
Conceptual Programming
with Python

Thorsten Altenkirch Isaac Triguero

© 2019 Thorsten & Isaac (Standard Copyright Licence)
ISBN 978-0-244-82276-7

ii

Contents

1 Introduction 1
1.1 Why Python? . 1
1.2 How to use Python? 3
1.3 Where to find more information? 3
1.4 Overview over the book 4
1.5 About the authors 5
1.6 Acknowledgments 6

2 Python from the top-level 9
2.1 Basic types and operations 9

2.1.1 Coercions 11
2.1.2 Bool . 13
2.1.3 Functions 15

2.2 Data structures 18
2.2.1 Strings . 18
2.2.2 Lists . 21
2.2.3 Modifying lists 25

2.3 Mysteries of Python 31
2.4 Summary . 33
2.5 Solution to top-level challenge 35
2.6 Quizzes . 35
2.7 Exercises . 36

3 Imperative Programming 37
3.1 Blocks of Code . 37
3.2 Inputs/Outputs 38
3.3 Error handling . 44
3.4 Loops . 45

3.4.1 An example of the use of while loops . . 46
3.5 The Halting problem 48
3.6 Iterating through data structures 51

iii

Contents

3.7 The guessing game 56
3.8 Summary . 63

3.8.1 Conditionals 63
3.8.2 Handling Exceptions 66
3.8.3 While loops 66
3.8.4 For loops 67

3.9 Solution to Challenges 69
3.9.1 Challenge 1 imperative programming . . 69
3.9.2 Challenge 2 imperative programming . . 70

3.10 Quizzes . 71
3.11 Exercises . 72

4 Recursion and backtracking 75
4.1 Prelude: functions calling functions 75
4.2 The Tower of Hanoi 76
4.3 How is recursion executed? 82
4.4 Some combinatorics 86

4.4.1 Factorial 86
4.4.2 Binomial coefficents 88

4.5 Solving sudoku: Using backtracking 89
4.6 Summary . 98
4.7 Solution to recursion challenge 98
4.8 Quizzes . 101
4.9 Exercises . 102

5 Object Oriented Programming 105
5.1 First example: a class for accounts 107

5.1.1 Operations on objects 109
5.1.2 Class variables 114
5.1.3 Inheritance 117
5.1.4 The __str__ method 120

5.2 Example: Implementing Expressions 123
5.2.1 Printing expressions 129
5.2.2 Evaluate expressions 131

5.3 Example: Creating a Knowledge Base 136
5.4 Summary . 146

5.4.1 Classes . 146
5.4.2 Objects . 146

iv

Contents

5.4.3 Attributes (instance variables) 147
5.4.4 Methods 147
5.4.5 Class variables 147
5.4.6 Inheritance 148
5.4.7 Constructors (__init__) 148
5.4.8 Print method (__str__) 149
5.4.9 Data structures (trees) 149

5.5 Solution to oop challenge 150
5.6 Quizzes . 153
5.7 Exercises . 153

6 Functional Programming 159
6.1 Higher order functions and comprehension . . . 160
6.2 Laziness . 164
6.3 The sieve of Erathostenes 166
6.4 Python in Python 168
6.5 Challenge: if-then-else 174
6.6 Summary . 175
6.7 Solution to the if-then-else challenge 175
6.8 Quizzes . 177
6.9 Exercises . 177

7 Implementing games with pygame 179
7.1 What is Pygame? 180

7.1.1 Installation and basics with pygame . . . 181
7.2 The Pong Game 185

7.2.1 The Ball class 188
7.2.2 The Paddle class 197
7.2.3 Adding Lives and Score display 205
7.2.4 Adding Sounds 208
7.2.5 Adjusting the speed of the ball 208

7.3 Project . 212

8 Getting started with Data Science 215
8.1 Data analysis with the Pandas library 215
8.2 Visualising your data 228
8.3 Mining the data 231

8.3.1 A regression approach 231

v

Contents

8.3.2 A classification approach 239
8.4 Summary . 245
8.5 Solutions to Challenges 247

8.5.1 Challenge 1 247
8.5.2 Challenge 2 247
8.5.3 Challenge 3 248

8.6 Exercises . 251

vi

1 Introduction
This book is based on a course for Master’s Students at the
School of Computer Science of the University of Nottingham.
The course and the book are intended for students with little or
no background in programming coming from different back-
grounds educationally as well as culturally.

It is not mainly a Python course, but we use Python as a ve-
hicle to teach basic programming concepts. Hence, the words
conceptual programming in the title. The concepts covered are:

• data structures and a visual understanding of their repre-
sentation on a computer,

• control structures in imperative programming,
• the Halting problem showing the limits of computability,
• the use of recursion to design algorithms,
• backtracking to solve hard problems,
• the basics of object oriented programming,
• the use of trees to represent structured data,
• concepts of functional programming,
• how to write an interpreter,
• basic software engineering via a game development

project,
• the basics of data science.

This includes some material which we do not cover in our
lectures due to lack of time.

1.1 Why Python?

Python is a modern language which is named after Monty
Python the British comedians, not the snake. We are using
Python for the course and this book for the following reasons:

1

1 Introduction

• Python has a very simple syntax with very little over-
head. It uses layout to represent structure which is very
natural and easy to read.

• Python uses dynamic typing, this makes it easy to learn
because you don’t have to get your head around a static
type system, but see below.

• Python allows you to use concepts from a variety of
programming paradigms, including object oriented pro-
gramming and functional programming.

• There are a number of tools which make Python easy to
use, like jupyter notebooks which we are using.

• Python features a toplevel like many functional languages,
which makes it easy to interactively explore the language.

• Python is very popular, which results in a number of li-
braries (APIs) available in Python, which often makes it
the language of choice in practice.

But it is hardly perfect. Here are some issues we have experi-
enced with Python and which may make it a good idea to also
look for other languages:

• The fact that Python doesn’t use static typing means that
many errors which would be flagged by other languages
go undetected and may cause hidden errors in the soft-
ware. These also means that interfaces are not clearly de-
fined making the development of large systems harder.

• Python makes it often hard to use modern concepts, like
recursion, because you have to pay an unnecessary per-
formance penalty.

• Python also lacks certain features, like a pattern matching
and algebraic data types, making the representation often
unnecessarily clumsy.

• The lack of types leads to certain design errors in Python,
for example the decision to avoid characters and repre-
sent them as strings.

However, weighing the reasons in favour and against we
found that Python is the best choice for a course for beginners.

2

1.2 How to use Python?

Our emphasis on concepts is important: you should be able to
use them in any language you use for developing software.

1.2 How to use Python?

First of all you need to install Python, however it may already
be installed since it is becoming a standard language. We are
using the current version of Python which is Python 3.x (x ≥ 4).
We are using the Anaconda distribution which comes with a
number of useful tools, but any other implementations should
work fine too. However, we recommend using a version of
Python that supports the use of a toplevel, which is not the case
for some development environments.

Using anaconda there are a number of ways to interact with
Python:

• using the toplevel. This isn’t specific to Anaconda, you
just type python on your terminal and talk to the Python
interpreter.

• using jupyter notebooks. That is a nice way to combine
software development, exploration and documentation.
Indeed, this book was written this way.

• using an integrated development environments (IDE)
like spyder which comes with anaconda, or idle which is
part of the standard distribution.

1.3 Where to find more information?

There is so much material available on the internet now, that
the students often get overwhelmed and confused. We have
written this book to try to provide one consistent source of in-
formation for a course and suggest not to listen to too many
chefs at the same time. That may spoil the soup.

On the other hand, we have tried to keep the material light,
and we do not provide a complete reference manual to every-
thing you may need. We recommend the following sources for
additional information:

3

1 Introduction

• The Python Tutorial1 is an excellent source of informa-
tion.

• If you really want to know the details of some aspect of
the language, check out the Python Reference manual2,
but be warned this is like reading a law book to find out
about a legal problem.

• Often the standard library is more important than the lan-
guage itself: check out the Library reference manual3.

• For specific projects you need to consult the API docu-
mentation. For example for working with pygame you
should consult the Pygame docs4.

• Finally, no programmer can survive without Stackover-
flow5 any more, a rich repository of questions and an-
swers and you can join and ask your own questions (and
add your own answers). But be warned you can get very
confused and spend a lot of time looking through stack-
overflow conversations which in the end turn out to be
irrelevant for your issue.

1.4 Overview over the book

We start with an exploration of Python from the top-level
(Chapter 2), which covers some basic concepts like data types,
coercions, functions and so on. We also introduce a graphi-
cal view of data structures in Python. Next we look at imper-
ative programming (Chapter 3) which is the traditional way
of programming present in Fortran or C. We introduce basic
control structures like if-then-else and loops. We also discuss
Turing’s famous Halting problem. After this, we introduce one
of the most powerful spells the young software wizard should
master: recursion (Chapter 4), that is a function that calls itself.
We are also using this to implement a sudoku solver via back-

1https://docs.python.org/3.6/tutorial/index.html
2https://docs.python.org/3.6/reference/
3https://docs.python.org/3.6/library/index.html
4http://www.pygame.org/docs/
5https://stackoverflow.com

4

https://docs.python.org/3.6/tutorial/index.html
https://docs.python.org/3.6/reference/
https://docs.python.org/3.6/library/index.html
http://www.pygame.org/docs/
https://stackoverflow.com

1.5 About the authors

tracking. Obviously, we cover Object Oriented Programming
(Chapter 5) which is now a standard approach to program de-
velopment. We also explain the use of trees to represent expres-
sions and knowledge bases. An alternative to Object Oriented
Programming is Functional Programming (Chapter 6), which
is close to a mathematical understanding of programming. We
also cover infinite data structures and how to write a Python
interpreter in a functional style. Now you need to develop a
bigger program, ideally in a group, and we suggest writing a
game because it is fun and it is easy to understand what the
goal is, hence we introduce the pygame library (Chapter 7). Fi-
nally, we give an introduction to Data Science which underlies
the modern approach to Machine Learning (Chapter 8).

We present some challenges during the text, which you should
try to solve yourself, but our solution is provided at the end of
the chapter. Each chapter finishes with a quiz and exercises.
The quiz can be easily done by using the Python interpreter
but the point is to see whether you understand the language
well enough to execute programs in your head. Indeed, the
ability to run programs in your head is essential if you want to
be able to write programs. The exercises are of different degrees
of difficulty.

1.5 About the authors

Thorsten Altenkirch (also known as Der Chef) and Isaac
Triguero (also known as El Jefe) are with the School of Com-
puter Science of the University of Nottingham.

Thorsten is from Berlin, Germany and has grown up on the
western side of the wall. Indeed it is a little known fact that the
wall was only built for him and it was taken down 6 weeks
after he left to start his PhD in Edinburgh, Scotland. Hav-
ing worked as a programmer in Berlin for various companies,
Thorsten got sucked into more theoretical realms doing a PhD
on Type Theory which is a synthesis of logical reasoning and
functional programming. Following this ambition he has been
working in Gothenburg, Sweden and even in (for a Prussian

5

1 Introduction

from Berlin) more exotic places like Munich in catholic Bavaria.
Eventually at the turn of the Millennium, Thorsten joined the
School for Computer Science at the University of Nottingham
where he founded the Functional Programming Laboratory to-
gether with his colleague Graham Hutton (check out Graham’s
Haskell book!). He ended up teaching Python after a sabbatical
at the Institute for Advanced Study in Princeton which left him
no other choice after his return. However, he has been enjoy-
ing teaching this course, especially since he was joined by his
colleague Isaac.

Isaac was born and bred in a small town, called Atarfe, in the
region of the magnificent Granada, Spain, where the emblem-
atic Arabic palace and fortress ’Alhambra’ sits. Unfortunately,
he can’t tell the Alhambra was built for him -- and luckily it
was not demolished after his departure --, but he can undoubt-
edly say that it is way more beautiful than that Wall from Ger-
many. Isaac studied his MSc and PhD degrees in Computer
Science at the University of Granada, where he was drawn into
all the buzz words of the moment (Data science and Big data)
before departing to Ghent where he worked (and mostly ate
waffles on a daily basis) as a postdoctoral researcher. A few
years ago, Isaac joined the School of Computer Science at the
University of Nottingham, and he was soon severely punished
and trapped into teaching this programming course with the
inimitable Thorsten. As a ”junior” professor, working with the
old and wise Der Chef and his bold teaching style has been
a real challenge for him, but it turned to be a very rewarding
experience, in which they ended up teaching each other quite a
few things.

Thorsten and Isaac have mostly written this book together,
but they led different chapters; you are challenged to guess
who wrote what...

1.6 Acknowledgments

We would like to thank the students who have attended our
course in the previous years and have provided a lot of feed-

6

1.6 Acknowledgments

back and useful suggestions which turned the course into what
it is now. Their enthusiasm and the progress they were making
motivated us to write this book. We would also like to thank
the lab assistants who helped us with running the course and
who also suggested many important improvements. We would
like to thank Mikel Galar for reviewing the book and provid-
ing useful feedback. We thank Emilio Romero for creating the
cover and Juan Triguero for drawing the pictures of us.

7

2 Python from the
top-level

We can explore Python interactively by using the top level. This
means we can type in Python code and Python will answer di-
rectly. Python has inherited this concept from functional pro-
gramming languages like LISP or Haskell.

2.1 Basic types and operations

We can use Python as a calculator.
3+5
Here we exploit the top-level built into jupyter which allows

us to interactively evaluate Python programs. After In: you
see what we have written, and after Out: you see Python’s
response.

We also have variables.

In : x=3

In : x+5

Out: 8

Did you notice? There is no Out: after the x=3? That is be-
cause Python doesn’t produce any output after an assignment.

As usual in programming the ’=’ sign has a different mean-
ing than in Mathematics. Here it means that we want to store
something in a variable, which I draw as a shoebox which has
a label on it.

9

2 Python from the top-level

Unlike in many other programming languages we don’t have
to declare variables before using them. But they have to be ini-
tialised before we use them - otherwise we get an error.

In : x+y

--
NameError Traceback (most recent call last)
<ipython-input-4-259706549f3d> in <module>() ---> 1x+y
NameError: name ’y’ is not defined

Instead of Out: we see an error message. Error messages
can be confusing: first we see a Traceback telling us where the er-
ror occurred during execution (pretty obvious in this case) and
then the type of error (here a NameError) and the error message.

We also have floating point numbers:

In : 3/4

Out: 0.75

And there are strings for text:

In : "Thor"

Out: 'Thor'

One can use either single '..' or double ".." quotes but
the toplevel prefers to use '..' it seems. Sure, we can store
strings in variables too.

In : me='Thor'

In : me

Out: 'Thor'

10

2.1 Basic types and operations

Data objects have types. We can use the function type to
find out what type they are.

In : type(3+4)

Out: int

int stands for integer.

In : type(3/4)

Out: float

float is a floating point number.

In : type(me)

Out: str

and str is a string.
Note that it is not the variable me that has the type str but

the object which is stored in it. We can also reuse me and store
an integer.

In : me=42

In : type(me)

Out: int

This is called dynamic typing, because all the types in a pro-
gram are determined when you run the code. The alternative
is static typing where all the variables and operations have a
fixed type which is known before you run your program. Static
typing has the advantage that it avoids many errors but for be-
ginners, dynamic typing is easier to understand.

2.1.1 Coercions

The operation + also works for strings. It means concatenation.

In : me+'sten'

11

2 Python from the top-level

--
TypeError Traceback (most recent call last)
<ipython-input-15-6d2bddc8ae7e> in <module>() ---> 1me+’sten’
TypeError: unsupported operand type(s) for +: ’int’ and ’str’

Oops, I forgot that I reused me. You see how error prone
dynamic typing is - because this sort of error may occur when
you run your program! Let’s fix that.

In : me='Thor'

In : me+'sten'

Out: 'Thorsten'

Ok. I inadvertently also demonstrated that we cannot mix
numbers and strings when using +.

In : me+3

--
TypeError Traceback (most recent call last)
<ipython-input-18-391876a55bc2> in <module>() ---> 1me+3
TypeError: Can’t convert ’int’ object to str implicitly

We can convert data objects between different data types. For
example we can convert a number to a string:

In : str(3)

Out: '3'

In : me+str(3)

Out: 'Thor3'

We can also go the other way if we have a string that contains
a number.

In : int('5')

Out: 5

These operations are called coercions. Python usually requires
explicit coercions, while many other languages use implicit co-
ercions (that is, they happen automatically). I prefer the Python
approach while it is more verbose it is less error prone.

12

2.1 Basic types and operations

2.1.2 Bool

Another useful type is bool the type if booleans, or truth val-
ues.

In : type(True)

Out: bool

In : type(False)

Out: bool

We can also use logical operations on booleans

In : True and False

Out: False

In : True or False

Out: True

In : not True

Out: False

We can also use & for and and | for ’or’. But be wary they
behave slightly different.

In : True & False

Out: False

In : True | False

Out: True

Some operations return booleans, for example the test for
equality ==. You see this is very different from =.

In : x == 3

Out: True

In : x == "3"

13

2 Python from the top-level

Out: False

And we can combine the test with logical operations.

In : (x == 3) or (x == "3")

Out: True

In : (x == 3) and (str(x) == "3")

Out: True

In : type(x) == int

Out: True

You ask what is the difference between and and & for exam-
ple? Ok here it is:

In : x=0

In : not (x==0) and 1/x==0

Out: False

In : not(x==0) & 1/x==0

--
ZeroDivisionError Traceback (most recent call last)
<ipython-input-25-9bf9e76be849> in <module>() ---> 1not(x==0) &

1/x==0
ZeroDivisionError: division by zero

In the first case Python decided that it didn’t need to evaluate
the 2nd part because false and anything is false. In the
2nd version it did evaluate the 2nd part which led to an error
because we tried to divide by 0.

By the way, a shorthand for not (x==0) is x!=0.

14

2.1 Basic types and operations

2.1.3 Functions

The basic idea of a function is that it is a box where you can put
something in and you get something out. We have functions in
Python.

Let’s define a function that adds 3 to its input and returns the
result.

In : def f(x) :
return x+3

In : f(2)

Out: 5

We are using a parameter in the definition of the function, I
called it x. The argument of the function, e.g. 2 is assigned to
the parameter x before the function is run. That is, there is a
hidden assignment x = 2 which happens before the body of
the function is executed. The parameter x only exists while the
function is executed, it is not visible from outside.

Did you notice the : and the indentation? The : indicates
that we start a new block of code which has to be indented. Later
we will see that we can nest blocks which means we have to
indent further. The combination of : and indentation replaces
the use of { and } you see in many C-like languages. We will
say more about this in the next section.

We use the keyword return to indicate what the function
returns. We will soon see that there are also Python functions
that don’t return anything.

Here is another function that doubles its input:

In : def g(x) :
return x+x

In : g(2)

Out: 4

We can combine both functions in calculations.

In : f(g(2))

15

2 Python from the top-level

Out: 7

In : g(f(2))

Out: 10

Did you notice when we say f(g(2)) we run first g and
then f even though we write first f and then g. This is the
curse of Mathematics. We should really write something like
((2)g) f but it is too late to change that.

There is a type of functions:

In : type(f)

Out: function

Since Python doesn’t have static types it doesn’t have more
specific type for functions either. A function can take any input
and produce some output.

We can have functions working on strings too.

In : def talk(who,what) :
return who+" is "+what

In : talk("Thor","stupid")

Out: 'Thor is stupid'

At the same time talk is also an example for a function that
takes more than one paraeter. No surprises here, I hope. We
can use any number of parameters.

Let’s define a function isEven which returns True if the in-
put is an even integer and False otherwise.

We need to use the modulo operation % which calculates the
remainder of a division. E.g.

In : 14%4

Out: 2

Because 14 divided by 4 is 3 remainder 2.
A number is even if the remainder from the division by 2 is

0.

16

2.1 Basic types and operations

In : 3%2

Out: 1

In : 4%2

Out: 0

Hence, we can define isEven as follows.

In : def isEven(n) :
return n%2 == 0

In : isEven(5)

Out: False

In : isEven(8)

Out: True

Does this function satisfy our specification?

In : isEven("Thor")

--
TypeError Traceback (most recent call last)
<ipython-input-55-b02fb287e1a6> in <module>() --->

1isEven("Thor")
<ipython-input-52-77d3f3007053> in isEven(n) 1 def isEven(n) :

---> 2return n%2 == 0
TypeError: not all arguments converted during string

formatting

No :-(. We didn’t say that it only works for integers but that
it should return True if the input is an even integer and False
otherwise.

Can we fix it?

In : def isEven(n) :
return type(n) == int and n%2 == 0

In : isEven("Thor")

Out: False

17

2 Python from the top-level

In : isEven(3)

Out: False

In : isEven(4)

Out: True

What would happen if we had used & here instead of and?
Can you figure it out in your head without actually running

the code? This is an important skill if you want to become a
good programmer!

Usually you won’t define functions on the top-level but keep
them in a file and edit them there. However, for the purposes of
this book we will continue to show functions in the notebook.

2.2 Data structures

We have seen data types like integers, floats and booleans. A
data structure is a data type which can be used to store other
data in it. Actually the first example are strings which we have
already seen.

2.2.1 Strings

We have already seen strings and the operation + to concate-
nate strings. Now, we look at some operations to access strings.

In : s = "Thorsten"

In : s[3]

Out: 'r'

s[n] returns the n+1th character - this is called indexing.
Note that we are counting from 0 as we always do in computer
science.

In : s[0]

Out: 'T'

18

2.2 Data structures

There is no special type for characters but s[n] returns a
string (of length 1).

In : type(s[3])

Out: str

Apropos length, there is a built-in function len that works
on strings.

In : len(s)

Out: 8

Getting the last character of a string (which has index
len(s)-1 since we start counting at 0)

In : s[len(s)-1]

Out: 'n'

There is a shortcut for this:

In : s[-1]

Out: 'n'

In : s[-2]

Out: 'e'

This is quite particular to Python - this trick won’t work in
most other languages.

Instead of just one character we can also extract a part of a
string. This is called slicing.

In : s[2:5]

Out: 'ors'

Note that this starts at index 2 (i.e. the 3rd character) and
ends at index 4 (i.e the 5th character); that is one before 5.

What happens if the 2nd index is before the first?

19

2 Python from the top-level

In : s[5:2]

Out: ''

If we leave out the first index we start at the beginning:

In : s[:5]

Out: 'Thors'

If we leave out the last index we go until the end:

In : s[2:]

Out: 'orsten'

And if we leave out both? Exactly!

In : s[:]

Out: 'Thorsten'

This seems pretty useless at the moment but we will see...
Now a little challenge, construct a new string form swith the

first and last characters swapped.

In : s[-1]+s[1:-1]+s[0]

Out: 'nhorsteT'

Has anything happened to s ?

In : s

Out: 'Thorsten'

Obviously not. Evaluating expressions doesn’t change vari-
ables. In this respect, strings behave like numbers.

Can we turn this into a function?

In : def swap(x) :
return x[-1]+x[1:-1]+x[0]

Let’s test it.

20

2.2 Data structures

In : swap(s)

Out: 'nhorsteT'

In : swap("Python")

Out: 'nythoP'

What happens if we use swap twice?

In : swap(swap(s))

Out: 'Thorsten'

swap doesn’t work for the empty string:

In : swap("")

--
IndexError Traceback (most recent call last)
<ipython-input-24-5b5714bf0d6e> in <module>() ---> 1swap("")
<ipython-input-20-46b07c57f25c> in swap(x) 1 def swap(x) :

---> 2return x[-1]+x[1:-1]+x[0]
IndexError: string index out of range

We get an error if we access a string beyond its length. In the
case of the empty string the index 0 is already out of range.

But what happens to a string containing only one character?

In : swap("a")

Out: 'aa'

Question: Why did this happen? Can you figure it out?

2.2.2 Lists

Lists are like strings but they are sequences of anything while
strings are sequences of characters. For example a sequence of
numbers.

In : ns = [1,2,3]

In : type(ns)

21

2 Python from the top-level

Out: list

The items in a list can have different types, and in particular
a list can contain lists again.

In : mixed = [1,"abc",[2,3,4]]

We can also coerce from and to lists, e.g.

In : list(s)

Out: ['T', 'h', 'o', 'r', 's', 't', 'e', 'n']

In : str(ns)

Out: '[1, 2, 3]'

Coercing into a string always produces the string that you
see when you print the object.

All the operations we have seen on strings also work on lists.

In : ns+ns

Out: [1, 2, 3, 1, 2, 3]

In : ns+mixed

Out: [1, 2, 3, 1, 'abc', [2, 3, 4]]

In : ns[1]

Out: 2

In : mixed[2]

Out: [2, 3, 4]

In : mixed[1:3]

Out: ['abc', [2, 3, 4]]

In : mixed[2][2]

Out: 4

22

2.2 Data structures

The last example shows that we can repeat indexing opera-
tions (e.g. mixed[2] provides a list, so, mixed[2][2] is accessing
the 3rd component of the list provided in mixed[2]). We can
actually apply indexing to something else than a variable. In-
deed, we can even write:

In : "Thor"[1]

Out: 'h'

This is useful when we want to represent a 2-dimensional
structure, e.g. a matrix.

In : mat = [[1,2,3],[4,5,6],[7,8,9]]

Or maybe a better layout is:

In : mat =
[[1,2,3],
[4,5,6],
[7,8,9]]

In : mat[1][2]

Out: 6

Do you remember the function swap we have defined ear-
lier? Does it work for lists as well?

In : swap(ns)

--
TypeError Traceback (most recent call last)
<ipython-input-37-8cb49238f8fa> in <module>() ---> 1swap(ns)
<ipython-input-20-46b07c57f25c> in swap(x) 1 def swap(x) :

---> 2return x[-1]+x[1:-1]+x[0]
TypeError: unsupported operand type(s) for +: ’int’ and

’list’

The problem is that the component of a list is usually not a
list. In this case l[-1] is a number and we cannot + numbers and
lists.

We can define a special version of swap for lists. We can turn
an element into a list by putting [..] around it. E.g.

23

2 Python from the top-level

In : ns[-1]

Out: 3

In : [ns[-1]]

Out: [3]

We can use this to swap a list:

In : [ns[-1]]+ns[1:-1]+[ns[0]]

Out: [3, 2, 1]

Let’s turn this into a function:

In : def swapl(xs) :
return [xs[-1]]+xs[1:-1]+[xs[0]]

In : swapl(ns)

Out: [3, 2, 1]

In : swapl(list(s))

Out: ['n', 'h', 'o', 'r', 's', 't', 'e', 'T']

But this operation doesn’t work for strings.

In : swapl(s)

--
TypeError Traceback (most recent call last)
<ipython-input-48-8daeb6f87815> in <module>() ---> 1swapl(s)
<ipython-input-41-ebb51c35ddb6> in swapl(xs) 1 def swapl(xs) :

---> 2return [xs[-1]]+xs[1:-1]+[xs[0]]
TypeError: can only concatenate list (not "str") to list

Challenge #1: Can we fix this? Can we define one function
that works both for strings and for lists? (Section 2.5)

24

2.2 Data structures

2.2.3 Modifying lists

We can change lists. For example given my favourite list

In : ns = [1,2,3]

Let’s say I want to change the 1st element (that is index 1) to
99. Here we go:

In : ns[0] = 99

In : ns

Out: [99, 2, 3]

That was easy. We can view a list as consisting of little boxes
that can be changed individually just like the labelled boxes
which correspond to variables. That is before the assignment
we would draw the following image:

and after it looks like this:

25

2 Python from the top-level

Before we have seen that the same operations worked for
strings and for lists. If you now think that the update opera-
tion will also work for strings you will be disappointed:

In : me="Thor"

In : me[1]="x"

--
TypeError Traceback (most recent call last)
<ipython-input-7-dd2ce9adf30b> in <module>() ---> 1me[1]="x"
TypeError: ’str’ object does not support item assignment

To make this visible I write a string directly into the variable
box (the same as for numbers):

We say that strings are immutable, unlike lists which are mu-
table.

You may wonder why, especially since other programming
languages do allow you to update strings. One reason is that
knowing that you don’t update strings can make the code more
efficient because you can reuse a string as many times as you
like.

However, we can always turn a string into a list first:

In : meList = list(me)

In : meList

Out: ['T', 'h', 'o', 'r']

In : meList[1] = "x"

In : meList

Out: ['T', 'x', 'o', 'r']

26

2.2 Data structures

Ok let’s do the swap operation we have seen previously but
this time we are going to modify a list.

First of all we restore the list (this is the problem with destruc-
tive operations).

In : meList = list(me)

Ok we are going to swap the first and the last element of the
list, i.e. the items at index 0 and -1.

In : meList[0]=meList[-1]

In : meList[-1]=meList[0]

Let’s see whether this has worked.

In : meList

Out: ['r', 'h', 'o', 'r']

Oops! This is not what I had in mind.
What has happened? Let’s see, first restore the list (again).

In : meList = list(me)

Then do the first step.

In : meList[0]=meList[-1]

In : meList

Out: ['r', 'h', 'o', 'r']

Ok, now it is clear. When we did the 1st update we lost the
original first character. Hence we have to save it before we
change it.

Ok, let’s start again.

In : meList = list(me)

We first store the first character:

In : helper = meList[0]

27

2 Python from the top-level

Then we copy the last character to the front.

In : meList[0] = meList[-1]

In : meList

Out: ['r', 'h', 'o', 'r']

And now we set the last character to the saved first character.

In : meList[-1] = helper

And voila!

In : meList

Out: ['r', 'h', 'o', 'T']

We can put this into a function. I call it swapx where the x
stands for change.

In : def swapx(lst) :
helper = lst[0]
lst[0] = lst[-1]
lst[-1] = helper

swapx is our first example of a function that doesn’t return
anything but it just does something.

We can use this to restore meList.

In : meList

Out: ['r', 'h', 'o', 'T']

In : swapx(meList)

In : meList

Out: ['T', 'h', 'o', 'r']

What is the difference between the function swapl and
swapx? Both work on lists.
swapl returns a list but doesn’t change the list.

In : meList

28

2.2 Data structures

Out: ['T', 'h', 'o', 'r']

In : swapl(meList)

Out: ['r', 'h', 'o', 'T']

In : meList

Out: ['T', 'h', 'o', 'r']

While swapx doesn’t return anything but changes the data
structure.

In : meList

Out: ['T', 'h', 'o', 'r']

In : swapx(meList)

In : meList

Out: ['r', 'h', 'o', 'T']

While swapx is called a function in Python, it isn’t really a
mathematical function. It changes the memory of the computer,
it modifies boxes. E.g. we can draw the memory before running
swapx

and after:

29

2 Python from the top-level

Ok, how do we swap twice? (Admittedly not a very useful
operation).

For swapl it works like this.

In : meList = list(me)

In : swapl(swapl(meList))

Out: ['T', 'h', 'o', 'r']

And for swapx?

In : swapx(swapx(meList))

--
TypeError Traceback (most recent call last)
<ipython-input-46-aa6bb992929e> in <module>() --->

1swapx(swapx(meList))
<ipython-input-30-c5848f168542> in swapx(lst) 1 def swapx(lst)

: ---> 2helper = lst[0] 3 lst[0] = lst[-1] 4 lst[-1] = helper
TypeError: ’NoneType’ object is not subscriptable

This is a strange error. What has happened?
As I said swapx doesn’t return anything. Actually it returns

nothing. And this is fed into the outer call of swapx which
doesn’t know what to do with it.

To do swapx twice we just have to run it twice. Like this:

In : meList = list(me)

In : meList

Out: ['T', 'h', 'o', 'r']

30

2.3 Mysteries of Python

In : swapx(meList)
swapx(meList)

In : meList

Out: ['T', 'h', 'o', 'r']

In Python there is actually a way to define swapx without
using the helper variable. Python allows a parallel assignment,
that is we can update both boxes in parallel:

In : def swapx(lst) :
lst[0],lst[-1] = lst[-1],lst[0]

2.3 Mysteries of Python

Can we write a swapx function that works for strings?
Clearly, we cannot use the assignment operation to a compo-

nent of a string. But on the top-level we can change a variable
that contains a string. E.g.

In : me = "Thor"

In : me = swap(me)

In : me

Out: 'rhoT'

So what stops me from turning this into a function?

In : def swapsx(s) :
s = swap(s)

Ok, let’s test this.

In : me = "Thor"

In : swapsx(me)

In : me

Out: 'Thor'

31

2 Python from the top-level

This was not what we expected! No change!
What has happened? The variable s is a parameter, it is a box

that only exists while we execute the function swapsx. When
we call swapsx(me) we copy the content of me into s. So in-
deed at the end of the execution of swapsx the box s contains
the swapped version of the string but nothing has happened to
me.

There is no operation in Python (unlike e.g. in C) which cre-
ates a reference to a top-level variable - hence it is not possible
to write a function that updates an arbitrary top-level variable.
However, it is possible to update a specific top-level variable.

In : def swapme() :
global me
me = swap(me)

In : me

Out: 'Thor'

In : swapme()

In : me

Out: 'rhoT'

The declaration global me tells Python that me is a global
variable and not a local one.

We have already seen that we can update lists in a function,
which is because they are a data structure that contains boxes
and we update those boxes and not the content of the variable
box on the top-level.

But can we use the swapl function instead of doing the as-
signments? Clearly, if we just do the same as for strings it won’t
work. That is the following attempt:

In : def swaplx(lst) :
lst = swapl(lst)

It doesn’t work. But there is a clever way to make this work.
It turns out that in Python we can also replace slices of lists.
That is for example:

32

2.4 Summary

In : meList = list("Thor")

In : meList

Out: ['T', 'h', 'o', 'r']

In : meList[1:]="im"

In : meList

Out: ['T', 'i', 'm']

And hence using the apparently useless lst[:] we can
change the whole list.

In : def swaplx(lst) :
lst[:] = swapl(lst)

In : meList = list("Thor")

In : swaplx(meList)

In : meList

Out: ['r', 'h', 'o', 'T']

2.4 Summary

We can evaluate expressions or assign values to variables using
x = e where e is some expression.

Basic types in Python :

• Integers (int)
• Floating point numbers (float)
• Strings (str)
• Truthvalues (bool)
• Functions (function)
• Lists (list)

Use type(..) to find out the type of an object. Use the
name of a type as a function to coerce a value to that type, if
possible.

33

2 Python from the top-level

Integers and Floats

We have the usual arithmetic operations like +, -, * and **
(exponentation). Note that / on integers produces a float while
// will produce an integer while % computes the remainder.

Strings and Lists

String constants can be written either ".." or '..'. Lists are
written as [a1 , a2 , ..].
+ is concatenation. You can access the nth element of a string

or a list using x[n], we start counting from 0. Using negative
numbers counts from the end where -1 is the last item. You can
slice using x[m:n]; this produces the substring/list starting at
m and ending at n-1. If you leave out the first index the default
is 0 and if you leave out the last the default is -1. len(x)
computes the length of a string or a list.

You can modify lists by using index or slice expressions on
the left hand side of an assignment. Strings cannot be modified.

Truthvalues

Basic truthvalues are True and False. We can combine truth-
values using and, or and not. Alternatively we can use & and
| which always evaluate all components.

Basic predicates return truthvalues such as == equality and
<,<=,> and >= which compare numbers and other data types.
!= is inequality.

Functions

Functions are defined starting with

def f (x1 , x2 , .. , xn) :

followed by an indented block of code. Here xi are the pa-
rameters of the function. The block may contain a statement
return e which means that the function returns the value

34

2.5 Solution to top-level challenge

e. Variables in functions are local unless they are explicitly
marked as global using

global x1,x2,..

2.5 Solution to top-level challenge

The challenge was to create a program that would perform the
functional swap operation both for lists and for strings. The
trick is to use slicing instead of indexing because it works the
same for both lists and strings.

In : def swap (x) :
return x[-1:]+x[1:-1]+x[:1]

In : swap(list("Thor"))

Out: ['r', 'h', 'o', 'T']

In : swap("Thor")

Out: 'rhoT'

2.6 Quizzes
In : myString = [["1","a"],0,[""]]

what is the output of each of the following lines. Try to figure
this out in your head and on paper without using Python first
- then you can check you answers using Python.

1. myString[0][0][0]
2. myString[myString[1]][0]+myString[2]
3. myString[0][1]+myString[2][0]
4. myString[0:1]+myString[1:2]
5. myString[int(myString[0][0])]

35

2 Python from the top-level

2.7 Exercises

1. Define a function rotateR with one argument (a string)
that returns the string rotated to the right. E.g.
rotateR("Thor") should return "rTho".

2. Define a function rotateL with one argument (a list) that
returns the list rotated to the left. E.g. rotateL([1,2,3,4])
should return [2, 3, 4, 1].

3. Do both functions work for lists and strings? If not, how
can you fix that?

4. Define a function rotateRx that gets a list as a parame-
ter and changes that list by rotating it to the right. The
function should return nothing. E.g. we assign l =
[1,2,3,4] and then run rotateRx(l) (which returns
nothing). If we now check l it returns [4, 1, 2, 3].

5. Can you modify 4. so that it works for strings?

6. Write a function rotateR2 that gets a string as an argu-
ment and returns the string rotated to the left twice, us-
ing only the function rotateR from the 1st exercise. E.g.
rotateR2("Thor") should return 'orTh'.

7. Write a function rotateRx2 that changes its parame-
ter (a list) by rotating it twice to the right. The function
should only use rotateRx from part 4. E.g. we assign l
= [1,2,3,4] and then run rotateRx2(l) (which re-
turns nothing). If we now check l it returns [3, 4, 1,
2].

8. Can you create a list l that prints as [[1, 2, 3],
[1, 2, 3]] but when I rotate only the first part by
rotateRx(l[1]) and then print l it turns out that both
parts have been rotated, i.e. I get

[[3, 1, 2], [3, 1, 2]]

36

	Introduction
	Why Python?
	How to use Python?
	Where to find more information?
	Overview over the book
	About the authors
	Acknowledgments

	Python from the top-level
	Basic types and operations
	Coercions
	Bool
	Functions

	Data structures
	Strings
	Lists
	Modifying lists

	Mysteries of Python
	Summary
	Solution to top-level challenge
	Quizzes
	Exercises

	Imperative Programming
	Blocks of Code
	Inputs/Outputs
	Error handling
	Loops
	An example of the use of while loops

	The Halting problem
	Iterating through data structures
	 The guessing game
	Summary
	Conditionals
	Handling Exceptions
	While loops
	For loops

	Solution to Challenges
	Challenge 1 imperative programming
	Challenge 2 imperative programming

	Quizzes
	Exercises

	Recursion and backtracking
	Prelude: functions calling functions
	The Tower of Hanoi
	How is recursion executed?
	Some combinatorics
	Factorial
	Binomial coefficents

	Solving sudoku: Using backtracking
	Summary
	Solution to recursion challenge
	Quizzes
	Exercises

	Object Oriented Programming
	First example: a class for accounts
	Operations on objects
	Class variables
	Inheritance
	The __str__ method

	Example: Implementing Expressions
	Printing expressions
	Evaluate expressions

	Example: Creating a Knowledge Base
	Summary
	Classes
	Objects
	Attributes (instance variables)
	Methods
	Class variables
	Inheritance
	Constructors (__init__)
	Print method (__str__)
	Data structures (trees)

	Solution to oop challenge
	Quizzes
	Exercises

	Functional Programming
	Higher order functions and comprehension
	Laziness
	The sieve of Erathostenes
	Python in Python
	Challenge: if-then-else
	Summary
	Solution to the if-then-else challenge
	Quizzes
	Exercises

	Implementing games with pygame
	What is Pygame?
	Installation and basics with pygame

	The Pong Game
	The Ball class
	The Paddle class
	Adding Lives and Score display
	Adding Sounds
	Adjusting the speed of the ball

	Project

	Getting started with Data Science
	Data analysis with the Pandas library
	Visualising your data
	Mining the data
	A regression approach
	A classification approach

	Summary
	Solutions to Challenges
	Challenge 1
	Challenge 2
	Challenge 3

	Exercises

