to the other agent in a single step.

The logics of Haas [9], Perlis [21], and Grove [7] have in common that they allow explicit quantification
over names. In our model, in contrast, while quantifying-in is implicitly quantification over names, terms of
the logic are not elements of the domain of discourse. As a result, our logic is not quite as expressive; Grove
gives some examples of situations in which reasoning explicitly about names is desirable. The tradeoff is
that both the syntax and the inference methods for our logic are significantly simpler.

3.3 Temporal and Dynamic Logics

The logic we have presented here is a static one, in the sense that it can only be used for reasoning about
what an agent believes at one moment in time. The aforementioned logics of Haas and of Elgot-Drapkin
et al., in contrast, are temporal logics in which one can make assertions about what an agent believes
at different times, and thus about how its beliefs change in response to new information. Other logics
allow reasoning about belief change without an explicit representation of points in time, by introducing
epistemic operators with meanings such as, “after a learns that ϕ, ψ will hold” [22, 24, 23], or “a will
believe ϕ at some future time” [3, 1]. The logics in the first group, the family of “dynamic epistemic logics”
represented e.g. by van Ditmarsch et al. [24], is based on standard Kripke semantics, with its idealized
“logically omniscient” believers. The logics in the second group, those of Ho Ngoc Duc [3], including
the logic later elaborated by Ågnotes and Alechina [1], avoid this idealization, but since their epistemic
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operators do not allow one to express that an agent will believe a proposition at a particular point in time,
they are less useful for applications such as reasoning about games. Pucella’s logic is an extension of that
of Konolige [17], to which our logic bears important similarities; we devote the entire next section to a
comparison with Konolige’s logic.

Although the logic we have presented in this paper lacks the syntax that these temporal and dynamic
logics provide to support reasoning about belief change, the computational model of belief that underlies it
is built around notions of belief state and belief change, and so would lend itself quite naturally to use in a
dynamic logic. We view this as a promising direction for future work.

3.3.1 Konolige’s Deduction Model

In its essence, our model of belief bears a strong resemblance to Konolige’s deduction model [17]. In
the deduction model, a believer is represented by a deduction structure, which is composed of a set of
sentences (the base beliefs) and a set of inference rules. An agent’s belief set is the set of all sentences that
can be derived from the base beliefs by exhaustive application of the inference rules. Agents that are not
logically omniscient can exist in the deduction model, because the set of inference rules is not required to
be complete.

In [13] we give a detailed comparison of the computational model and the deduction model. To sum-
marize a few of the main points of that comparison,

• There are belief machines for which no equivalent set of inference rules exists. Constraints C1–C5
rule out many of them, but not all. In particular, the constraints allow machines that refuse to believe
certain combinations of sentences. For example, there exist belief machines that satisfy C1–C5 and
for which B(a, P (c)) ∧ B(a,¬P (c)) is unsatisfiable. In the deduction model, any set of sentences
can be believed simultaneously, because the model doesn’t constrain the set of base beliefs in any
way.

• There are deduction structures for which no equivalent belief machine exists, namely deduction struc-
tures with inference rules whose closure is not computable—for example, a complete set of inference
rules for FOL. Obviously, prohibiting this kind of idealized agent was an explicit goal in the design
of our model.

• Konolige proves completeness for his logic, while we have shown that ours is incomplete. The
difference comes from the fact that Konolige allows the a deduction structure to have an infinite set of
base beliefs. This is no advantage in terms of modeling real agents, since the base beliefs are intended
to model the facts that an agent has explicitly learned, and this set is necessarily finite for any real
agent.

• Our model is easier to use as a tool for understanding simulative inference in practical systems, since
most real reasoning systems do not work by computing the closure of a set of inference rules, but
rather involve complex control algorithms.

• There are also a few differences that stem not from the difference between belief machines and de-
duction structures, but from other choices in the designs of the two logics:

ID constants: Konolige requires that for each agent, there be a naming map that maps each individual
in the domain to a unique canonical name, called an id constant. ID constants are used in
the semantics of quantifying-in: an open belief formula ∃xB(a, P (x)) (translating Konolige’s
notation into ours) is true iff there is some id constant κ for which B(a,P(κ)) is true. We have
chosen not to require that individuals have canonical names, and we have defined the semantics
so that a quantified-in formula ∃xB(a, P (x)) is true if there is any term τ for which B(a, P (τ))
is true.

Quantification over believers: In Konolige’s logic, there is a different belief operator for each agent,
rather than a single operator that takes a believer argument. Therefore, quantification over be-
lievers is impossible in Konolige’s logic—there is no equivalent of the formula ∀xB(x, P (c))
of our logic.

Equality: Our logic includes an equality operator, while Konolige’s does not. This is one of the
things that makes the (restricted) completeness proof for our logic more complex.
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4 Conclusion

We have introduced a new logical semantics of belief in which reasoning is modeled as the application of
a reasoning algorithm. The model serves as a tool for exploring the technique of simulative inference, that
is, reasoning about another agent’s beliefs by simulating its thought process. We do not specify a particular
reasoning algorithm, but rather define a family of logics, where each possible reasoning algorithm gives
rise to a different logic. We have defined two inference rules for reasoning about an agent’s beliefs, and we
have shown that the rules are sound if the reasoning algorithm satisfies certain input-output constraints. The
logic is not complete, but a syntactically-restricted variant of it is complete.

For the sake of brevity, definitions and proofs were summarized or omitted entirely in this paper. For
details, see [13]. That reference also describes a case study in which our logic was used to add simulative
reasoning about belief to an existing logical inference system, called EPILOG.
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Diversity of Agents

Fenrong Liu ∗

May 10, 2006

Abstract

Diversity of agents is investigated in the context of standard epistemic logic, dynamic information
update, and belief revision. We provide a systematic discussion of different sources of diversities, such
as introspection ability, powers of observation, memory capacity, and revision policies. In each case,
we show how this diversity can be encoded in a logical system allowing for individual variation among
rational agents. We conclude by raising some general issues concerning this view of a logic as a system
for encoding a society of diverse agents and their interaction.

1 Diversity Inside Logical Systems

Logical systems seem to prescribe one norm for an “idealized agent”. Any discrepancies with actual
human behavior are then irrelevant, since the logic is meant to be normative, not descriptive. But logical
systems would not be of much appeal if they did not have a plausible link with reality. And this is
not just a matter of confronting one ideal norm with one kind of practical behavior. The striking fact is
that human and virtual agents are not all the same: actual reasoning takes place in societies of diverse agents.

This diversity shows itself particularly clearly in epistemic logic. There have been long debates about
the appropriateness of various basic axioms, and they have to do with agents’ different powers. In particular,
the modal Distribution Axiom has the following epistemic flavor:

Example 1.1 Logical omniscience: K(ϕ → ψ) → (Kϕ → Kψ).

Do rational agents always know the consequences of what they know? Most philosophers deny this.
There have been many attempts at bringing the resulting diversity into the logic as a legitimate feature of
agents. Some authors have used “awareness” as a sort of restriction on short-term memory ([FH85]), others
have concentrated on the stepwise dynamics of making inferences ([Kon88], [Dun95]). A well-informed
up-to-date philosophical summary is found in [Egr04].

The next case for diversity lies in a different power of agents:

Example 1.2 Introspection axioms: Kϕ → KKϕ, ¬Kϕ → K¬Kϕ.

Do agents know when they know (or do not know)? Many philosophers doubt this, too. This time,
there is a well-established way of incorporating different powers into the logic, using different accessibility
relations between possible worlds in Kripke models. Accordingly, we get different modal logics: K , T ,
S4, or S5. Each of these modal logics can be thought of as describing one sort of agents. The interesting
setting is then one of combinations. E.g., a combined language with two modalities K1, K2 describes a
two-person society of introspectively different agents! This gives an interestingly different take on current
logic combinations ([GS98], [KZ03]): the various ways of forming combined logics, by “fusions” S5+ S4
or “products” S5 × S4, correspond to different assumptions about how the agents interact. Effects may
be surprising here. E.g., later on, in our discussion of memory-free agents, we see that knowledge of
memory-free agents behaves much like “universal modalities”. But in certain modal logic combinations,

∗I would like to thank Johan van Benthem and three anonymous reviewers for their constructive comments that greatly improved
this paper.
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adding a universal modality drives up complexity, showing how the interplay of more clever and more
stupid agents may itself be very complex...

Thus, we have seen how diversity exists inside standard epistemic logic, and hence likewise in doxastic
logic. The purpose of this paper is to bring to light some further sources of diversity in existing logics
of information. Eventually, we would want to move from complaints about ‘limitations” and “bounds”
to a positive understanding of how societies of diverse agents can perform difficult tasks ([GTtARG99]).
But our actual contribution is more modest, viz. a discussion of sources of diversity in dynamic logics of
information. Section 2 is a brief identification of further parameters of variation for agents beyond those of
standard epistemic logic. Section 3 looks at dynamic epistemic logics of information update, showing how
limited powers of observation are accounted for, and adding some new systems with bounded memory.
Section 4 takes a parallel look at dynamic doxastic logics for belief revision, and shows how different
revision policies can be dealt with. Finally, Section 5 is a brief summary, which also identifies some further
more ambitious questions.

This paper is based on existing literature plus unpublished work in the author’s Master’s Thesis
([Liu04]). We will mainly cite technical results, and put them into a hopefully fresh story.

2 Sources of Diversity

The diversity of logical agents seems to stem from different sources. In what follows, we shall mainly
speak about “limitations”, even though this is a loaded term suggesting “failure”. The more cheerful reality
is of course that agents have various resources, and they use these positively to perform tasks, often highly
successfully.

Our epistemic axioms point at several “parameters” of variation of agents:

(a) inferential/computational power: making all possible proof steps,

(b) introspection: being able to view yourself in “meta-mode”.

One further potential parameter relevant to epistemic logic is the “awareness” studied by some
authors([FH85]), which suggests some resource like limited attention span, or short-term memory.

Next, consider modern dynamic logics of information, whose motivation sounds closer to actual
cognitive practice. These also turn out to incorporate idealizations that suggest further parametrization for
diversity. We start with the case of information update.

Consider the basics of public announcements logic (PAL): !ϕ in the language is intended to mean “a
fact ϕ is truthfully announced”. PAL considers the epistemic effects those actions can bring about. In
addition to static axioms that “invite diversity”, here is one more. The following principle is crucial to the
way PAL analyzes epistemic effects of assertions:

[!ϕ]Kiψ ↔ ϕ → Ki[!ϕ]ψ Knowledge Prediction Axiom

But the validity of this axiom presupposes several things, notably Perfect Observation and Perfect Re-
call by agents. The event of announcement must be clearly identifiable by all, and moreover, the update
induced by the announcement only works well on a unique current information state recording all informa-
tion received so far. More technically, these points show in a detailed soundness proof for the Knowledge
Prediction Axiom in its intended semantics. We will discuss this in Section 3, in the more general frame-
work of “product update” for dynamic epistemic languages ([BMS98]). Thus, we have found two more
parameters of diversity in logic. Agents can differ regarding:

(c) observation: stipulate agents’ powers of observation for current events,

(d) memory: stipulate agents’ limited memory capacity, e.g., store only the last k events observed, for
some fixed k.
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Can one deal with this inside the logic? As we will see, dynamic epistemic logic with product update
can itself be viewed as a calculus of observational powers. And as to memory, [BL04] have shown how
to incorporate this into dynamic epistemic logic (DEL) for memory-free agents, and we will extend their
style of analysis below to arbitrary finite memory bounds.

Yet another source for diversity of agents lies in belief revision theory ([AGM85]). This time, agents
must revise their beliefs on the basis of incoming information which may contradict what they believed so
far. This scenario is different from the preceding one, as has been pointed out from the start in this area
([GR95]). Even for agents without limitations of the earlier sorts, there is now another legitimate source of
diversity, viz. their habits that create diversity:

(e) revision policies: varying from conservative to radical revision.

Different agents may react differently towards new information: some behave conservatively and try to
keep their original beliefs as much as possible, others may be radical, easily accepting new information
without much deliberation. However, these policies are not explicitly part of belief revision theory, except
for some later manifestations ([Was00]). We will show in this paper, following [Liu04], [BL06], how they
can be brought explicitly into dynamic logic as well.

This concludes the list of parameters of diversity that we see in current dynamic-epistemic and dynamic-
doxastic logics. It is important to mention that acknowledging this diversity inside logical systems is not a
concession to the ugliness of reality. It is rather an attempt to get to grips with the most striking aspect of
human cognition: despite our differences and limitations, societies of agents like us manage to cooperate in
highly successful ways! Logic should not ignore this, but rather model it and help explain it. Our paper is a
modest attempt at systematization toward this goal.

3 Dynamic Logics of Information Update

3.1 Preliminaries: Product Update

To model knowledge change due to incoming information, the powerful mechanism is dynamic epistemic
logic, which has been developed intensively by [Pla89], [Ben96], [BMS98], [Ger99], [DHK06], etc. Since
our discussions in this paper will be heavily based on DEL, we briefly recall its basic ideas and techniques.

Definition 3.1 [(epistemic model)] An epistemic model is a tuple M = (S, {∼i |i ∈ G}, V ) 1 such that S

is a non-empty set of states, G is a group of agents, each ∼i is a binary epistemic relation on S, and V is a
function assigning to each proposition variable p in Φ a subset V (p) of S. �

Definition 3.2 [(event model)] An event model is a tuple E = (E,∼i, PRE) such that E is a non-empty set
of events, ∼i is a binary epistemic relation on E, PRE is a function from E to the collection of epistemic
propositions. �

Note that we have a new function PRE in a event model, the intuition is that it gives the preconditions
for an action: an event e can be performed at world s only if the world s fulfills the precondition PRE(e).

Definition 3.3 [(product update)] Let an epistemic model M=(S,∼i, V ) and an event model E=(E,∼i

, PRE) be given. The product update model is defined to be the model M⊗E=(S ⊗ E,∼′
i, V

′):

• S ⊗ E = {(s, e) ∈ S × E: (M, s) |= PRE(e)}

• (s, e) ∼′
i (t, f) iff both s ∼i t and e ∼i f

• V ′(p) = {(s, e) ∈M⊗ E : s ∈ V (p)}.

�

1I will sloppily write it as M = (S,∼i, V ) when G is clear from the context.
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The actual world of the new model is the pair consisting of the actual world in M and the actual event
or action in E . The product rule says that uncertainty among new states can only come from existing
uncertainty via indistinguishable actions. The above notions suggest an extension of the epistemic language.

Definition 3.4 [(dynamic epistemic language)] Let a finite set of proposition variables Φ, a finite set of
agents G, a finite set of events E be given. The dynamic epistemic language is defined by the rule

ϕ := � | p | ¬ϕ | ϕ ∧ ψ | Kiϕ | [E , e]ϕ

where p ∈ Φ, i ∈ G, and e ∈ E. �

Normally, one could also add the usual action operations of composition, choice, and iteration from
propositional dynamic logic to the event vocabulary. The language has new dynamic modalities [E , e]
referring to epistemic events, and these are interpreted in the product update model as follows:

M, s |= [E , e]ϕ iff M⊗E , (s, e) |= ϕ.

Reduction axioms in DEL play an important role in encoding the epistemic changes. For example, the
following axiom concerns agents’ knowledge change.

[E , e]Kiϕ ↔ PRE(e) →
∧

f∈E
{Ki[E , f ]ϕ : e ∼i f}.

Intuitively, after an event e takes place the agent i knows ϕ, is equivalent to saying that if the event e

can take place, i knows beforehand that after e (or any other event f which i can not distinguish from e)
happens ϕ will hold. Such a principle is of importance in that it allows us to relate our knowledge after an
action takes place to our knowledge beforehand, which plays a crucial role in communication, and planning
in general.

PAL is the simplest case of update logic, in the sense that the event model contains one single event.
Moreover, the precondition of the action !ϕ boils down to the fact that ϕ is true, as we will see in the
formulas in the next section. In this paper, for easy understanding, we use PAL to motivate our claims,
though we also consider things within DEL with a general mechanism of product update.

3.2 Public Announcement, Observation and Memory

First, we recall the complete axiom system for public announcement.

Theorem 3.5 ([Pla89][Ger99]) PAL is axiomatized completely by the usual laws of epistemic logic plus the
following reduction axioms:

(!p). [!ϕ]p ↔ ϕ → p for atomic facts p

(!¬). [!ϕ]¬ψ ↔ ϕ → ¬[!ϕ]ψ

(!∧). [!ϕ]ψ ∧ χ ↔ [!ϕ]ψ ∧ [!ϕ]χ

(!K). [!ϕ]Kiψ ↔ ϕ → Ki[!ϕ]ψ

Next, to introduce variety in observation, we need to assume a set of possible announcements !ϕ, !ψ,
. . . where agent i need not be able to distinguish all of them. This uncertainty can be modelled by an
equivalence relation ∼i between statements which i cannot distinguish. The following principle may then
be proved:

Theorem 3.6 ([BL04]) The following reduction axiom is valid for agents with limited powers of observa-
tion:

[!ϕ]Kiχ ↔ (ϕ → Ki

∧
!ψ∼i!ϕ

[!ψ]χ)
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As we have seen from the previous section, Perfect Recall assumes that agents can remember all the
events happened so far. But in reality there are agents with bounded memory, who can only remember a
fixed number of previous events. It is much harder in PAL to model memory difference because the world
elimination update procedure shifts agents to ever more informed states. How can they forget? Here is one
option (suggested by [BL04]). First, we can reformulate PAL semantics as in [BL06] to never eliminate
worlds. The idea is to let announcement !ϕ cut all links between ϕ-worlds and ¬ϕ-worlds, but keep all
worlds in. Now, the resulting “unreachabilities” represent the information agents have so far. One way of
describing a memory-restricted agent is then as having forgotten part or all of the “missing links”. In the
most extreme case, a memory-free agent will only acknowledge distinctions made by the last announcement.
Apart from that, worlds will be indistinguishable. Agents like this do not satisfy the earlier reduction axiom
(!K), see the following example.

p p ps t s t s t!p !q

    q q
       p

   q
      p

q     q

     p

q

M1                                                  M2                                                M3

Example 3.7 There are two possible worlds, s and t in M1, p and q hold at s, p and ¬q hold at t. After
q is announced, we get a new model M2, in which there is no uncertainty link between s and t. Then we
have (M2, s) |= p → Ki(p → q), i.e. (M2, s) |= p → Ki[!p]q. After that, p is announced, and we have
M3 � Kiq, since the agent forgot !q already. We look back at M2: (M2, s) � [!p]Kiq. The reduction
axiom does not hold!

Fact 3.8 The correct axiom valid for memory-free agents is

[!ϕ]Kiψ ↔ (ϕ → U [!ϕ]ψ)

With the above picture, it is easy to check that the axiom is correct. Here Uϕ is an universal modality saying
that ϕ holds in all worlds. To restore the harmony of an update logic, one should also extend the update
reduction axioms with a clause for the new operator U . The following one is valid:

[!ϕ]Uψ ↔ ϕ → U [!ϕ]ψ

Note that it looks like a (!K) clause.

Thus, “logic of public announcement” is actually a family of formal systems, depending on the chosen
update rule, which in turn depends on the memory type of the agents.

3.3 Adding Memory to Product Update

We now extend the update mechanism to agents with finite memory. As we have seen above, for memory-
limited agents, the main point is to try to keep all the possible worlds around, so that the agent can always
refer to the possible worlds which have been deleted before. We are still working with the DEL models,
where information is changed by events. By a k-memory agent, we mean an agent that remembers only the
last k events before the most recent one. A 0-memory or memory-free agent, then, knows only what she
learned from the most recent action; an agent with memory of length 1 knows only what she learned from
the most recent action and the one before it, and so on. Now we must define the corresponding updates:

Definition 3.9 ([Sny04]) Let M be an epistemic model, E−k be the k-th event model before the most recent
one A. The product update for k-memory agents is defined as

(1) M×E−k × · · · × E−1 × E
={(s, a−k, . . . , a−1, a) : (s, a−k, . . . , a−1) ∈ M× E−k × · · · × E−1 and a ∈ E}

(2) (s, a−k, . . . , a−1, a) ∼i (t, b−k, . . . , b−1, b) iff (M×E−k × · · · × E−1 |= PRE(a) iff M×E−k ×
· · · × E−1 |= PRE(b)) and a ∼i b.

�
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Compare with the standard product update definition, in the above definition (1) leaves the precondition
restriction out. This simply makes it possible to keep all the worlds around. (2) gives restrictions to the
states, and defines the uncertainty relation in the new models.

Another alternative is to introduce an auxiliary copy action C! which takes place everywhere. It puts
those worlds which are to be deleted into a stack, and makes sure agents can always find them when needed.

Definition 3.10 ([Liu04]) Let M be an epistemic model, E−k be the k-th action model before the most
recent one E . The product update for k-memory agents is defined as

(1′) M×E−k × · · · × E−1 × E
={(s,a−k, . . . , a−1, a) : (s, a−k, . . . , a−1) ∈ M × E−k × · · · × E−1 and a ∈ E and
(s, a−k, . . . , a−1) |= PRE(a)}

(2′) For a−k, . . . , a−1, a, b−k, . . . , b−1, b �= C!,
(s, a−k, . . . , a−1, a) ∼i (t, b−k, . . . , b−1, b) iff a−k ∼i b−k, . . . , a−1 ∼i b−1 and a ∼i b

�

These two definitions can take care of our goal, namely, to keep those worlds around in the model. The
technical difference lies in their different intuitions. In Def 3.9, it is believed that all the possible worlds
make sense for bounded memory agents, so one should not remove the worlds because of the precondition
restriction. Differently, Def 3.10 makes the worlds stay around with the help of the auxiliary copy action,
just as memory bounded agents often do in real life.

3.4 Discussion

We have identified two new parameters of variation for dynamic updating agents; powers of observation,
and powers of memory. DEL as it stands provides a way of modelling the former, while we have shown
how it can also be modified to accommodate update for agents with bounded memory.

Of course, this is only the beginning of an array of further questions. In particular, we would like to have
a more structured account of memory, as in computer science where we update data or knowledge bases.
Update mechanisms are more refined there, referring to memory structure with actions such as information
replacement([Liu04]). This is one instance of a more “constructive” syntactic approach to update, com-
plementary to our abstract one in terms of model manipulation. Whether our current semantic method or
a syntactic one works better for finding agents’ parameters of diversity seems a question worth investigating.

Other questions that come up have to do with the interaction between agents. Our logical systems can
describe the behavior of various agents via reduction axioms, that is, schemas with infinitely many concrete
instances. But they cannot yet state in one single formula “that an agent is of a certain type”. And as they
stand, they are even less equipped to describe the interplay of different agents in a compact illuminating
way. Thus, we have only established a first toehold for diversity within the bastion of dynamic epistemic
logic.

4 Diversity in Dynamic Logics of Belief Change

Belief revision describes what happens when an agent is confronted with new information which conflicts
her earlier belief. Different policies toward revising beliefs fall within the AGM postulates. We first look
at a concrete example of how belief revision can be implemented technically.

4.1 Belief Revision as Relation Change

Example 4.1 ([Ben06]) (⇑) Radical revision
⇑ P is an instruction for replacing the current ordering relation ≤ between worlds by the following: all
P -worlds become better than all ¬P -worlds, and within those two zones, the old ordering remains.
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Another possibility would be that just the best P -world comes to the top, leaving the further order un-
changed. A more general description of such policies can be given as ways of changing a current preference
relation ([BL06], [Rot06]). Viewed in this way, the dynamic logic for radical revision can be axiomatized
completely in DEL style:

Theorem 4.2 ([Ben06]) The dynamic logic for radical revision (⇑) is axiomatized completely by a complete
axiom system KD45 on the static models, plus the following reduction axioms

(⇑ p). [⇑ ϕ]p ↔ p

(⇑ ¬). [⇑ ϕ]¬ψ ↔ ¬[⇑ ϕ]ψ

(⇑ ∧). [⇑ ϕ](ψ ∧ χ) ↔ [⇑ ϕ]ψ ∧ [⇑ ϕ]χ

(⇑ B). [⇑ ϕ]Biψ ↔ (Eϕ ∧ Bi([⇑ ϕ]ψ|ϕ)) ∨ Bi[⇑ ϕ]ψ2

The last axiom here shows the doxastic effects of the chosen policy. But it still does so somewhat implicitly.
In what follows, we will explore the same issues, but now with a notion of plausibility for worlds, which
allows us to high-light policies more directly.

4.2 Plausibility Change

We first review briefly some previous work in this line. Following [Spo88], a κ-ranking function was
introduced into the dynamic epistemic logic in [Auc03]. A κ-ranking is a function κ from a given set S of
possible worlds into the class of numbers up to some maximum Max. The numbers can be thought of as
denoting degree of surprise. 0 denotes ‘unsurprising’, 1 denotes ‘somewhat surprising’, etc. In other words,
κ represents a plausibility grading of the possible worlds. This makes it possible to express the degree of
beliefs.

Next, we also add plausibilities κ∗ to the event model E , representing the agents’ view on which event
is taking place. With plausibilities assigned to states and events, belief changes via product update. Here is
the key formula:

κ′
i(s, e) = CutMax(κi(s) + κ∗

i (e) − κs
i (ϕ)),

where ϕ = PRE(e), κs
i (ϕ) = min{κi(t) : t ∈ V (ϕ) and t ∼i s}

CutMax(x) =
{

x if 0 ≤ x ≤ Max

Max if x > Max.

The crucial reduction axiom for belief in [Auc03] is the following:

[σj , ψ]Bm
i ϕ ↔ (ψj →

∧
{Bl−1

i ¬ψk ∧ ¬Bl
i¬ψk → B

m+l−κ∗

i
(σk)

i

[σk, ψ]ϕ : σk ∼i σj , and l ∈ {0, . . . , Max}}) where m < Max

Here σj and σk are actions, ψ are preconditions. Bm
i ϕ is intended to mean that an agent believes ϕ up to

degree m, i.e. ϕ is true in all epistemically accessible worlds of κ-value ≤ m.

In the following section, instead, we take a more perspicuous approach, using epistemic-doxastic lan-
guage with propositional constants to describe the plausibility change.

4.3 Revision Policies

What follows is taken from the unpublished Master’s thesis [Liu04].

Definition 4.3 The epistemic-doxastic language is defined as

2Some explanations about notations here: E is the existial modality, the dual of the universal modality U . The symbol | is to denote
an conditionalization and it is intended to mean ‘given that’.
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ϕ := � | p | ¬ϕ | ϕ ∧ ψ | Kiϕ | qα
i

where p ∈ Φ, a set of propositions, i ∈ G, a set of agents, and α is a κ-value in N, qα
i are a special type of

propositional constants. �

The interpretation is as usual, but with the following truth condition for the additional propositional
constants:

(M, s) |= qα
i iff κi(s) ≤ α

The update mechanism can now be defined by merely specifying the new κ-value in a product modelM×E .
To keep our discussion simple, we use just this:

Definition 4.4 [(Bare addition rule)] The new plausibilities in product models are defined by the following
rule:

κ′
i(s, e) = κi(s) + κ∗

i (e)

�

Theorem 4.5 ([Liu04]) The complete dynamic logic of plausibility belief revision consists of the key reduc-
tion axioms in Theorem.1 plus the following new one.

[ϕ!]qα
i ↔ q

α−κi(ϕ!)

i

Proof. This Axiom captures the plausibility change. By the Bare addition rule, the plausibility of the world
in the original model κi(w) = κi(w, e) − κi(e) = α − κi(ϕ!). �

In fact, more generally, the plausibility rule can be any function of the plausibility of the previous event
and that of the previous state. This is of course the locus for different policies! Moreover, if the update rule
is functionally expressible, we can still get a complete logic, though clearly the simple substraction will not
work anymore. To illustrate how it works, we now present a proposal which attempts to incorporate more
elements into the update rule to characterize the diverse aspects of agents.

Definition 4.6 ([Liu04]) Let the weight that an agent i gives to the state s be λ and the weight to the event
e be μ. The plausibility of the new state (s, e) is calculated by the following rule

κ′

i(s, e) =
1

λ + μ
(λκi(s) + μκ∗

i (e)) (�).

�

The variations of parameter λ and μ describe a range of various agents. For instance, when μ=0, we get
highly conservative agents, the (�) rule turns into κ′

i(s, e) = κi(s). It means the agent does not consider the
effect of the action. Similarly, λ=0, the agents are highly radical, and κ′

i(s, e) = κ∗
i (e). When λ = μ, we

call them Middle of the road agents who believe plausibility of states and actions should play an equally
important role in determining the plausibility of the new state. In this manner, we have distinguished five
types of agents. For an even more general view of agents’ behavior towards incoming information, see the
continuing work in [Liu06].

In particular, this view of policies challenges one key assumption of AGM : the Success Postulate,
which accords top status to the new information. Highly conservative agents would not take new informa-
tion, right from the beginning, the belief revision cannot go on successfully. One can also get complete
dynamic logics for various policies, but we will not pursue these here.
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4.4 Comparisons and Discussion

Our treatment of belief revision provides a simple format of plausibility change, where different policies
show in a perspicuous manner in the reduction axiom for the “value constants”. Moreover, our treatment
also goes beyond the standard AGM paradigm, in that we allow agents to doubt the current information.
Here are a few further issues that come up in this setting, some conceptual, some technical.

First, doubting the current information might also make sense for PAL and DEL scenarios without
belief revision. It is easy to achieve this by adding further events to an event model, providing, say, a
public announcement !ϕ with a counterpart !¬ϕ with some plausibility value reflecting the strength of
the “dissenting voice”. Likewise, policies with weights for various factors in update make much sense in
recently proposed dynamic logics of probabilistic update ([Auc05], [BGK06]).

Incidentally, this DEL approach via modified event models for different policies may also suggest that
we can relocate policies from “modified update rules” to “modified event models” with a standard update
rule. We must leave this comparison to another occasion.

Next, there is an issue about relation-changing views of belief revision as in Section 4.1 versus our
plausibility changes. One obvious difference is that plausibility change stays within the realm of connected
world-ordering relations, whereas relational redefinition need not. On the other hand, plausibility change
can describe scenarios such as “add one plausibility point to every ϕ-world”, which have no immediate
counterpart in terms of relation changes. For comparison, we refer to [Liu06]. Of course, all general
questions from Section 3.4 about representing agents and their types return here in even greater force.

Finally, a new observation concerning two parameters, revision policy and memory: Technically speak-
ing, the update behavior of highly radical agents is no different from that of memory-free agents, as they
simply take the new information without considering what happened before (of course for different rea-
sons). In other words, the event that takes place completely characterizes the “next” epistemic state of the
agent. That seems to be related also to notions such as “only knowing” or “minimal knowledge” in [Lev90]
and [HJT90]. This observation seems to suggest a way to unify some of our parameters discussed so far.

5 Conclusion: A Unified Account of Diversity?

We have investigated many different sources of diversity, some visible in static logics, some in dynamic
ones. Besides the old parameters from epistemic logic, namely computation and introspection ability,
we have added several new aspects, i.e. observation power, memory capacity and revision policy. Our
discussion has been mostly in the framework of dynamic epistemic logic and we have shown how it is
possible to allow for a characterization of diversity within the logic. To summarize, look at the following
diagram consisting of the main components of dynamic epistemic logic:

⎧⎨
⎩

Static language Epistemic model M;
Dynamic language Event model E ;
Product update Model change E ×M.

In the previous sections we have shown that the diversity of agents can be explicitly modelled in terms
of these logical components. The following table is an outline of our discussions.

Component Residence Diversity
M relations between worlds introspection
E relations between actions observation

M×E update mechanism memory, revision policy

As we can see from the table, by introducing parameters of variation to each component, we are able
to describe diversity of agents inside the logic system. Note that computation ability is not included in the
table, we think its dimension is slightly different.
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Still, there remains the issue whether one can have a general view of the natural “parameters” that
determine differences in behavior of logical agents. Our analysis does not provide such a general account,
but at least, it shows more richness and uniformity than earlier ones. Especially, we have seen one possi-
bility to unify the parameters of revision policy and memory capacity at the end of the previous section.
If more uniformity is needed, a good challenge would be to unify our observation- and memory-based
analysis with diversity in deductive and computational powers. Our current speculation would be that
many “idealizations” in standard logic have something to do with passing to a countable limit. Closing
knowledge under consequence, computes the k-step consequences for all successive k. Introspection
involves computing the transitive closure of the base accessibility relation. And memory goes from ever
larger k-memory agents to unbounded stacks. At some abstract level, this may all be computing some
fixed-point for a closure operator in some superstructure over an existing logic.

Even so, we hope that our account of diversity provides a fresh look at “logical systems”. We now see
them as vehicles for agents having powers of observation, memory, inference, computation, attention, and
so on. Indeed, they begin to look remarkably like us!
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Abstract. This paper presents an investigation of rational agents that have lim-
ited computational resources and intentionally interact with their environments.
We present an example logical formalism, based on Active Logic and Situation
Calculus, that can be employed in order to satisfy the requirements arising due to
being situated in a dynamic universe. We analyse how such agents can combine,
in a time-aware fashion, inductive learning from experience and deductive rea-
soning using domain knowledge. In particular, we consider how partial plans are
created and reasoned about, focusing on what new information can be provided
as a result of action execution.

1 Introduction

In our research we are interested in building rational agents that can interact with their
environment. In order to be practically useful, such agents should be modelled as hav-
ing bounded computational resources. Moreover, since they are situated in a dynamic
world, they need to be aware of the notion of time — in particular, that their reason-
ing process is not instantaneous. On the other hand, such agents have the possibility to
acquire important knowledge by observing the environment surrounding them and by
analysing their past interactions with it.

This paper mainly focuses on presentation of one kind of logical formalism we think
may be appropriate for such agents. We describe how Active Logic can be augmented
with epistemic concepts and combined with mechanism related to Situation Calculus,
in order to provide flexible and efficient reasoning formalism for rational agents.

We also present how such agents can deal with planning in domains where com-
plexity makes finding complete solutions intractable. Clearly, it is often not realistic to
expect an agent to be able to find a total plan which solves a problem at hand. Therefore,
we investigate how an agent can create and reason about partial plans. By that we mean
plans which bring it somewhat closer to achieving the goal, while still being simple and
short enough to be computable in reasonable time. Currently we mainly concentrate on
plans which allow an agent to acquire additional knowledge about the world.

By executing such “information-providing” partial plans, an agent can greatly sim-
plify subsequent planning process — it no longer needs to take into account the vast
number of possible situations which will be inconsistent with newly observed state of
the world. Thus, it can proceed further in a more effective way, by devoting its compu-
tational resources to more relevant issues.
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If the environment is modelled sufficiently well (for example, if a simulator exists),
the agent may have a high degree of freedom in exploring it and in deciding how to
interact with it. It may be possible to gain information that the agent would not be
able to, by itself, observe directly. In many domains it is significantly easier to build
and employ a simulator than to analytically predict results of complex interactions. In
other cases, for example when the agent is a robot situated in an unknown environment,
it must learn “in the wild” and be aware that the actions it executes are final: they
do happen and there is no way of undoing them, other than performing, if possible, a
reverse action.

In order to accommodate all of the above we use a variant of Active Logic (1) as
agent’s reasoning formalism. It was designed for non-omniscient agents and has mech-
anisms for dealing with uncertain and contradictory knowledge. We believe that Active
Logic is a good reasoning technique for versatile agents, in particular as it has been
applied successfully to several different problem domains, including some in which
planning plays a very prominent role (2). Moreover, in order to be able to intentionally
direct its own learning process, the agent needs ability to reason about its own knowl-
edge and lack of thereof — thus, the logic we use has been augmented with epistemic
concepts (3).

In other words, our agents are supposed to combine deductive and inductive rea-
soning with time-awareness. We believe that the interactions among those three aspects
are crucial for developing truly intelligent systems. It is not our goal to analyse strict
deadlines or precise time measurements (although we do not exclude a possibility of
doing that), but rather to express that a rational agent needs the ability to reason about
committing its resources to various tasks (4). In particular, it is not justified to assume
that an agent knows all deductive consequences of its own beliefs.

2 Wumpus Game

The example problem we will be using through this paper is a well-known game of
Wumpus, a classic testbed for intelligent agents. In its basic form, the game takes place
on a rectangular board through which an player is allowed to move freely. A beast called
Wumpus occupies one, initially unknown, square. Agent’s goal is to kill the creature,
a task that can be achieved by shooting an arrow on that square. Luckily, Wumpus is a
smelly creature, so the player always knows if the monster is nearby. But unfortunately,
not the exact direction to it. At the same time, when walking around, the player needs
to avoid stumbling across the monster, or else he gets eaten by it.

This game is concise enough to be explained easily, but finding a solution is suf-
ficiently complex to illustrate the issues we want to emphasise. We look at it as one
instance of a significantly broader class of problems, along the lines of General Game
Playing, where an agent accepts a formal description of an arbitrary game and, without
further human interaction, can play it effectively.
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Fig. 1. The architecture of the system.

3 Agent Architecture

We use a simple architecture for our agent, as presented in Fig. 1. It consists of three
main elements, corresponding to the three main tasks of the agent.

The Deductor reasons about world, possible actions and what could be their con-
sequences. Its main aim is to generate plans applicable in agent’s current situation and
predict — at least as far as past experience, imperfect domain knowledge and limited
computational resources allow — effects each of them will have, in particular what new
knowledge can be acquired.

The Actor is responsible for overseeing the reasoning process, mainly for introduc-
ing new observations into the knowledge base and for choosing plans for execution.
Basically, it decides when to switch from deliberation to acting, and which of the plans
under consideration to execute.

These two modules form the core of the agent. By creating and executing a se-
quence of partial plans our agent moves progressively closer and closer to its goal, until
it reaches a point where a winning plan can be directly created by Deductor, and its
correctness can be proven.

The learning module is necessary in order to ensure that the plans agent chooses
for execution are indeed “good” ones. After the game is over, regardless of whether
the agent has won or lost, learning system inductively generalises experience it has
gathered — attempting to improve Deductor’s and Actor’s performance. Our goal is to
use the learned information to fill gaps in the domain knowledge, to figure out gener-
ally interesting reasoning directions, to discover relevant subgoals and, finally, to more
efficiently select the best partial plan.

4 Deductor

In this section we first explain the knowledge representation used, then point out some
of the more interesting issues with the reasoning machinery, and finally we introduce
a simplified example illustrating how our example Wumpus domain could be axioma-
tised.
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4.1 Knowledge Representation

The language used by Deductor is the First Order Logic augmented with some mech-
anisms similar to those of Situation Calculus. Within a given situation, knowledge is
expressed using standard FOL. In particular, we do not put any limitations on the ex-
pressiveness of the language. Predicate Knows describes knowledge of the agent, e.g.,

Knows[ Smell(a) ↔ ∃xWumpus(x) ∧ Neighbour(a, x) ]

means: agent knows that it smells on exactly those squares which neighbour Wumpus’
position. The predicate Knows may be nested, a feature which is very useful, if only
in a number of specialised contexts — mainly for allowing an agent to reason about
future and about what effects performed actions will have. We use standard reification
mechanism for putting formulae as parameters of a predicate (5).

In order to describe actions and change, we employ a variant of well-known Situa-
tion Calculus approach (6), with an exception that we use predicate Knows instead of
Holds — in order to make it explicit that out main priority is describing agent’s knowl-
edge. There are some semantic differences between our Knows and a typical Holds,
however — for example,

Knows(s, α ∨ β) → Knows(s, α) ∨ Knows(s, β)

is not a tautology, while a corresponding formula for Holds usually is. We will discuss
these issues later in this section.

Nevertheless, we introduce an additional parameter to the Knows predicate, which
denotes the current situation. Moreover, since the agent is required to reason about
knowledge-producing actions, we add yet another parameter, namely the plan agent is
going to execute.

In other words, the first formula in this section should be more properly written in
the form:

Knows[s, p, Smell(a) ↔ ∃x(Wumpus(x) ∧ Neighbour(a, x)) ]

and mean: agent knows that executing plan p in situation s leads to a new situation,
such that it smells on exactly those squares which neighbour Wumpus’ position. This
particular formula is an universal law of the world, valid regardless of the chosen s and
p, but many interesting ones — e.g. “Wumpus(a)” or “Knows[Smell(b)]” — are true
only for specific s and p.

The initial knowledge of the agent, the one concerning current situation, repre-
sents the state of the world after execution of the empty plan. From this, using typical
STRIPS-like representation of actions (i.e. preconditions and effects), the agent can
reason about extending a particular plan by various operations. Next, for every plan ob-
tained this way, it can deduce which formulae are valid in situation(s) resulting from its
execution.

One important extension to the classical STRIPS formalism we employ is support
for conditional actions. Such actions are important when some of agent’s actions may
provide information which is necessary to carry on. Basically, the plans agent reasons
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about consist of a concatenation of classical and conditional actions, the latter of the
form (predicate ? action1 : action2). Those have the standard meaning, i.e. that
action1 will be executed if predicate holds, and action2 will be executed otherwise.
For a well-developed discussion of other possible ways of representing conditional par-
tial plans and of interleaving planning and execution see, for example, (7).

Conceptually, the agent creates new plans by inductively extending each and every
plan considered up to now by each and every possible action. Obviously, many plans
created this way would be either invalid or clearly uninteresting. Therefore, due to the
computational complexity issues of such a naive approach, we implement plan cre-
ation and validation as a process external to the logical reasoner. In general, the main
requirement is to ensure that each plan an agent reasons about is valid, i.e. that the
preconditions of each action are fulfilled.

We use standard Situation Calculus representation of the actions agent can exe-
cute, i.e. using pre– and postconditions. Since some of those actions can be knowledge-
producing, it is important to represent that fact properly in their effects. For example,
moving onto square a will make an agent know whether Smell(a) is true or false. Of
course, this information will only be available during plan execution, not during the
planning itself. But it is necessary to distinguish that agent will have this knowledge, so
that it is able to create a conditional plan branching on value of this predicate. In order
to properly represent this notion, we introduce a predicate KnowsIf , syntactically sim-
ilar to Knows, except that the meaning of KnowsIf (s, p, α) is that agent knows that
executing plan p in situation s leads to a new situation, in which it will know whether
α is true or false — but it does not necessarily know, at planning time, which one.

Extra care needs to be taken when creating conditional plans, as it is important to
make sure that the agent has, during plan execution, enough knowledge to correctly
choose the appropriate conditional branch. Basically, a precondition for a conditional
action (predicate ? action1 : action2) is the conjunction of preconditions for action1,
preconditions for action2 and truthfulness of KnowsIf (predicate) — the fact that
agent knows whether predicate holds or not.

Finally, due to semantical differences between Holds and Knows predicates, we
have found it advantageous to introduce an explicit distinction between fluents and do-
main constraints. Semantically, the difference is that truth value of fluents depends on
current situation, while the truth value of domain constraints remains fixed for the du-
ration of game episode (although agent’s knowledge of them can, obviously, change).

To this end we introduce a predicate Invariant, distinguishing formulae which
are independent of current situation, and a special inference rule which allows agent to
propagate knowledge of domain constraints from one situation to another.

4.2 Reasoning

We will start this subsection by describing the reasoning process within a given situa-
tion, i.e. while an agent ponders which actions to execute. Later we will shortly men-
tion problems that arise when an action is executed and the state of the world changes,
and we will conclude with some reference to reasoning about different game episodes,
which is still very much work in progress.
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As we said previously, an agent will create a number of plans and each such plan
will be evaluated by an Actor. Therefore, Deductor can devote more effort to plans that
are more promising. Since the agent employs Active Logic, this can be easily modelled
within that formalism, as it is intended to describe the deduction as an ongoing process,
rather than characterising only some static, fixed-point consequence relation.

Active Logic annotates every formula with a time-stamp (usually an integer) of
when it was first derived, incrementing the label with every application of an inference
rule:

i : a, a → b

i + 1 : b

It also includes the Now predicate, true only during current time point (i.e., “i : Now(j)”
is true for all i = j, but false for all i �= j). It can, therefore, use this time-stamp to
prioritise plans. For example, if an Actor divides the plans into two classes, normal ones
and great ones, we can have inference rules of the kind:

i : Great(s, P ), Knows(s, P, a), Knows(s, P, a → b)

i + 1 : Knows(s, P, b)

i : Now(i), even(i), Knows(s, P, a), Knows(s, P, a → b)

i + 1 : Knows(s, P, b)

which would ensure that reasoning about great plans happens at every step, but reason-
ing about normal ones only happens every other step. This is a very simple example,
more complex scenarios are certainly possible, but their usefulness has to be evalu-
ated experimentally. In particular, we find the idea of allowing the agent to consciously
balance this tradeoff very stimulating.

In a similar spirit, we can balance the tradeoff between creating more complex,
longer plans and reasoning about effects of already created plans. At this point it is,
however, somewhat unclear on what basis should the agent make decisions regarding
this. Nevertheless, another feature of Active Logic, namely the observation function,
which delivers axioms that are valid since a specific point in time, can be used quite
naturally to acquire new plans — possibly from a module external to the reasoner itself.

We mentioned above that the Invariant predicate requires a specialised inference
rule. There are several possibilities, one being:

i : Knows(s, p, α) ∧ Invariant(α)

i + 1 : Knows(s′, p′, α)

for every s, p, s′, p′. In practice, the reasoner would not need to multiply the formulae
for every possible combination of plan and situation, it can simply mark them as being
invariant and take this into account during inference in an efficient way.

After the reasoning and planning has progressed sufficiently, the Actor will choose
a plan and execute it. At that point the reasoner can discard whatever other plans it
has created — they are no longer suitable — and needs to adapt to the new state of
affairs. First, it needs to notice that current situation has changed — we use a predicate
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State, modelled closely after standard Active Logic predicate Now, in order to achieve
this. And second, it needs to absorb the new knowledge acquired by the executing the
actions, which can be done using observation function.

An interesting issue is also how to allow an agent to reason about past game episodes.
In particular, after the game is won or lost and a new one is being started, a lot of knowl-
edge acquired previously still remains valid and interesting. We are working on ways to
extract general useful knowledge and to discover similarities in episodes. This is also
closely related to the learning module, discussed in more detail in subsequent sections.

4.3 Wumpus Example

In this section we briefly introduce our example domain, the game of Wumpus. We use
a rather natural set of axioms to describe it. First we specify that Wumpus is on exactly
one square:

∃x Wumpus(x)

∀x,y x �= y → ¬Wumpus(x) ∨ ¬Wumpus(y)

We define the smelling phenomenon:

∀x Smell(x) ↔ ∃y Wumpus(y) ∧ Neighbour(x, y)

and that the agent will always know whether it smells on the square it is on:

∀x Player(x) ↔ KnowsIf (Smell(x))

We also define Neighbour relation and other geometrical knowledge in a natural way.
Finally, we need to specify that Wumpus remains stationary thorough the episode.

This is the main reason for introduction of the Invariant predicate in previous section.
It allows us to state in a simple way that predicates such as Wumpus, Neighbour,
up, down, left, right, even etc. do not depend on the current situation. Therefore,
any formula α containing only those predicates is an invariant. So, if an agent discov-
ers in some situation s1 that Wumpus(a) ∨ Wumpus(b), it can easily deduce that
Wumpus(a) ∨ Wumpus(b) also holds in any other situation s2.

Observe that a, somewhat more natural, rule such as:

∀x,s,s′,p,p′Knows(s, p, Wumpus(x)) ↔ Knows(s′, p′, Wumpus(x))

does not quite work, as agent’s knowledge is typically of the kind

Knows(s, p, Wumpus(a) ∨ Wumpus(b))

and it is not clear how to propagate such formulae between situations without exponen-
tial blowup of axioms (problems arise, for example, from the fact that Knows is not
distributive to disjunction).

We currently perform grounding of all the variables in order to have reasoning in
predicate logic.
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4.4 Summary

In general, our agent reasons on three distinct levels of abstraction. First is within a given
situation, where it tries to find the best plan to execute. Second level concerns effects
of executed actions, where state of the world changes and new knowledge becomes
available. And third deals with comparing different game episodes, where knowledge
previously assumed to be Invariant is no longer so (for example, Wumpus may now
be at another location).

The Active Logic formalism used, especially predicate Now, makes it possible to
reason about passing time and, combined with observation function delivering knowl-
edge about external events, allows the agent to remain responsive during its delibera-
tions. This way both Deductor and Actor can keep track of how the reasoning is pro-
gressing and make informed decisions about balancing thinking and acting.

One of the reasons we have chosen symbolic representation of plans, as opposed to
a policy (an assignment of value to each state–action pair) is that we intend to deal with
other types of goals than just reachability ones. For a discussion of possibilities and
rationalisation of why such goals are interesting, see for example (8), where authors
present a solution for planning with goals described in Computational Tree Logic. This
formalism allows to express goals of the kind “value of a will never be changed”, “a
will be eventually restored to its original value” or “value of a, after time t, will always
be b” etc.

To summarise, our agent uses Active Logic to reason about its own knowledge,
which is very important in the Wumpus domain. Here, the main goal can be reduced to
“learn the position of Wumpus”, so active planning for knowledge acquisition is crucial.
Agent also requires an ability to compare what kind of information will execution of
each plan provide, in order to be able to choose the best one of them.

5 Actor

The Actor module supervises the deduction process and breaks it at selected moments,
e.g., when it notices a particularly interesting plan or when it decides that sufficiently
long time has been spent on planning. It then evaluates existing partial plans and ex-
ecutes the best one of them. The evaluation process is crucial here, and we expect the
subsequent learning process to greatly contribute to its improvement. In the beginning,
the choice may be done at random, or some simple heuristic may be used. After exe-
cution of partial plan, a new situation is reached and the Actor lets the Deductor create
another set of possible plans.

This is repeated as many times as needed, until the game episode is either won or
lost. Losing the game clearly identifies bad choices on the part of the Actor and leads
to an update of the evaluation function.

Winning the game also yields feedback that may be used for improving this func-
tion, but it also provides a possibility to (re)construct a complete plan, i.e. one which
starts in the initial situation and ends in a winning state. If such a plan can be found,
it may be subsequently used to quickly solve any problem instance for which it is ap-
plicable. Moreover, even if such plan is not directly applicable, an Actor can use it

106/135



when evaluating other plans found by the Deductor. Those with structure similar to the
successful one are more likely to be worthwhile.

6 Learning

When analysing learning module, it is important to keep in mind that our agent has a
dual aim, akin to the exploration and exploitation dilemma in reinforcement learning.
On one hand, it wants to win the current game episode, but at the same time it needs
to learn as much general knowledge as possible, in order to improve its future perfor-
mance.

Currently we are mainly investigating the learning module from the perspective of
the Actor — using ILP to evaluate quality of partial plans is, to the best of our knowl-
edge, a novel idea. One issue is that work on ILP has been dealing almost exclusively
with the problem of classification, while our situation requires evaluation. There is no
predefined set of classes into which plans should be assigned. What our agent needs is
a way to choose the best one of them.

For now, however, we focus on distinguishing a special class of “bad” plans, namely
ones that lead to losing the game. Clearly some plans — those that in agent’s experience
did so — are bad ones. But not every plan which does not cause the agent to lose is a
good plan. Further, not every plan that leads to winning a game is a good one. An agent
might have executed a dangerous plan and win only because it has been lucky.

Therefore, we define as positive examples those plans which lead, or can be proven
to possibly lead, to the defeat. On the other hand, those plans which can be proven to
never cause defeat are negative examples. There is a third class of plans, when neither
of the above assertions can be proven. We are working on how to use such examples in
learning most effectively.

Nevertheless, this is only the beginning. After all, in many situations a more “proac-
tive” approach than simple not-losing is required. One promising idea is to explore the
epistemic quality of plans: an agent should pursue those which provide the most impor-
tant knowledge. Another way of expressing distinction between good and bad partial
plans, one we feel can give very good results, is discovering relevant subgoals and land-
marks, as in (9).

7 Environment Interaction

Another interesting issue in our framework is the “consciousness” of interactions be-
tween an agent and its environment, conducted in such a way as to maximise the knowl-
edge that can be obtained. In particular, an agent is facing, at all times, the exploration
versus exploitation dilemma, i.e., it both needs to gather new knowledge and to win the
current game episode.

In order to facilitate such reasoning, our agent requires an ability to both act in the
world and to observe it. Finally, it needs to consider its own knowledge and how it
will (or can) change in response to various events taking place in the environment. In
different domains and applications different models of interactions with the world are
possible.
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The most unrestrictive case is a simulator, where an agent has complete control over
the (training) environment. It can setup an arbitrary situation, execute some actions and
observe the results. Such a scenario is common in, for example, a physical modelling,
where it is often much easier to simulate things than to predict their behaviour and
interactions. In a similar spirit, it may be easier for our agent to “ask the environment”
about validity of some formula than to prove it.

If agent’s freedom is slightly more restricted, it is possible that it is not allowed
to freely change the environment, but can “try out” several plans in a given situation.
For example, the agent may provide a set of plans and receive an outcome for each of
them. Alternatively, it may store some opaque situation identifier so that it can revisit
the same situation at later time. This model is also suitable for agents that do not have
perfect knowledge of the world, as the “replay” capability does not assume the agent is
able to fully reconstruct the situation or knows the state of the world completely.

In our opinion, this is the most interesting setting: it gives the agent sufficient free-
dom to allow it to achieve interesting results and at the same time is not, in many
domains, overly infeasible. On the other hand, we are working on ways in which this
setting could be made even more practical — one idea is having an agent accept the fact
that in several replays “the same” situation could vary slightly. For example, physical
agent might request an operator to restore the previous state of the world: it would not
really be identical, but it may be sufficiently close. Alternatively, in some application
domains, only a subset of situations may be “replayable” — only those, for example,
that an agent can restore, with required tolerance, all by itself.

In most applications, however, the agent is only able to influence its own actions
and have no control whatsoever over the rest of the world. This is also the most suitable
model for an autonomous physical agent. In such case, the environment will irreversibly
move into the subsequent state upon each agent’s action (or any other event), leaving it
no option but to adapt. It may still be interesting, in some situations, to substitute acting
for reasoning, but the agent needs to be aware that once acted upon, the current situation
will be gone, possibly forever. It thus needs to consider if saving some deduction effort
is indeed the best possible course of action, or if doing something else instead would be
more advantageous.

Finally, we can imagine a physical agent situated in a dangerous environment,
where it is not even plausible for it to freely choose its actions — it needs to, first,
assert that an action is reasonably safe. In this case, unlike the previous one, a signifi-
cant amount of reasoning needs to be performed before every experiment.

As an orthogonal issue, sometimes it is feasible for an agent to execute an action,
observe the results, reason about them and figure out the next action to perform. But in
many applications the “value” of time varies significantly. There are situations where
an agent may freely spend its time meditating, and there are situations where decisions
must be made quickly. For example, in RoboCup robotic soccer domain, when the ball
is in possession of a friendly player, the agent just needs to position itself in a good
way for a possible pass — a task which is not too demanding and leaves agent free
to ponder more “philosophical” issues. On the other hand, when the ball is rolling in
agent’s direction, time is of essence and an agent better had plans ready for several most
plausible action outcomes.
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8 Related Work

Combination of planning and learning is an area of active research, in addition to the
extensive amount of work being done separately in those respective fields.

There has been significant amount of work done in learning about what actions to
take in a particular situation. One notable example is (10), where author showed im-
portant theoretical results about PAC-learnability of action strategies in various models.
In (11) author discussed a more practical approach to learning Event Calculus pro-
grams using Theory Completion. He used extraction-case abduction and the ALECTO
system in order to simultaneously learn two mutually related predicates (Initiates

and Terminates) from positive-only observations. Recently, (12) developed a system
which is able to learn low-level actions and plans from goal hierarchies and action ex-
amples provided by experts, within the SOAR architecture.

The work mentioned above focuses primarily on learning how to act, without fo-
cusing on reaching conclusions in a deductive way. In a sense, the results are somewhat
more similar to the reactive-like behaviour than to classical planning system, with im-
portant similarities to the reinforcement learning and related techniques.

One attempt to escape the trap of large search space has been presented in (13),
where relational abstractions are used to substantially reduce cardinality of search space.
Still, this new space is subjected to reinforcement learning, not to a symbolic planning
system. A conceptually similar idea, but where relational representation is actually be-
ing learned via behaviour cloning techniques, is presented in (14).

Recently, (15) showed several ideas about how to learn interesting facts about the
world, as opposed to learning a description of a predefined concept. A somewhat sim-
ilar result, more specifically related to planning, has been presented in (16), where the
system learns domain-dependent control knowledge beneficial in planning tasks.

Yet another track of research focuses on (deductive) planning, taking into account
incompleteness of agent’s knowledge and uncertainty about the world. Conditional
plans, generalised policies, conformant plans, universal plans and some others are the
terms used by various researchers (17; 7) to denote in principle the same idea: gen-
erating a plan which is “prepared” for all possible reactions of the environment. This
approach has much in common with control theory, as observed in (18) or earlier in
(19). We are not aware of any such research that would attempt to integrate learning.

9 Conclusions

The work presented here is still very much in progress and a discussion of an interesting
track of research, rather than a report on some concrete results. We have introduced
an agent architecture facilitating resource-aware deductive planning interwoven with
plan execution and supported by inductive, life-long learning. The particular deduction
mechanism used is based on Active Logic, in order to incorporate time-awareness into
the reasoning itself. The plans created in deductive way are conditional, accounting for
possible results of future actions, in particular information-gathering ones.

We intend to continue this work in several directions. Discovering subgoals and
subplans seems to be one of the most useful capabilities of human problem solving and
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we would like our agent to invent and use such concept. In our example domain a useful
subgoal could be “First, find a place where it smells.” In addition, Deductor should be
able to conceive general rules of rational behaviour, such as “Don’t shoot if you don’t
know Wumpus’ position”. Yet another clear advantage would be the ability to reuse a
previously successful plan in a different situation. Finally, domain experts often are an
invaluable source of knowledge that the agent should be able to exploit, if possible.

The ideas for future work mentioned above do not cover all the possible further
investigations and extensions of the proposed system; they are just a biased presentation
of the authors’ own interests and judgements.
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Abstract. This paper explores ways to introduce commitment, as conceived in terms of plans and inten-

tions, into decision theory. An intention-based representation theorem is proved, along with a proposal

to model how plans simplify decision making for resource-bounded agents.

1 Introduction

In this paper I adapt the decision theoretical framework proposed in [Anscombe and Aumann, 1963] (AA)

to represent formally rational decision-making by agents who are committed to certain plans of action. In

Section (2) I present the decision theoretical formalism, and Section (3) I sketch the theory of planning

agency I’m relying on. In Section (4), I envisage two ways of introducing plans in the formalism. First,

I propose to make explicit how plans help resource-bounded agent to simplify decision-making. Second, I

show that one can easily use plans to build an intention-based utility ranking that is independent of the usual

“preference-based” ranking. To facilitate the reading, all the proofs have been moved to the Appendix.

This is not the first attempt at formalizing plan-based decision making. [Bratman et al., 1991] is proba-

bly one of the best known. Beside being much closer to decision theory, the framework I propose accounts

for one function of plans (modeled in Section 4.2) that is left out in their approach. [van Hees, 2003] also

proposed something similar to what I do in Section 4.3, but in a totally qualitative framework. Although I

won’t explore them here, I think that there are interesting connections to be made between the present work

and [McClennen, 1990].

2 Decision making under uncertainty

Decision theory is often called the study of rational decision making under risk or uncertainty. Typically,

“uncertainty” is thought of as subjective, that is, referring to the partiality of the decision-maker’s infor-

mation. Whereas “risk” is objective that is, about the outcome of certain random events such as a lottery,

“uncertainty” is subjective that is, relative to the decision maker’s partial information. In the decision the-

oretical framework I will use, both risk and uncertainty are modeled. I rely heavily on the presentation

of [Myerson, 1991, chap.1], but the framework goes back at least to [Anscombe and Aumann, 1963]. Of

course, this is neither the only nor the simplest decision theoretical approach available. See for example

[Luce and Raiffa, 1957], where a more classical model is introduced, and further (early) references can be

� I am grateful to Richard Bradley, the LRBA referees, Johan van Benthem, Mikaël Cozic and the attendees at the

PALMYR-2 workshop held in Paris in October 2006 for their useful comments.
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found. I have chosen to work within the AA framework because it models both random happenings (objec-

tive probabilities) and uncertainties (subjective probabilities).

Given an arbitrary set A, I will use Δ(A) to denote any probability distribution on A. A decision prob-

lem, DP , is a tuple 〈X, Ω, L, Ξ, Pref〉 such that:

– X and Ω are both finite sets of prizes and states, respectively. I will use x, y, z to range over elements

of X and t, t′, t1, t2... to range over elements of Ω.

– L = {f : Ω → Δ(X)} is the set of all lotteries over the prizes in X . f(x|t) should intuitively be

read as “the probability of getting prize x given that the current state is t”. [x] denote the lottery that

gives x for sure, in all states. That is, [x] = f such that f(x|t) = 1 for all t. These lotteries are

intended to represent random happenings in the world. They are “objective uncertainties” or “roulette

lotteries” in AA terminology. These contrast with “horse lotteries” or “subjective uncertainties”, which

represent the agent’s beliefs about the true state of the world. In the AA framework, the firsts are sharply

distinguished from the seconds. Subjective uncertainties are captured by Ξ = {S|S ⊆ Ω & S �= ∅},

the set of events.

– Pref : Ξ → P(L×L) is a function that gives a weak linear preference ordering on lotteries, given an

event in Ξ . I will follow Myerson and write f �S g to say that g is at least as good as f , given that the

true state of the world is in S. f ∼S g and f ≺S g are defined as usual.

The crux of the AA decision-theoretical framework is to show that, given certain axiomatic constraints,

decision problems can be represented by a quantitative utility function and a probability distributions where

the preferred lotteries are exactly those that maximize expected utility. More precisely, given a decision

problem DP , a conditional-probability function p : Ξ → Δ(Ω) is a function that gives the probability

of a state t given that an event S ∈ Ξ occurs. This will be the probabilistic representative of the agent’s

subjective uncertainty. We constraint p as follows, for any t and S:

p(t|S) = 0 if t �∈ S and
∑
r∈S

p(r|S) = 1

Now, an utility function is any function u : X × Ω → R. This function is used to compute the expected

utility value of a lottery f given an even S, Ep(u(f)|S), as follows:

Ep(u(f)|S) =
∑
t∈S

p(t|S)
∑
x∈X

u(x, t)f(x|t)

With these definitions in hand, the representation theorem is proven via the method of [Savage, 1954],

where the agent’s probabilistic beliefs and utility are extracted from his (event-based)-preferences over ob-

jective lotteries. Below are Myerson’s axioms and statement of the representation theorem. See [Myerson, 1991,

p.14-17] for details of the proof.

1. (a) (Completeness) f �S g or g �S f .

(b) (Transitivity) If f �S g and g �S h then f �S h.

2. (Relevance) If, for all t ∈ S, f(•|t) = g(•|t) then f ∼S g.

3. (Monotonicity) If f �S g and 0 ≤ β < α ≤ 1 then (1 − β)f + βg ≺S (1 − α)f + αg.
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4. (Continuity) If h �S g and g �S f then there exists a number γ such that 0 ≤ γ ≤ 1 and g ∼S

γf + (1 − γ)h.

5. (a) (Weak Objective substitution) If f �S e, h �S g and 0 ≤ α ≤ 1, then αf + (1 − α)h �S

αe + (1 − α)g.

(b) (Strict Objective substitution) If f ≺S e, h �S g and 0 < α ≤ 1, then αf + (1 − α)h ≺S

αe + (1 − α)g.

6. (a) (Weak Subjective substitution) If g �S f , g �T f and S ∩ T = ∅ then g �S∪T f .

(b) (Strict Subjective substitution) If g ≺S f , g ≺T f and S ∩ T = ∅ then g ≺S∪T f .

7. (Non-triviality) For all t ∈ Ω there exist y, z ∈ X such that [z] ≺{t} [y]

Theorem 1. Given a decision problem DP , the following are equivalent:

1. DP satisfies the axioms enumerated above.

2. There exists a utility function u and a conditional probability function p such that :

(a) For all t ∈ Ω, maxx∈X u(x, t) = 1 and minx∈X u(x, t) = 0.

(b) For all R,S, T such that R ⊆ S ⊆ T ⊆ Ω and S �= ∅, p(R/T ) = p(R/S)p(S/T ).

(c) For all f, g ∈ L and S ∈ Ξ , g �S f iff Ep(u(g)/S) � Ep(u(f)/S).

Now, suppose a decision maker is somehow committed to act in a certain way. It is highly debatable

whether such commitments can be straightforwardly represented in this framework, for example by chang-

ing the preferences or utility assignments. What is more, if one thinks this can’t be done, it is not clear how

to adapt the framework to capture the notion of commitment. Of course, all this depends on what is meant

by “the agent is committed to x”. In the next section, I will present one understanding of commitment, based

on the notion of plans of action, and try to explain why one may want to introduce them as an independent

feature in the AA framework, especially when one has resource-bounded agents in mind.

3 Plans of Action and Committed Agency

In a nutshell, the driving idea runs as follows: for agents with limited time and computational capacities,

being able to commit to plans of action is useful. Of courses, there are many things an agent can be com-

mitted to. Here I will restrict to commitment in terms of previously adopted intentions and plans. Moreover,

the content of these plans and intentions, what an agent is committed to, will be identified with the agent’s

goals. So, by saying that “the agent is committed to x” I will just mean “he has the intention to get x”,

“he aims for x” or “x is his goal”. Granted, this blurs the relationship between plans and goals, as well as

other forms of commitments1. I see the present proposal as a first step, upon which a more conceptually

fine-grained analysis could be based.

The idea that plans of action are useful for bounded agents has been strongly advocated by [Bratman, 1987].

Since my goal here is not to argue for Bratman’s views, but rather to propose a way to implement it into

decision theory, its main insights will be uncritically reviewed here, with an outright focus on the different

functions of intentions and plans.

1 Although Section (4.3) is much less bound to this restriction of commitment to intentions.
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There is a pertaining distinction in action theory between future-directed intentions and intentions in ac-

tion. The latter intentions are thought as the “mental components” of actions (see e.g. [O’Shaughnessy, 1973])

that provide “on the fly” guidance toward their own accomplishment. As their name suggests, future-

directed intentions are rather about middle- and long-term goals, and are generally viewed as the output

of “beforehand” deliberation. Bratman’s work is concerned with future-directed intentions, and so will be

mine. Thus, for the remaining of this paper, “intention” should just be understood as future-directed.

According to Bratman intentions are mental states that provide a relative stability of goals and commit

agent to their achievement. Like preferences or desires, intentions can be reason for action. But Bratman

has argued that intentions and desires are irreducible to one another and thus that the belief-desire view on

rational choice is at best an incomplete account of decision-making. In this paper, I will assume irreducibility

of intentions and ask how they can be introduced in decision theory.

Plans, are viewed as hierarchically structured but typically incomplete sets of intentions. “Hierarchically

structured” means that a plan contains general intentions upon which more specific intentions are subordi-

nated. However sharp, the most precise intention of a plan needs not to specify in every detail how it shall

be carried out. This is why plans are typically incomplete, a feature which is arguably crucial for agents

with limited time and computational resources.

Plans are constrained by norms of rationality. They are first required to be intentions- as well as be-

liefs-consistent. The intentions they are made of should not contradict each other, and neither should they

contradict the agent’s beliefs. In Bratman’s view2, intention consistency is grounded in the fact that inten-

tions are agglomerative: if one intends that x and intends that y, he must intend that x and y. Note that this

distinguishes intentions from desires: we can have contradictory desires but not contradictory intentions,

and desires are clearly not agglomerative. Rational plans also call for “means-end coherence”: if one intend

to x he should also, at some point, come to intend some necessary means to x. Given that plans are typically

incomplete, this means that plans “drive” agents towards deliberating on how they will achieve them.

So, in this model, plans of action are not only outputs but also input of deliberation. It is as inputs, so

Bratman’s theory goes, that they help resource-bounded agents to simplify decision problems. Suppose an

agent with a plan P is facing a certain decision problem. The pressure for intention consistency will rule

out of consideration options that preclude the achievement of P. On the other hand, means-end coherence

will call for adopting one of the options that promote the achievement of P. But it does more than that,

given that deliberation is itself an activity that takes time and energy. For resource-bounded agents, it is

likely that pondering endlessly over small details of the available options will itself prove to be an obstacle

to the achievement of P. The other way around: careful management of the time and energy devoted to

deliberation might prove to be, in itself, an important mean to achieve one’s goals. As such, it doesn’t

seem unreasonable to suppose that means-end coherence will fix the level of detail up to which options are

going to be considered, thus avoiding useless mind boggling. These two norms, intention-consistency and

means-end coherence, are thus likely to simplify deliberation, an advantageous prospect for limited agents.

To sum up, Bratman proposes a “build up” view of planning agency and practical reasoning. Suppose

that at some point an agent form a plan P made of the intention i1 to obtain the goal X later. As some

2 A view that is also endorsed by other action theorists, such [Velleman, 2006] and [Wallace, 2003]
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opportunities show up he will have to choose among various attainments of P, select one of them, say X ′,

form the new intention i2 to get X ′ and add it to P. P will be thus enriched until it is achieved3. In the next

sections, I will consider, in turn, how to model the effects of intention-consistency and means-end coherence

on rational plan-based decision making under uncertainty. To my knowledge, such proposal is an original

contribution. As a side issue, I will also show how one can use plans and intention to, so to speak, set a

decision agenda that isindependent of the preferences. As far as this paper goes, all these models will be

static. I leave for further work the task of modeling the dynamics of plan update.

4 Decision making with commitments

4.1 Plans of action: a formal picture

In the formalization of utility theory sketched in section (2), the object of choices are lotteries but, ulti-

mately, what the agents aim for are the prizes. Consequently, it seems reasonable to restrict the content of

commitments to prizes. That is, the formal picture I am going to depict is one where agents form inten-

tions to get some prizes, given that a certain event S occurs. Given the view of intentions endorsed here,

the intended prizes are goals the agent will work for. Note that in the AA framework, prizes are exclusive

outcomes, so to speak. In the end, the agent gets one of the prizes in X . When I say that the subset X ′ of X

is a goal for the agent, I mean that he will act in order to get one of them.

In the following definitions, intentions are assimilated with their content and so plans are viewed simply

as sets of sets of prizes. So, given an event S, a plan PS is any set of intentions, i.e. of subsets of X . Now,

belief and intention-consistency already impose constraints on what is to be considered a rational plan.

First, belief-consistency precludes impossible intentions, which are just empty sets of prizes. So we are to

require that, for any event S, ∅ �∈ PS . Intention-consistency requires that the intentions that constitute a

plan don’t exclude each other. This will boil down to require that any two intentions in a plan have a non-

empty intersection. But recall that, for Bratman, intention-consistency in grounded in the agglomerativity of

intention, a property that has a clear formal counterpart: PS will be required to be closed under intersection.

It should be clear that intention-consistency follows from the requirements that ∅ �∈ PS and that PS is

closed under intersection,

Note that, because X is finite, we automatically get that (
⋂

X∈PS
X) ∈ PS . This will correspond to

the most precise intention of the plan. For most of the results presented below, we can consider without loss

of generality that any plan PS contains only this minimal element, and we will use a special notation for it:

↓PS . A plan is incomplete if ↓PS is not a singleton. When the context makes it obvious, we will omit the

event subscript S.

Note also that these simple set-theoretical requirement gives already a kind of hierarchical structure

to the plan. Indeed, rational plans are semi-lattices with respect to the inclusion relation, with ↓PS the

smallest element.

3 This is indeed a very coarse picture of Bratman’s theory of practical reasoning. Many important issues are ignored.

Among them are the crucial difference between deciding upon an attainment and adopting an intention - as illustrated

by the famous “terror bomber” example - and the subtleties of plan reconsideration. These issues will be ignored in

the proposed formalization also. They are thoroughly explored in [Bratman, 1987].
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4.2 Consistency and coherence to simplify decision problems

As mentioned above, it seems that some decision problems are just too complex to be handled by agents

with limited computational and representational capacities. In the usual decision theoretical models I in-

troduced above, it can even be argued that it is simply impossible to do so. The object of choices being

the lotteries, the actual choice set is the whole uncountable lottery space L. So, for limited agent, we can

assume that, somehow, they don’t consider all their options, and the norms of intention-consistency and

means-end coherence provide an explanation of why it is so.

Intention consistency and cleaning of decision problems. Recall that a plan is intention-consistent if it

doesn’t contain intentions that exclude one another’s achievement. This norm has a clear static consequence

on plans viewed as sets of prizes, as we just saw. But it also shapes further deliberations by ruling out, in

advance, options that would make the plan inconsistent if they were chosen.

Here I propose a way to model this effect of intentions on deliberation. The decision theoretical frame-

work that I sketched above gives us some latitude on which options are going to be considered inconsistent.

To keep the model as general as possible, I will just set that inconsistent lotteries are those that give too little

chance of getting a prize in the intended set ↓PS . In other words, the agent is going to make a preference-

based decision among the lotteries that give at least a certain probability p to get a prize in ↓PS . The value

of p will stay undefined, making room for the whole spectrum of attitudes towards the prospect of getting an

intended prize. For example, an agent for which p = 1 will restrict his choices to those who will guarantee a

prize in ↓PS . At the other extreme, an agent for which p = 0 will just decide as a regular utility maximizer,

since no lotteries will be excluded from the original choice set. Needless to say that the size of the decision

problem will decrease as p increases.

Precisely, we have that, given 0 ≤ p ≤ 1, the p-cleaned version of a decision problem DP will contain

the same prize (X), states (Ω) and events (Ξ) sets as before. What changes is the choice set, the lottery

space. For each event S, define L′
S = {f : ∀t ∈ S,

∑
x∈↓PS

f(x|t) ≥ p}, that is, L′
S is the set of lotteries

p-consistent with the plan adopted at S. Note that for all event S, L′
S is always non-empty because L is the

set of all probability distribution over X . The preference relations over these cleaned lottery sets are just

the restrictions of the original event-based preference orderings: �′
S =�S�L′

S

With this in hand, the next step is to see whether we can still model agents that decide on p-cleaned

decision problems as expected utility maximizers. But the very idea of cleaning is to remove lotteries from

the choice set, which means that L′
s won’t satisfy continuity anymore, except in the trivial case where p = 0.

I won’t provide a representation theorem that copes with this difficulty.

One could, of course, change the original preference relations by forming an “indifference cluster” with

all lotteries that are cleaned out of the choice set. That is, define a new preference relation �′′
S as follows:

for all f, g ∈ L′
S , f �′′

S g iff f �S g and for all f, g outside L′
S , f ∼′′

S g. Furthermore, for all f not in

L′
S and g in L′

S , set f �′′
S g. This would have the immediate consequence of ruling out the lotteries outside

L′
S as potential expected utility maximizers, while preserving the preference structure within L′

S . However,

this “preference shifting” strategy seems to betray the very motivation of cleaning: reducing the “size” of

the choice set L. Clearly, under the preference shift strategy the agent just uses the original choice set. So,
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I think that one should avoid such an easy way out if he genuinely aims at modeling the simplification

function of plans.

As I said, I will not provide a way out of the failure of continuity for cleaned decision problems. What

I’ll do instead is simply to point out that certain special cases of preference orderings are representable. Say

that a preference relation �′
S is p-cleaned friendly only if for all f ∈ L and t ∈ S, if

∑
x∈↓PS

f(x|t) < p

then there exists a lottery g in L such that f ∼S g and
∑

x∈↓PS
g(x|t) ≥ p. In such cases, we immediately

get the following:

Theorem 2. All p-cleaned friendly preference relations restricted to a p-cleaned decision problem DP are

representable by a utility function u′ and a probability distribution p′, defined in that same way as in Section

2.

Means-end coherence and the clustering of decision problems In the previous section, I’ve proposed a

framework to reduce the size of a decision problem by “cleaning out” lotteries that give too low a prospect

of getting an intended prize. The idea behind the cleaning procedure is that the chosen options shouldn’t go

against the achievement of the intentions the agent already has, which would violate intention-consistency.

Now I turn to the norm of means-end coherence.

As we saw, this norm calls for adopting effective means to reach intended ends. Put into our framework,

this means that an agent will have to choose one particular ways to achieve its plans, one attainment. But I

also mentioned that, for resource-bounded agents, means-end coherence has a further effect. It presses for

a careful management of the time devoted to deliberation, and so requires that the agent leaves irrelevant

details out. Again, this can be modeled in the present decision-theoretical framework, by clustering lotteries

that are the equivalent modulo certain attainments of the plan.

Let a pair 〈A, p〉 be a set of p-attainments in S for a plan PS where A is a partition of ↓PS and p is such

that 1/2 < p ≤ 1. The intuitive idea here is that our agent has to choose between certain mutually exclusive

ways to achieve its most precise intention ↓PS , each of them being one “cell” Ai in the partition A. This

partition can be more or less fine-grained, making room for various level of details. For now, I make no

assumption regarding how this a particular partition of ↓P came to be considered as the set of attainments

for ↓PS . I just take it as given, and see how an agent can use it to reduce the size of his decision problem.

The parameter p can be seen as the bound under with the agent considers that a lottery f is giving too little

chances to get a prize in one the attainment Ai. I require that p is strictly greater than 1/2 to make sure that

the pair 〈A, p〉 will finitely partition L.

This is done as follows. Given a cell Ai ∈ A and a set of lotteries L, define the cluster Ci of L

corresponding to Ai as Ci = {f : ∀t,
∑

x∈Ai
f(x|t) ≥ p}. A lottery cluster Ci puts together all the

lotteries that give a price in Ai with at least probability p. Now, the set of clusters Ci will not completely

partition L. We need two more clusters to complete the partition. First, the p-spread cluster Cp is defined

as {f : ¬∃Ai s.t. f ∈ Ci but
∑

x∈↓PS
f(x|t) ≥ p}. This cluster will contain the lotteries that, for each cell

Ai taken individually, don’t give high enough probability to be in the cluster Ci, but that nevertheless reach

the required probability p over the whole set ↓PS . Finally, the out of attainment cluster C∅ is defined as

{f : ¬∃Ai s.t. f ∈ Ci and f �∈ Cp}. That is, this cluster contains the lotteries that just don’t give high
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enough probability to get an intended prize. Observe that this cluster will contain exactly the lotteries that

would be p-cleaned, according to the procedure described in the previous section. Given all these clusters,

we automatically obtain the following fact:

Fact 3 For a decision problem DP and a plan ↓PS , the set of cluster Ci corresponding to an attainment

set 〈A, p〉 together with the the p-spread cluster Cp and the out of attainment cluster C∅ finitely partition

L.

Given this finite partition, we can construct the new p-clustered version decision problem DP , relative

to an attainment set 〈A, p〉 is defined as follows. Take X , Ω and Ξ as before. Set, for all S ∈ Ξ , L′
S =

{Ci}Ai∈A ∪ Cp ∪ C∅ and take �′
S as a total and transitive weak ordering on L′

S . In a nutshell, the options

an agent faces now are sets of lotteries, within each he get what he considers high enough chances to attain

his goals.

Here I impose no a priori restriction on the cluster ordering �′
S . But one might want that it somehow re-

flects the underlying preference ordering �S . This requirement boils down to the following: The preference

ordering over a clustered decision problem in an event S is said to be preference-aligned if for all f, g ∈ L,

if f ∈ Ci and g ∈ Cj and Ep(u(f)/S) ≤ Ep(u(g)/S)then Ci �′
S Cj .

With this definition in hand, the challenge is to fine easily computable ways to order a clustered decision

problem in a preference-aligned way. This will be postponed for further work. For now I will content myself

with stating an easy fact, that relates clustering and cleaning. The proof of this fact is direct, given the

observation made above that the outside of attainment cluster C∅ contains just the lotteries that would be

p-cleaned.

Fact 4 For all decision problem DP and 1/2 < p ≤ 1, the p-cleaned version of the p-clustered DP is the

same as the p-clustered version obtained after a p-cleaning of DP .

4.3 “Intention-based” utility theory

We thus have two ways to model the effects of plans of action on deliberation, cleaning and clustering,

each of which is related to one rational constraint on intention. Now I turn a somewhat orthogonal issue:

modeling intentions as setting a “decision agenda” that is independent of the one set by the preferences.

There are many reasons why one might want such an independent ordering. A striking one is that

intentions are arguably irreducible to desires and preferences, and thus that the “intention-based” and

“preference-based” rationality can diverse. [Bratman, 1987] made a strong case in favor or distinguishing

intentions from desires, mainly on the basis that the latter are not subject to consistency requirements. But

[Sen, 2005] also argued that commitment-based rationality fall systematically out of preference-based deci-

sions. Even if Sen’s idea of commitment seems to differ in many respects from Bratman’s, these two points

of view call for incorporating a intention- or commitment-based ranking of options that is independent of

preferences. This can be easily done.

Given a decision problem DP and a plan P, introduce a new ordering �′
S defined as follows: For all

f, g in L and S ∈ Ξ ,

f �′
S g iff for all t ∈ S,

∑
x∈↓PS

f(x|t) ≤
∑

x∈↓PS

g(x|t)
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The equivalence and strict versions of �′
S are defined as usual, which means:

f ∼′
S g iff for all t ∈ S

∑
x∈↓PS

f(x|t) =
∑

x∈↓PS

g(x|t)

and similarly for ≺′
S .

Notice the intention-based ordering is derived from the intentions of the agent, while the preference

ordering is primitive. It turns out that this new ordering can be quite easily represented by a utility function,

proviso a certain structure of the plan.

For a given decision problem, the set of event-relative plans {PS}s∈Ξ is said to reflect boolean opera-

tions on events if for all S, T ∈ Ξ ,

1. PS∩T = PS ∩ PT

2. PS∪T = PS ∪ PT

3. PS−T = PS − PT

These conditions are needed to make sure that the plan-based preferences satisfy Subjective Substitution,

a key property to get a representation in the AA framework. They, so to speak, constraint the inter-event

behavior of the plan, and at the same time of the induced orderings �′
S . Although they look like constraints

imposed for purely technical reasons, they can be philosophically motivated. The first intuitively corre-

sponds to the following maxim: “if you believe more, then your intentions shouldn’t be less precise”. The

second condition has the converse reading: “if you believe less, then your intentions shouldn’t be more pre-

cise”. The third is, I think, the more objectionable. It says that your plan in case you believe that S occurs

but T doesn’t should be the same as the plan that result from removing what you planned in case of T from

what you planned in case of S. This is an extremely strong condition that doubtfully applies to all agents,

and it remains an open question to me whether there is a more plausible constraint that still allows a utility

representation.

Let me now introduce formally the intention-based utility notions that will be used below. Given a

decision problem DP , a plan-based utility function is a function uP : X × Ω → R. Assume a conditional

probability p as defined in Section (2), the expected intention-based utility value EP
p (u(f)|S) of a lottery f

is calculated as follows

EP
p (uP(f)|S) =

∑
t∈S

p(t|S)
∑
x∈X

uP(x, t)f(x|t)

Theorem 5. (Intention-utility representation theorem) For any decision problem DP , plans {PS}s∈Ξ that

reflects boolean operations on events and preference relations �′
S based on the latter, there exists a plan-

based utility function uP and a conditional probability function p such that :

1. For all t ∈ Ω, maxx∈X uP(x, t) = 1 and minx∈X uP(x, t) = 0.

2. For all R,S, T such that R ⊆ S ⊆ T ⊆ Ω and S �= ∅, p(R/T ) = p(R/S)p(S/T ).

3. For all f, g ∈ L↓Ps and S ∈ Ξ , g �′
S f iff EP

p (uP(g)/S) ≤ EP
p (uP(f)/S).

So we can model “plan-based” decisions as maximization of a utility scale independent of the preferences.

At this point, I should mention that it is not at all consensual whether intentions and commitment should

be thus integrated in decision theory (see e.g. [Pettit, 2005]). As I said before, I will not attempt to defend
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the present approach against such arguments. In fact, I have argued in [Roy, 2005] that such an independent

scale is unnecessary as long as decision and game theory deal with ideal agents.

Along the same lines, note that the beliefs represented by the probability distribution p are now indepen-

dent form the “intention-based” preferences. So, in this framework, intentions don’t have to influence the

beliefs. The only relation between these two mental states is imposed by reflection of boolean operations

on events, and rather goes from beliefs to intentions. This leaves open whether having the intention to get

some prizes in X implies a higher degree of belief that one will actually get some prizes in X .

5 Conclusion

In this paper, I proposed a framework for intention-committed agency built upon a decision theoretical

model. I have shown how to represent an intention-based decision making which, in short, models an agent

who tries to get prizes in a specific subset of the set of all possible prizes. I have also proposed a way to

represent two key aspects of planning agency for resource-bounded agents: simplification by exclusion of

inconsistent options and simplification by ignoring irrelevant details.

Many open questions remain for further work, among which the most urgent are:

– Compare intention- and preference-based decisions and examine their combination in interactive situa-

tions (games).

– Find a general result concerning the existence of a utility representation for cleaned decision problem.

– Explore simple and efficient algorithms to align preferences over clustered decision problems on inten-

tions and/or original preferences.

Finally, I should mention that some authors have expressed strong skepticism regarding the very idea of

introducing plans of action as an independent feature in decision theory (see for example [Strotz, 1956]).

This paper can be seen as a modest attempt to rise to the challenge.

A Appendix

Proof of Theorem 2. Just use the same procedure as in [Myerson, 1991], except that everywhere a lottery

outside of L′
S would have to be used to define u′ or p′, use the one in L′

S to which the agent is indifferent.

Proof of Fact 3. It is enough to show that � is well defined and an equivalence relation, for it is clear that,

by the finiteness of X , the partition corresponding to � is then finite.

1. Assume f ∈ Ci and g ∈ Cj for i �= j. We have to show that f �= g. The case where one of the cluster

is C∅ or Cp is trivial. Now f ∈ Ci means that for all t
∑

x∈Ai
f(x|t) ≥ p, and similarly from g. But

since 〈A, p〉 partitions X , and 1/2 < p ≤ 1 we know that
∑

x∈Aj
f(x|t) < p, and the same for g and

Ai, which is enough to show that f �= g.

2. It is easy to see that � is reflexive and symmetric. Transitivity follows from the fact that � is well-

defined.

Proof of Theorem 5. I first establish that �′
S satisfies Subjective Substitution.
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Lemma 1. If {PS}s∈Ξ reflects boolean operations on events then �′
S satisfies subjective substitution.

Proof. Assume that {PS}s∈Ξ reflects boolean operations on events. Clearly, for all events S, �′
S is transi-

tive and complete. Take two lotteries g and f such that g �′
S f and g �′

T f , i.e.

∑
x∈↓PS

g(x|t) ≤
∑

x∈↓PS

f(x|t)

and ∑
x∈↓PT

g(x|t′) ≤
∑

x∈↓PT

f(x|t′)

for all t and t′ in S and T , respectively. Assume also that S ∩ T = ∅. We now have to show that

∑
x∈↓PS∪T

g(x|t) ≤
∑

x∈↓PS∪T

f(x|t)

for all t ∈ S ∪ T . Now we know by assumption that ↓PS∪T =↓PS∪ ↓PT . In other words, we have,

∑
x∈↓PS∪T

g(x|t) =
∑

x∈↓PS

g(x|t) +
∑

x∈↓PT−S

g(x|t)

and similarly for f(x|t). Now assume that this is not the case that g �′
S∪T f . That is, by completeness,

∑
x∈↓PS

f(x|t) +
∑

x∈↓PT−S

f(x|t) <
∑

x∈↓PS

g(x|t) +
∑

x∈↓PT−S

g(x|t)

This is equal to ∑
x∈↓PS

f(x|t) −
∑

x∈↓PS

g(x|t) <
∑

x∈↓PT−S

g(x|t) −
∑

x∈↓PT−S

f(x|t)

Now g �′
T f also decompose into:

∑
x∈↓PT∩S

g(x|t) +
∑

x∈↓PT−S

g(x|t) ≤
∑

x∈↓PT∩S

f(x|t) +
∑

x∈↓PT−S

f(x|t)

which is the same as

∑
x∈↓PT−S

g(x|t) −
∑

x∈↓PT−S

f(x|t) ≤
∑

x∈↓PT∩S

f(x|t) −
∑

x∈↓PT∩S

g(x|t)

But then, by transitivity, we have

∑
x∈↓PS

f(x|t) −
∑

x∈↓PS

g(x|t) <
∑

x∈↓PT∩S

f(x|t) −
∑

x∈↓PT∩S

g(x|t)

which is impossible, given that T ∩ S ⊆ S and that the right side of the last inequality must be greater than

0.

Now I turn to the proof of the main theorem. Let a1(•|t) and a0(•|t) be the lotteries defined exactly as

in [Myerson, 1991, chap.1]. They respectively give for sure the best and worst prizes at t, according to the

preference ordering. These will be used to build the probability function p. Define a “bet on t”, which will

be used to construct the probability function p, as follows

bS(x|t) =

{
a1 if t ∈ S

a0 Otherwise
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Now construct the conditional probability function such that for every t ∈ Ω, p(t|S) satisfies

b{t} ∼S p(t|S)a1 + (1 − p(t|S))a0

This is essentially Savages’ method to extract conditional beliefs from preferences. It is a standard argument

to show that p as the required properties. Details can be found in [Myerson, 1991, chap.1].

As for the plan-based utility function, just define uP(x, t), for every x ∈ X and t ∈ Ω, as follows:

uP(x, t) =

{
1 if x ∈↓PS

0 Otherwise

It should now be clear that, for all t,

∑
x∈X

uP(x, t)f(x|t) =
∑

x∈↓P{t}

f(x|t)

But then, because �′
S satisfies Subjective Substitution, this extends to all S. That is,

∑
x∈X

uP(x, t)f(x|t) =
∑

x∈↓PS

f(x|t)

And from that we directly get

f �′
S g iff

∑
t∈S

p(t|S)
∑
x∈X

uP(x, t)f(x|t) ≤
∑
t∈S

p(t|S)
∑
x∈X

uP(x, t)g(x|t)

Which completes the proof.

Remark 1. Getting a representation of �′
S in terms of expected utility is much easier than for the normal

preferences because I have defined this ordering using the quantitative information already contained in

the lotteries. This is way I could bypass the usual “extraction” of the utility function from preferences, and

directly define uP. This reveals that, in the end, uP is no more than a “coarse-grained” utility function.
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Abstract

We discuss briefly the duality (or rather, complementarity) of system descriptions based on actions
and transitions, on the one hand, and states and their changes, on the other. We settle for the latter and
present a simple language, for describing state changes, which is parameterized by an arbitrary language
for describing properties of the states. The language can be viewed as a simple fragment of step logic,
admitting however various extensions by appropriate choices of the underlying logic. Alternatively, it can
be seen as a very specific fragment of temporal logic (with a variant of ‘until’ or ‘chop’ operator), and is
interpreted over dense (possibly continuous) linear time. The reasoning system presented here is sound,
as well as strongly complete and decidable (provided that so is the parameter logic for reasoning about
a single state). We give the main idea of the completeness proof and suggest a wide range of possible
applications (action based descriptions, active logic, bounded agents), which is a simple consequence of
the parametric character of both the language and the reasoning system.

1 Introduction

In the description of reactive systems one has focused primarily on their capability to perform some specific
actions (process algebras, labelled transition systems, CSP). For example, the famous vending machine can
perform the actions of ‘accepting a coin’ and then ‘dispense a coffee’ an unspecified number of times. This
is certainly a fruitful approach. However, one reason to be interested in actions (and maybe the only one)
is that they change the state of the world, an agent’s beliefs, or any other abstraction. A vending machine
can be described equivalently as a device which can stay in a state of ‘inactivity’, from which it can pass
to a state of ‘having accepted a coin’ and then to one in which it has ‘dispensed a coffee’. The latter state
may be identified with the state of inactivity if one, among other things, abstracts from the number of coins
accepted and from the remaining amount of coffee. These views are in some sense dual, but we present an
approach related to the second one, that is, we will describe systems in terms of evolving states. The states
evolve over time and during consecutive time intervals certain specifications, that is, partial descriptions of
the states, can be observed.

For instance, a description of a system might be as follows. At first an agent knows (or assumes) .
After an announcement he is no longer sure, and knows only . Finally, after yet another event, he learns
that and retains this knowledge (for the rest of the time: here the scenario ends). This system is described
as an expression consisting of a sequence of formulae, each partially describing the state(s), during three
consecutive intervals:

(1.1)

The meaning of this expression could be described on a linear time scale as

Here, lines represent the ‘duration’ of the state(s) satisfying the formula which annotates it. One further
abstraction is that we view ‘duration’ as something qualitative but not quantitative. Thus all intervals have
been given the same length. Throughout the paper we will depict intervals with different lengths, for
convenience, not to suggest different durations.

1
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Viewing the above as a description of the result of some interactions (the announcement and the other
event), it is natural to ask for possible consequences, and for an entailment relation between such descrip-
tions in general. For example, a system

(1.2)

can be viewed as a consequence of the previous one, with the last two intervals concatenated. Furthermore,
during a certain interval has both (1.1) and (1.2) as consequence by appropriately cutting the interval

in three and two smaller ones, respectively.
Although the paper takes a logical approach, it is possible to interpret the systems above with the help

of labelled transition systems. As a consequence of the focus on states instead of on actions, there is just
one label. For example, the transition system corresponding to (1.1) is

���� ��
��
��

��

In our setting, ‘being in a state satisfying a specification’ is assumed to last for some time, whereas the
transitions are instantaneous. The loops in the transition system express this assumption that considered
intervals can always be split into smaller ones, that is, the density of the linear ordering modelling the
time domain. Transitivity enables the concatenation of intervals. Traces should include the states and
are therefore taken to be terminating reduction sequences. Systems are equivalent if they have a trace in
common. Equivalent systems have actually infinitely many traces in common, but the trace sets may be
different. For example, and , represented respectively as

���� �� �� and ����

are equivalent, but have different trace sets. The consequence relation between systems can also be ex-
pressed in terms of transition systems, see section 4.1.

The paper provides the answer to the main question about such systems and their descriptions: given
a description (specification) of the sequence of states an agent (or a group of agents) is required to pass
through, like (1.1), what other decriptions will be passed through in all cases? In other words, given a
language of finite sequences of state-formulae, we ask for an axiomatization which would be strongly
complete with respect to intervals of total, dense orderings. Our logic is parameterized by an arbitrary
underlying logic of state-formulae. For the sake of illustration we will use propositional logic. Typical
examples of possible applications can be obtained from epistemic contexts, like communication protocols
or, generally, interacting agents. Due to space limitations, we do not give any more detailed examples, but
sketch some possible applications – with particular emphasis on bounded agents – in the last section.

2 Language and Semantics

The logic is parameterized by an arbitrary underlying logic, u.l., which one might want to use for describing
the single states. Hence, the language is parameterized by the language of the underlying logic, .

Definition 2.1 (Sequence Language ) The language – containing sequence formulae over a pa-
rameter language – is given by the following grammar:

stands for tautology of the underlying logic – this symbol is added only if it is missing in the underlying
logic.

In the sequel denote (sequence) formulae of ; – atomic formulae, i.e., those
without occurring inside. The formulae of our logic will be simple sequents, i.e., have the form .
We will denote sequents using . Complexity of a sequence formulae/sequent refers to the number
of occurring in it.
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2.1 Semantics

The semantics is parameterized by the semantics of u.l. Sequence formulae are evaluated over a total, dense
ordering which is left-closed and right-open. Given such an ordering , its points are (mapped
to) models of the u.l. An SL-structure is a function

Left-closedness models the “beginning” (of a computation, or its part), and left-openness its possibly un-
bounded character. In general, we will consider also subintervals of a whole order . We denote by
a left-closed right-open interval, , of a given order . We do not consider
empty intervals at all, so the notation always implicitly means . The satisfaction relation is
defined, in general, for any such interval.

Definition 2.2 (Satisfaction Relation) Satisfaction of an -formula in an -structure, written
, is defined as follows:

for all

We skip the subscripts in the notation, assuming always given and . In fact, we will concentrate on the
case where the interval is actually the whole , writing . This is justified by the following equivalence
between (2.1) and (2.2). For a semantical entailment, we write iff

(2.1)

Equivalently, we can consider only whole orderings (and not all subintervals):

(2.2)

It is an easy exercise to verify that is associative. One could view this operator as the until, U, of
temporal logic over linear time (depending, however, on the details of the definition which may vary).
Then, our language could be viewed as a very special subset of temporal logic, where a sequence formula

corresponds to

where the final (and only it) appears always and only under , to remain true from then on.1 Thus it is
not surprising that we can express several temporal modalities, for instance:

1. iff holds always in

2. iff becomes eventually true and holds then forever

3. iff holds initially for at least some time

4. iff holds for some time, after which holds forever

Example 2 above admits all the same ’s as does 1 but, in addition, also all where holds almost always,
i.e., everywhere with the possible exception of some initial interval. Thus, but . Dually,
3 also allows all models of 1 but also ones where , holding initially, becomes false after some time, so

but . In 4, the requirement is for to actually become false after some time, never to
become true again.

This analogy to temporal logic (of dense linear time) concerns the limited semantic interpretation. How-
ever, unlike modal logics, in general, we will offer not only sound and complete, but also strongly complete
reasoning, which is also decidable. (All these properties obtain relatively to their presence in the underlying
logic.)

1Alternatively, one can almost identify ; with the chop operator, common in interval logics, [11, 9]. We have, however, only a
very limited fragment of such logics.
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The semantics is based on points but, nevertheless, it is strongly interval oriented. For the first, it
does not include “point-intervals” (as single points are sometimes called in the interval semantics.) More
significantly, although the satisfaction relation is defined relatively to satisfaction in single points, , a
formula satisfied only at a single point is not satisfied by any interval. For instance, consider , with
all while . Then and . There are some
subintervals satisfying , e.g., , but there is no subinterval of satisfying . This is related
also to the phenomenon given in the following example.

Example 2.3 Assume that u.l. contains propositional disjunction. We may have that , while
for every subinterval and . 2 Take, for instance, such that for any

and, in addition, distribute the models of densely between those
of and vice versa (i.e., ,
and the corresponding fact when .) Then but nowhere, i.e., in no subinterval

, we have that or .

2.2 Cuts

An equivalent definition of satisfaction can be expressed by saying that an interval satisfies a sequence
formula iff it is possible to cut the interval into subintervals, each left-closed right-open and each
satisfying the corresponding . This is the content of the following definition.

Definition 2.4 An -cut of is a partition of into intervals

with .

By we denote a cut of which verifies , i.e., shows that .3

Two cuts of an interval can be superimposed on each other yielding a (possibly) more refined cut.

Example 2.5 ( ) Consider two cuts, each verifying , respectively, . A
possible situation is the following:

The result of superimposing these two cuts is as shown below:

The following definition formalizes the superposition of two cuts. It will be used only in the situations
where each cut verifies a respective sequence formula and, moreover, when we are considering the sequent

. Hence, although the constructions are symmetric, we mark the asymmetry in the notation.
The operation collects all possible ways of superimposing a cut verifying and one
verifying . In other words, whenever an interval satisfies both formulae, the superposition of
the two cuts will satisfy some path in , which is defined below. (We also have the opposite
implication, see lemma 2.8.)

Definition 2.6 ( ) For an arbitrary sequent , we define by induction on the complexity
of (number of ; in)

: i.e., – .

: a.

2 denotes that is a subinterval of , i.e., .
3This is ambiguous, since there may be many different cuts of all verifying .
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b.

c.
i.
ii.
iii.

Point c. exhausts the possible ways of overlapping of subsequent intervals. Starting with and , we have
the three possibilities illustrated in Figure 1, each corresponding to one of the cases listed under c.

(ii) (iii) (i)

Figure 1: Possible overlapping of initial intervals.

Example 2.7 , for from example 2.5, are the following:

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

(10)
(11)
(12)
(13)

The path in line (2) corresponds to the cut we obtained in Example 2.5.

A structure satisfies a path if it satisfies the corresponding sequence formula. For instance, an satisfies
path (2) from the above example iff .

The following lemma states the observation from example 2.5.

Lemma 2.8 For all we have that and if and only if there exists a
such that .

3 The reasoning system

Given a sequence formula (possibly only a single formula of the underlying logic) we let denote or
an arbitrary extension of to a (longer) sequence formula (analogously for ).

Definition 3.1 The calculus contains the following rule schemata:

(lift)

If is empty, the formula to the left of it remains unchanged. The intuition behind these rules is straight-
forward and concerns the possible overlapping of subsequent intervals. It refers again to the Figure 1, now
with (L) corresponding to (ii), (R) to (iii) and (E) to (i). In either case, validity of the conclusion requires
validity of (which is placed in the side-condition). The relation between the remaining parts depends
on whether the left formula, , “lasts longer” than (L), “shorter than” (R), or if both have equal duration
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(E). Axioms are absent because side-conditions will give proof obligations determining if a given derivation
is a proof. The rule (lift) terminates construction of a derivation (bottom-up). A derivation is defined in the
standard way. The following gives a couple of examples.

Example 3.2 (Derivation) Consider the sequent from Example 2.5. The following are two of its possible
derivation:

lift

E

E

lift

R

L

E

We denote by the set of all possible derivations of . Side-conditions in a derivation constitute the
proof obligations. Given a derivation , we denote by the sequence of all side-conditions (in the
bottom-up order). For the derivations from example 3.2, we have

This operation is extended pointwise to the set of all derivation of a sequent, i.e.,
.

The following, hardly surprising, lemma states equivalence of the proof obligations obtained over all
derivations of a sequent and the possible overlappings of cuts verifying .

Lemma 3.3 For an arbitrary sequent

Definition 3.4 A derivation of is a proof of iff either

(if exists in u.l.) or

It is always assumed that, in the underlying logic, and for all .

Example 3.5 Assuming the underlying logic to be propositional, let the sequent be as in our previous
examples, specialized to actual formulae as follows: . Then the derivation (from
Example 3.2) is a proof of , but the derivation is not. The latter fails to be a proof, because the
side-condition is now , which does not satisfy the second condition of the definition 3.4.

Every rule, applied bottom-up, decreases complexity of the sequent. Hence every derivation terminates
in finitely many steps. Checking if the obtained is a proof is trivially decidable, provided that
provability in the underlying logic is decidable. Hence we have a simple, but useful, fact.

Proposition 3.6 If relation is decidable, then so is .

The next lemma reflects the desired property that we mentioned in the Introduction, i.e., that we do not want
to differentiate between and .

Lemma 3.7 The following rules are admissible.

(id ) ( id)

Thus, we can ignore all adjacent duplicates in the considered sequence formulae. (This fact is used to
simplify the proof of lemma 3.3.)

Assuming soundness of the underlying logic, one verifies relatively easily soundness of SEC. Lemma
3.3 is of crucial importance in the proof of completeness, and we now sketch the main steps of this proof.
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3.1 Completeness

We assume completeness of the underlying logic. We also restrict our attention to the dense ordering of
non-negative rationals, , but constructions and the final result generalize to arbitrary dense orderings.

Given an interval , and models , one can distribute them densely, i.e., so
that for any two points , the subinterval contains all models. We register this fact
without proof.

Lemma 3.8 models can be distributed densely over an interval so that
(the image of) every non-empty subinterval contains all models .

Theorem 3.9 When u.l. is strongly complete, then so is SEC.

PROOF: We show that every unprovable sequent has a counter-model. So assume a sequent with no proof:
(with no adjacent duplicates). By definition 3.4 combined with lemma

3.3, this means that

– all are consistent, AND

.

We construct a model of by constructing an interval for every . We use
rationals, so for every , we let , while . For every we assign the
models as follows.

For every pair , the proof obligation occurs on some derivation path. For each , we
collect all ’s (from all derivation paths) such that . (If for some , there are no such ’s, then we
let contain any model of (existing by .) We construct as follows:

Since (for each chosen ) so, by completeness of u.l., , so we have a counter-model,
, for each such pair. We collect all such for a given and distribute them densly in the interval

. By lemma 3.8, we then have that, for all for which we have a counter-model (and
).

Concatenating all the intervals , we obtain , with the cut , which
we now fix.

If now (*) then, by Lemma 2.8, there exists a path such that for
every node , the respective subinterval . However, by lemma 3.3,

, i.e., comprises the proof obligations from one of the derivation paths for . Since no such
path is a proof, it contains a node where . But then also – contradicting
(*).

Example 3.10 Consider the following (unprovable) sequent :

The are obtained as they were in example 2.7, and are here listed with the formulae instan-
tiated appropriately:

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

(10)
(11)
(12)
(13)

On every path there exists a node with unprovable obligation, either or (as
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well as or ). Hence . The counter-model will be built from three intervals,
, where (a boolean structure assigning true to

and false to ), , while in we distribute densly the counter-models for
(namely ) and for (namely ). This will ensure that , and so

, as we have the following situation

A cut verifying must first comprise some subinterval verifying and then some verifying .
But the latter can occur only within , as , while every subinterval . But then, the
rest of will not satisfy , since all subintervals . In short, .

4 Related systems and applications

The presented system, being interval-based, seems to require a comparison with other interval logics. How-
ever, since it possesses a number of desirable properties usually missing in such logics, it promises also
potential for applications, and we comment briefly such possibilities. (An overview of other interval logics
can be found in [9].) Relations to other frameworks – transition systems, 4.1, action-based descriptions,
4.2, and active logic, 4.3 – indicate also possible applications in the areas where these other techniques are
applied.

4.1 Transition systems

As mentioned in the introduction, we can define for every sequence formula a transition
system (or: rewrite system):

��
�� ��

�� ��
��

��

The meaning of can now be given as the set of all rewrite sequences of this transition system. Here
some care has to be taken. First, we only consider rewrite sequences that end in the final state. Second, we
consider the states modulo equivalence in the underlying logic. Third, we adopt some notation of formal
language theory and denote the rewrite sequences as words and call them traces (note that
we denote only the states, and not the transitions). We use Kleene to denote one or more iterations. With
these points in mind we define the semantics of as follows:

For example, . Equivalence of systems
can now be defined as follows.

Definition 4.1 if is non-empty.

Indeed, is an equivalence relation: reflexivity and symmetry are trivial, and transitivity follows after a
moment’s reflection on the regular expressions involved. The following lemma characterizes the semantic
entailment in terms of transition systems. ( denotes the -th “state” of .)

Lemma 4.2 if and only if

The correspondence between the traces and reflects the existence of a joint path
from lemma 2.8, which verifies .
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4.2 Representing actions

Suppose we want to model an action of sending a message over a secure channel from (agent) to
, . We model the environment as another agent , and security of the channel means

that cannot see what is communicated between and . As the underlying logic, we use here some
variant of epistemic logic, where stands for the statement that agent knows (has available).
Communication of from to is modeled by a rewrite rule, which defines it in terms of the effects on
the consequtive states:

Now, for instance, a secure communication corresponds to the fact that, starting in a state where , but not
, knows , we pass to a state where both and , but still not , know . This means that as we

use:

.

A reliable communication, i.e., one which is not only secure, but where can also be sure that obtains
his message, is modeled simply by adding additional conjunct to the resulting state:

.

An insecure channel makes it possible for to intercept the message. Analyzing security aspects, one
wants to address the worst case scenario, and therefore lets actually intercept all messages:

.

Once a series of actions is rewritten as a series of their effects, , we can apply our logic for deriving its
consequences, by asking for such that . The point of these examples is to illustrate the flexibility
of the proposed setting for handling a virtually unlimited variety of possible action types. This flexibility
is achieved by not axiomatizing any actions, but merely by representing actions in terms of their effects on
the states.

Remark 4.3 Notation suggests that we can use some variant of modal epistemic logic, i.e., S4
or S5. This is correct, but we should take some precautions in formulating the proof obligations (side-
conditions in our reasoning system). For instance, we might want to prove that, given that , an agent

knowing first , will eventually (be able to) know , i.e., . The last step in a derivation of such
a description would amount to the following:

(4.1)

In modal logic, strong completeness requires that the premisses are included under the -modality (here
), and the premise does not satisfy this condition. The general statement of this fact is as follows

(e.g., exercise 1.5.3 in [3]):
(4.2)

where is the global logical consequence (which we are using), while is local logical consequence,
for which we have strongly complete reasoning systems.4 In the logics where , we can
simplify the right hand side of (4.2) to , or even drop when axiom T is present. Consequently,
when using modal epistemic logic, like S4 or S5, we would have to utilize strongly complete versions of the
reasoning system, based on (4.2). For proving the side-condition of (4.1), we would obtain a proof ending
with the following transition:

4Statement (4.2) can be relativised to arbitrary classes of frames which are closed under ‘reachable subframes’, i.e., classes M
where, when and is a subframe of obtained by taking for some fixed

and restricting to this subset, then also . This closure property is enjoyed by the typical modal logics like
S4 or S5.

132/135



...

4.3 Active logic

Active logic has been developed to reason about the changing states of beliefs, [6, 2]. Although our frame-
work does not aim at equal completeness of modelling, several aspects of active logic fall naturally into it
(e.g., allowing for nonmonotonicity, temporally evolving beliefs). Other aspects addressed by active logic
have been in our case factored out and delegated to the choice of the underlying logic. Thus, for instance, to
model bounded agents, we only have to choose an appropriate logic for such agents; to treat contradictory
beliefs, some form of paraconsistent logic could be chosen. We illustrate some of these aspects below.

Active logic operates with the explicit notion of (discrete) time points, and application of rules involves
always increase of time. (This simple idea is present in the predecessor of active logic, step logic [4, 5, 7],
and in its decidable fragment, [1].) For instance:

– if, at step n, and are known/available
– then, at step n+1, can become known/available

Semantical differences notwithstanding, the following rule, admissible in our system, can be used to model
exactly this aspect of stepwise reasoning:

Thus, for instance, the sequence starting with (i) the knowledge that birds fly, ,
and, after some time, (ii) learning that is a bird, after which (iii) , namely, the fact that birds can fly is
forgotten, is expressed with the (appropriate fragment of) first-order logic as the underlying logic, as given
on the left of From this we obtain the proof that the fact was (possibly) known at some point:

The modelling is more abstract than in active logic where one simply counts the applications of rules. This
is possible here as well, but we can also allow much coarser granularity admitting transitions to arbitrary
consequences. (Of course, counting of steps happens in our case only at the meta-level. Inclusion of the
time-step, step-sequence, etc. into the agent language, so central in step and active logics, would require
appropriate choice of the underlying logic.)

4.4 Bounded agents

Boundedness of agents, which underlies the stepwise model of reasoning, can be captured in our setting
simply by using appropriate (semantics of the) underlying logic. For instance, one might apply the logic
of finite agents from [10], with the collection of formulae as its syntactic models of the subsequent states.
With this logic one can express that an agent knows , , as well as that he knows at most ,
written . Then we can prove that an agent who first (i) knows , then (ii) knows and then
(iii) at most , eventually does not know :

More intricate and practical examples of applications of the logic presented here, and its combination with
the logic for bounded agents, can be found in [14], or obtained by contacting one of the authors.

More generally, one can model bounded agents by distinguishing the explicit (limited) and the implicit
(potentially unlimited) knowledge, cf. [13, 8]. Here, we would interpret the left hand side of as the
description of the actual sequence of states of explicit knowledge of an agent (each with a finite model).
The derivable right hand sides of represent then possible implicit consequences of such transitions. For
instance, using the (step) rule, we can unfold possible consequences of the following initial state:
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The meaning is that the states on the right of are reachable from the (initial) state on the left by finitely
many deduction steps. With such an interpretation, as the underlying logic one might even choose any
variant of modal epistemic logic, and yet avoid the omniscience problems inherent to these logics. This
particular application of our logic is, in fact, the approach taken in the logic of algorithmic knowledge, [12].

5 Conclusions and Future Work

We have presented a temporal logic with a single binary modality, roughly corresponding to Until, and in-
terpreted it over dense linear time. It is parameterized by an arbitrary underlying logic for description of the
states. Our logic inherits metaproperties of the underlying logic: its is strongly complete/sound/decidable
whenever the underlying logic is. We have also suggested the possible way of handling actions in our
framework, simply by defining them through their effects on the states of the system. What is missing at the
present stage, are detailed examples. The parametric character of our logic offers possibility of applying it
to a wide variety of contexts, but the details and usefulness of such applications remain to be investigated.

Also, we would like to adjust the logic to a wider variety of orderings. A simple restriction of the (L)
rule yields a sound system for all total orderings. Although we expect it to be complete, the proof of the
fact is still missing. For discrete orderings, the relation is decidable, but the problem of constructing a
natural reasoning system remains open. This problem turns out to be surprisingly difficult and is currently
under investigation.
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