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Abstract Despite the requirements to handle ever in-
creasing numbers of aircraft, airports also have to meet
environmental targets and regulations. The complexity

of the problems increases the closer an airport has to
work to its maximal possible capacity. The complexity
of the problems also mean that advanced decision sup-

port systems are needed to guarantee efficient airside
airport operations and to mitigate the environmental
impact. This research considers the important problem

of getting aircraft from source to destination locations
(usually either runways or gates/stands) in as efficient a
manner as possible, in terms of time or fuel burn. A new

sequential graph-based algorithm is introduced for this
important part of the airside operations at an airport,
which is usually named the ground movement problem.

This algorithm, embedded in a wider operational sys-
tem, has several advantages over previous approaches
in terms of increasing the realism of the modelling and

it also utilises a recently developed approach to more
accurately estimate taxi times. The algorithm has been
configured to absorb as much of the waiting time as

possible for departures at the gate/stand, to reduce the
fuel burn and the environmental impact. Analysis with
data from a European hub airport shows very promising
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results and gives an indication of both the performance
of the system (in comparison to a lower bound on the
taxi time) and the limits to the amount of waiting time

which could possibly be absorbed as stand hold (with-
out the engines running).

Keywords Ground movement optimisation · Airport

operations · Routing · Real world scheduling · Decision
support system

1 Introduction

European airports face several challenges in the 21st
century, including the capacity challenge (with demands

for air travel still increasing year on year) and the en-
vironmental challenge (ACI EUROPE 2010). To avoid
forming huge bottlenecks in the air transportation sys-

tem, airports have to either be enlarged, or (since en-
largement is either not possible or prohibitively expen-
sive in most cases), to utilise the existing resources as

efficiently as possible. In addition, the increasing focus
upon environmental issues is also likely to further grow
over time. As airports work closer to their maximum ca-

pacity, airside airport operations become much harder
to deal with. As a result, decision support systems have
to be increasingly advanced and need to both integrate

different airside airport operations with each other and
to model each process increasingly realistically.

From an optimisation point of view, ground move-

ment of aircraft can be considered to be one of the
most important airside operations at an airport, since
it links several other problems together, such as the run-

way sequencing problems for arrivals and/or departures
(Atkin et al. 2007), the stand holding problem (Atkin
et al. 2011a) and the gate assignment problem (Dorn-

dorf et al. 2007). For a comprehensive literature review
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of ground movement research and the integration with

other operations, we point the interested reader to a
recently published review (Atkin et al. 2010b).

This paper presents a decision support framework

for environmentally friendly ground movement, along
with promising experimental results which utilise more
realistic taxi time predictions for a European hub air-

port. A framework is described for integrating a graph-
based sequential movement algorithm into a larger deci-
sion support system which can also consider the runway

sequencing problem and the stand holding problem. A
Fuzzy Rule-Based System (FRBS) has been used to
more accurately estimate taxi and pushback times for

aircraft than a standard lookup table may allow. This
utilises the same graph which is used for the ground
movement model. This integrated approach allows the

effects of ground plan changes to be modelled more ac-
curately, changing both taxi time predictions and rout-
ing information. In addition, several concepts have been

included in the model which allow airport layouts to be
modelled in a more realistic manner, such as restrict-
ing certain taxiways to be used only by certain aircraft

and coping with the required separations between air-
craft. Finally, the absorption of delay at the stand, prior
to starting the engines, has been considered. This re-

duces the waiting times at the runway and is further
extending previous stand holding ideas (Atkin et al.
2010a, 2011a; Burgain et al. 2009). The maximal po-

tential benefits of such a system have been quantified.

Section 2 provides a description of the airport ground
movement problem and how it can be embedded into

the larger combined sequencing/routing/stand holding
framework. Details of the dataset which were provided
by the airport are then presented in Section 3 together

with the method for estimating taxi times. Following
this, the sequential ground movement algorithm which
has been developed, and was utilised for these experi-

ments, is detailed in Section 4. The results of the appli-
cation of the algorithm to the dataset are then shown in
Section 5; before the paper ends with some conclusions

in Section 6.

2 Problem description

The links between the ground movement problem and
runway sequencing are considered first in this section,

before the ground movement problem itself is discussed
in more detail. The section ends with a consideration
of the stand holding benefits which can result from the

appropriate solution of the ground movement problem.

2.1 The links with runway sequencing

Atkin et al. (2010b) highlighted the importance of inte-
grating the ground movement problem with other air-

side airport operations, such as the problems of finding
good departure and arrival sequences. Supporting con-
trollers in these tasks is a challenge, especially when de-

partures and arrivals have common restrictions and in-
teractions due to the airport layout. For this paper, we
assume that the runway sequencing and ground move-

ment problems are solved as two distinct stages. The
integrated (departures and arrivals) runway sequenc-
ing problem is assumed to be solved in a first stage,

then the consequent landing and take-off times are used
in the second stage, within the consideration of the
ground movement problem. Thus, the wheels-on time
at the runway (for arrivals) and the wheel-off time at

the runway (for departures) are both assumed to be
fixed within the ground movement problem. Issues such
as conformance with take-off time slots are assumed to

be taken into account by the runway sequencing stage.
This decomposition has been found to be effective, but
further research will analyse the benefits of providing

a feedback loop from the ground movement problem to
the integrated runway sequencing problem and of closer
integration between the two problems.

2.2 Ground movement problem

The ground movement problem at an airport is a com-
bined routing and scheduling problem. It involves guid-

ing aircraft on the surface of an airport to their desti-
nations in a timely manner, where the goal is to reduce
the overall travel time and to enable the target take-off

times at the runway to be met. It is important, for rea-
sons of safety that two aircraft never conflict with each
other throughout the ground movement process.

In the model which is considered in this paper, the
route of the aircraft is not pre-determined (see Figure
2), allowing greater flexibility for solutions; however,

the utilised solution method provides the possibility to
restrict certain aircraft to specific taxiways and/or to
avoid routes which involve tight turns. The airport lay-

out is represented as a directed graph as can be seen
in Figure 2, where the edges represent the taxiways
and the vertices represent the junctions or interme-

diate points. Aircraft are considered to occupy edges,
and conflicts are avoided by preventing any two aircraft
from using the same edge simultaneously.

The times at the runway are assumed to be fixed
for departures as well as for arrivals. The sequential
approach to ground movement will then minimise the

taxi time for each individual aircraft given the planned
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movement for the aircraft which have already been routed.

Hence, the approach will attempt to absorb as much of
the waiting time as possible at the gate/stand, allowing
the departures to start their engines as late as possible,

reducing fuel burn and environmental impact. Thus,
the solution method can be considered to be not only
reducing the ground movement time, but also solving

the stand holding problem (Atkin et al. 2010a, 2011a;
Burgain et al. 2009) for a given runway sequence.

3 Analysed case: Zurich Airport

This analysis utilised data from Zurich Airport (ZRH),
which is the largest airport in Switzerland and a hub
airport for Swiss International Air Lines. The consid-

ered data included information about the airport lay-
out, the positions of stands, runway entrance and exit
points, and the layout of all of the taxiways. It also in-

cluded the real timings for the aircraft using the airport
during each day. This information was used to develop
a taxi time prediction function, as discussed below, to

improve the accuracy of the taxi time predictions which
are used in the ground movement model. We had ac-
cess to data for an entire week’s operations between the

27th of June and the 3rd of July 2011. No extraordinary
occurrences took place and there were 5613 movements
in total (2806 arrivals and 2807 departures).

3.1 Physical layout

Fig. 1 Sketch of Zurich Airport (ZRH)

The airport has three runways, named 10/28, 14/32
and 16/34, according to their direction of operation,

with two runways intersecting each other (see Figure

1). A directed graph model of the airport was devel-

oped to represent the airport’s layout in Zurich. The
full graph has 465 vertices, 553 edges and 119 gates.
Figure 2 illustrates a part of the graph. The shortest

route between the exit of runway 14 and a gate at pier
A is highlighted in blue in this example and some al-
ternative routes are shown in red. When parts of the

shortest taxi path are blocked by other aircraft it can
be beneficial for an aircraft to use an alternative route,
which may be longer but have a shorter taxi time by

avoiding the delays.

Fig. 2 Different routes from the exit of runway 14 to pier A

3.2 Taxi time prediction

Ground movement models need accurate taxi time pre-

dictions, but sufficiently accurate values are rarely avail-
able. In previous ground movement research, average
taxi speeds have been assumed to be influenced only by

the aircraft type, however, taxi time research has shown
that the aircraft type is not the most influencing factor
upon taxi speeds (Ravizza et al. 2012; Idris et al. 2002;

Rappaport et al. 2009). Comparisons between ground
movement tool results and the status quo at airports
have previously been hard to analyse, due to the need

for accurate taxi speed data. The historic data which
has to be used usually includes the effects of any delays
or re-routing due to conflicts between aircraft, so the

effects of taxi time variability and the benefits from the
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ground movement decision support system were often

intermingled. This research confronts that challenge.
An approach to more accurately predict taxi times

for aircraft or, equivalently, their average speeds, was

proposed in Ravizza et al. (2012). Multiple linear re-
gression was used to estimate a more accurate taxi
speed prediction function and identify the factors which

were most related to taxi speeds, such as total distance
travelled, total turning angle and the number of other
aircraft of different types which were moving around the

airport at the time. The aim was to be able to elimi-
nate the effects of factors which represented the actual
amount of traffic at the airport (by zeroing the factors

related to airport load), with the goal being to predict
the taxi times for unimpeded aircraft. These predic-
tions could then be used in a more advanced ground

movement decision support system, such as the one de-
scribed in this paper, which would itself model the ef-
fects of the interaction between aircraft (so these should
not already be included in the taxi speed data). Chen

et al. (2011) recently introduced an alternative fuzzy
rule-based system (FRBS) approach to estimate taxi
times at airports, using the factors which were identi-

fied in Ravizza et al. (2012). Results from the FRBS
were found to outperform the multiple linear regression
approach when applied to the same airport, thus it was

adopted and extended for this research.
It was observed for Zurich that some aircraft have

to push back from their allocated gates, taking addi-

tional time to do so, whereas other gates allow aircraft
to immediately start their engines. The work by Rav-
izza et al. (2012) was extended to include a pushback

duration and the multiple linear regression approach in-
dicated that this factor was significant for Zurich. The
resulting taxi time prediction functions by Chen et al.

(2011) were therefore further enhanced for this work
adding a predicted pushback duration to the taxi time
for the first edge for departures where the gate requires

it, before being utilised to predict the taxi times.
Finally, depending upon the terminal and the oper-

ating mode (which runways are in use), runway cross-

ings may be necessary during the taxi process. For the
moment these are included only in the prediction model
for taxi times (having influenced the historic data), but

we plan to integrate these effects into the combined
ground movement and sequencing model later.

4 Ground movement decision support system

Figure 3 provides an overview flowchart describing the
ground movement algorithm. Further details are pro-
vided later. The aircraft are routed sequentially in this

approach. When an aircraft is ready, it has to be routed

respecting all previous reservations by other aircraft

using the taxiways. The routes which have been pre-
viously calculated for other aircraft do not normally
change as new aircraft are taken into consideration (the

exceptions are discussed in Section 4.9). This has ad-
vantages for the dynamic case, where some aircraft will
have prior instructions, and acknowledges the difficulty

and time costs associated with communicating changes
to pilots and reducing the quantity of communication
needed between the surface controllers and pilots. The

objective for each of the sequential routings is to find
the routing with minimal taxi time among all remaining
conflict-free routings.

Fig. 3 Flow chart of general concept of the approach

The approach described here is based on research

by Gawrilow et al. (2008) and the PhD thesis of Sten-
zel (2008). Ravizza modified the approach for his Mas-
ter’s dissertation (Ravizza 2009) to label the vertices in-

stead of the edges, to simplify their interpretation. The
original aim of this approach was to control automated
guided vehicles in container terminals in harbours or

in storage areas, but it is here applied instead to rout-
ing aircraft. The approach has been further modified
for this work, for instance by allowing the approach

to work backwards to meet a specified end time rather
than starting time. The resulting algorithm is described
in this section.

The Quickest Path Problem with Time Windows
(QPPTW) algorithm is a generalized vertex-based label-
setting algorithm based on Dijkstra’s algorithm and can

sequentially route aircraft on the airport surface, using
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a directed graph model of the airport (see Figure 2).

No time discretisation is used in this approach, in con-
trast to many other ground movement support systems
(Balakrishnan and Jung 2007; Maŕın 2006; Maŕın and

Codina 2008; Roling and Visser 2008). It has similar-
ities to the recently published work by Lesire (2010),
which used a sequential A* algorithm, but it provides

a better coverage of the solution space, potentially al-
lowing it to find better solutions within comparable ex-
ecution times - these being short enough for it to be

appropriate for real-time decision making. It also pro-
vides the possibility to define which edges in the graph
are in conflict with each other and cannot be used si-

multaneously. In addition, for each edge incident to a
vertex, the set of valid outgoing edges can be manu-
ally defined if desired, or can depend upon information

about the aircraft. This enables the decision support
system to forbid aircraft from making tight turns or
to prevent aircraft from using taxiways for which they
are too large. Together, these features enable the ap-

proach to more realistically model the airport surface
while leaving the routing task itself to the algorithm.

The preprocessing of the algorithm is explained in

Section 4.1, then the key concepts are introduced. The
QPPTW algorithm is detailed next and the section ends
with a discussion about buffer times and the sequence

in which aircraft are routed.

4.1 Ground plan preprocessing

It is important to maintain separations between aircraft
on the ground. The concept of conflicting edges is in-
troduced here for this reason, so that no two conflicting

edges can be occupied simultaneously. The conflicting
edges are determined in a preprocessing stage. For this
research, we used an approach which assumes straight

connecting lines between vertices, since this requires
less time in the preprocessing stage and is adequate
for the directed graph model which has been used in

this research, where the paths are almost straight lines
between vertices. Edges in the graph, together with
their embedding in the airport plan, are here named

segments. In this approach, two segments conflict with
each other if they are located closer together than a
given threshold distance. To find the minimal Euclid-

ian distance between two segments, the algorithm per-
forms two processing steps. Firstly, it verifies whether
the edges are intersecting, then, if they are disjoint, the

distance between each end point of one segment and
the closest point on the other segment is calculated.
The minimum over these four distances corresponds to

the minimal distance between the two segments.

4.2 Variable definitions

Definitions of the variables and data structures which
are used in the model are given in Table 1.

4.3 Key concepts

The QPPTW algorithm with its expansion steps works
in a similar way to Dijkstra’s algorithm (Cormen et al.
2001; Dijkstra 1959), however, a label can be expanded

several times due to the different time-windows and an
additional concept of dominance is needed in order to
guarantee a polynomial solution time. It is necessary to

define some of the concepts upon which the approach is
based. Firstly, the algorithm needs information about
the times that each part of the taxiway (edge) is free:

Definition: Set of sorted time-windows
The set F(e) contains the sorted set of time intervals

F j
e = [aje, b

j
e] which specify the times when the edge e

can be used for a new route. This will exclude the times
when e, or an edge which conflicts with e, are in use

by previously routed aircraft. These are inputs to the
routing algorithm for each aircraft.

The use of labels is the essential concept of the
QPPTW algorithm:

Definition: Label
A label L = (vL, IL, predL) specifies the time period

IL = [aL, bL] within which the current aircraft could
reach vertex vL. It includes a reference to the previous
label on the route, predL, and thus implicitly represents

a route (with edge traversal timings) from a source ver-
tex to the specified vertex vL. These labels are generated
as the routing algorithm progresses, together specifying

the (undominated) time periods (from time aL to time
bL) when the current aircraft could reach vertex vL.

An ordering relation is defined over the intervals of
the labels to allow the definitions of dominance:

Definition: Dominance
A label L = (vL, IL, predL) dominates a label L′ =
(vL′ , IL′ , predL′) on vertex vL = vL′ if and only if IL′ ⊆
IL (and there are identical route restrictions on the out-
going edges), which implies aL ≤ aL′ and bL ≥ bL′ .

Once the routing has been performed by the QPPTW
algorithm, the time-windows are readjusted (as discussed
in Section 4.6) before the QPPTW algorithm is reap-

plied to route the next aircraft.
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Table 1 Table of definitions

Variable Explanation

confl(e) The set of edges which conflicts with edge e ∈ E

F j
e = [aj

e, b
j
e] jth time-window on edge e ∈ E, from time aj

e to time bje

F(e) The sorted set of all the time-windows on edge e ∈ E

G = (V,E) The directed graph representing the airport layout, with

vertices v ∈ V and edges e ∈ E

H The Fibonacci heap storing the added labels

IL = [aL, bL] The time interval used in a label L

L = (vL, IL, predL) A label on vertex vL ∈ V with time interval IL and

predecessor label predL

L(v) The set of all of the labels at vertex v ∈ V

R A conflict-free route that is being generated

T = (s, t, time) A taxi request to route, from source s ∈ V at time time

to target t ∈ V

we The weight (necessary taxi time) of edge e ∈ E

4.4 QPPTW algorithm

The input of the QPPTW algorithm contains the graph
G = (V,E) with its weight function we, which cor-

responds to the taxi times for each edge, estimated
using the taxi time estimation method which was de-
scribed in Section 3. The sorted set of available time-

windows F(e) also has to be provided for each edge e,
specifying when the edge is available. A taxi request
Ti = (si, ti, timei) for aircraft i is then a conflict-free

route R from the vertices si to ti with minimal taxi
time (w.r.t. we) that respects the given time-windows.

The pseudocode of the QPPTW algorithm is shown

in Algorithm 1 and is a variant of the QPPTW algo-
rithm described by Stenzel (2008). The main difference
is that we allocate the labels to vertices, which helps

both to model the process more realistically and to
more easily understand the algorithm, since it distin-
guishes between the use of the labels at the vertices

and the input time-windows at the edges.

Lines 1 and 2 of Algorithm 1 involve the initializa-
tion of the Fibonacci heap and the references to this

heap which are stored at each vertex. The use of Fi-
bonacci heaps for this algorithm has the same beneficial
effect upon the execution time as it does for Dijkstra’s

algorithm. The starting label is generated for the source
si in line 3 and is then inserted into the Fibonacci heap,
which is sorted with respect to the earliest possible ar-

rival time (key). A reference is maintained to this label
using the L(si) set for each vertex. These references are
used as a look-up by the dominance check in lines 23-

29, where the algorithm needs fast access to all of the
labels associated with a particular vertex.

In each iteration of the while loop, the algorithm

checks whether the Fibonacci heap still contains ele-

ments. If this is not the case, there is no route which

can be enlarged and, therefore, no route from si to ti,
starting at timei, exists (line 32). If the Fibonacci heap
still contains elements, the algorithm takes a minimal

element with respect to the key (line 7), checks whether
this label already represents a route to the target ti
(lines 8-10) or, otherwise, tries to expand the associ-

ated route.

The route can usually continue along a number of
different outgoing edges from any vertex and can poten-
tially use different time-windows on each edge (lines 11

and 12). In order to use an edge there must be a time-
window available with an overlapping time interval, as
expressed by the conditions on lines 14 and 16. The

earliest possible point in time that edge eL can be left
is identified (lines 18 and 19) and the expansion step is
executed. When the condition stated in line 20 is true, a

new label will be generated (lines 21 and 22). Different
cases are possible at this stage. Firstly, the new label
may dominate another label (line 27), in which case the

dominated label will be erased (lines 28 and 29). Sec-
ondly, the new label may be dominated by an older one
(line 25), in which case it is not necessary to take this

label into account (line 26). The while loop is executed
as long as there is a route which can be expanded. Once
a route R to the target ti has been found, the route can

be generated by working backwards through the set of
labels (line 9) using the references, predL, to the previ-
ous labels.

This generalized vertex-based Dijkstra’s algorithm

is a variant of that given by Stenzel (2008). His proof
that the edge-based algorithm solves the problem in
polynomial time (in the number of time-windows) will

also hold for this algorithm.
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Algorithm 1: Quickest Path Problem with Time
Windows (QPPTW)

Input: Graph G = (V,E) with weights we for all
e ∈ E, the set of sorted time-windows F(e) for
all e ∈ E, a taxi request Ti = (si, ti, timei)
with the source vertex si ∈ V , the target
vertex ti ∈ V and the start time timei.

Output: Conflict-free route R from si to ti with
minimal taxi time that starts at the earliest
at time timei, respects the given
time-windows F(e) or returns the message
that no such route exists.

1 Let H = ∅
2 Let L(v) = ∅ ∀v ∈ V

3 Create new label L such that L = (si, [timei,∞) , nil)
4 Insert L into heap H with key timei
5 Insert L into set L(si)
6 while H ̸= ∅ do
7 Let L = H.getMin(), where L = (vL, IL, predL)

and IL = [aL, bL]

8 if vL = ti then
9 Reconstruct the route R from si to ti by

working backwards from L
10 return the route R

11 forall the outgoing edges eL of vL do

12 foreach F j
eL

∈ F(eL), where F j
eL

= [aj
eL

, bjeL
],

in increasing order of aj
eL

do

13 /*Expand labels for edges where time
intervals overlap*/

14 if aj
eL

> bL then
15 goto 11 /*consider the next outgoing

edge*/

16 if bjeL
< aL then

17 goto 12 /*consider the next
time-window*/

18 Let timein = max(aL, aj
eL

)

/*aj
eL

> aL ⇒ waiting*/
19 Let timeout = timein + weL

20 if timeout ≤ bjeL
then

21 Let u = head(eL)

22 Let L′ = (u,
[
timeout, b

j
eL

]
, L)

23 /*dominance check*/

24 foreach L̂ ∈ L(u) do

25 if L̂ dominates L′ then
26 goto 12 /*next

time-window*/

27 if L′ dominates L̂ then

28 Remove L̂ from H

29 Remove L̂ from L(u)

30 Insert L′ into heap H with key aL′

31 Insert L′ into set L(u)

32 return “there is no si-ti route”

4.5 Modifications to the QPPTW algorithm for

airport ground movement

Algorithm 1 is used for arriving aircraft as described

above, since their goal is to clear the runway and reach
the gate/stand as quickly as possible. In our model,
departing aircraft aim to reach the runway at a given

time and leave the gate/stand as late as possible in or-
der to do so. This allows for more of the waiting time
to be absorbed at the gate/stand when the engines

are not running. The same algorithm is used for this
purpose, computing the route backwards, with the end
time fixed instead of the start time, and with changes

to reverse the time-related steps. Since the algorithm
logic remains unchanged, this modified algorithm has
not been presented here.

In an attempt to further speed up the execution

time of the algorithm, we applied goal-oriented search
(Sedgewick and Vitter 1986) to the QPPTW algorithm.
Two heuristic measures were investigated for estimat-

ing lower bounds for the rest of the partial route: firstly
the Euclidean distance was used to measure the lin-
ear distance to the target, and secondly the remain-

ing time was estimated using Dijkstra’s algorithm to
compute the time which would be needed ignoring any
interference from other aircraft. Unfortunately, neither

approach resulted in a valuable speed-up when applied
to this problem. This can possibly be explained by the
fact that the graph representing the airport layout is

sparse (having on average only a few outgoing edges
for each vertex) and routes often start on the border
of the graph (see Figure 1), so the number of expan-

sions exploring non-promising areas of the airport is
relatively small already.

4.6 Readjustment of the time-windows

When an aircraft has been routed, the time-windows
have to be readjusted according to the edge utilisation
of the adopted route R, and the edges which conflict

with these. It is necessary to consider edge conflicts only
during this stage and not during the routing process
(Algorithm 1).

Algorithm 2 presents the pseudocode for the read-
justment of the time-windows. The input consists of the
weighted graph G = (V,E), the set of conflicting edges

confl(e) for all e ∈ E, the set of sorted time-windows
F(e) for all e ∈ E, and the route R which was found
for the most recent aircraft to be routed. The output is

the new sorted set of time-windows F(e), including the
reservations of the new route R.

Basically, the algorithm determines which other edges

are blocked for each edge of the route R (lines 1 and
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Algorithm 2: Readjustment of the time-windows

Input: Graph G = (V,E) with weights we for all
e ∈ E, the route R with reservations[
timeinf , timeout

f

]
for all f ∈ R, the set of

sorted time-windows F(e) for all e ∈ E and the
set of conflicting edges confl(e) for all e ∈ E.

Output: Sorted set of time-windows F(e) including
the reservations of the route R

1 foreach f ∈ R do
2 foreach e ∈ confl(f) do

3 foreach F j
e = [aj

e, b
j
e] ∈ F(e) do

4 if timeout
f ≤ aj

e then

5 goto 2 /*time-window is too late*/

6 if timeinf < bje then

7 /*otherwise time-window is too
early*/

8 if timeinf < aj
e + we then

9 if bje − we < timeout
f then

10 Remove F j
e from F(e)

11 else
12 /*shorten start of

time-window*/

13 F j
e = [timeout

f , bje]

14 else

15 if bje − we < timeout
f then

16 /*shorten end of
time-window*/

17 F j
e = [aj

e, timeinf ]

18 else
19 /*split time-window*/

20 F j
e = [aj

e, timeinf ]

21 Insert [timeout
f , bje] into set

F(e)

2). All affected time-windows on these edges are ad-
justed (lines 3-7) and four different cases then have to
be considered, depending upon the relative positions of

the time-windows. The remaining time-window may be
removed (lines 9-10) if it becomes too short to allow an
aircraft to taxi; be shortened at the start (lines 11-13)

or shortened at the end (lines 15-17); or it could be split
in two smaller windows (lines 18-21).

Once a route has been allocated to an aircraft, some
additional waiting times may be required on edges, be-
yond the time required to traverse the edge as speci-

fied by the time intervals on the labels by Algorithm
1. Time intervals on adjacent edges often overlap suf-
ficiently that there is a choice of which edge the wait

can be assigned to. In our implementation, the waiting

times are forced to be as late in the corresponding part

of the route as possible, apart from the initial waiting
time for departures, which is allocated so as to max-
imise the stand hold. Alternative approaches could use

this flexibility to select better and smoother speed pro-
files for the aircraft. Using a similar approach to that
used in Lesire (2010), the aim could be to spread the

necessary waiting times for an aircraft in such a way
that the speed profiles are as “engine friendly” as pos-
sible. Although the effects of such postprocessing are

not studied within this paper, they are an area which
we intend to investigate.

4.7 Buffer times

The solutions of the approach are conflict-free routings,

but it is possible for small delays to affect the entire
plan. Buffer times would allow small deviations from
the taxi times to be absorbed. To achieve such buffer

times the label intervals in the algorithm are length-
ened in the desired direction (before or after) by a
certain amount. To reflect growing uncertainties along

the route, the amount of time can be made distance-
dependent. Buffer times could also depend upon the ex-
pected congestion at the time, being increased when de-

lays were expected to be more likely, although at these
times the introduction of a buffer time would be more
likely to reduce throughput.

4.8 Initial sequencing of taxiing aircraft

The order in which aircraft are considered by the se-
quential routing algorithm can potentially affect the

efficiency of the routing. The natural sequencing, of
considering aircraft in the order in which they become
available, has advantages in terms of perceived fairness

and has been adopted in the past. A more advanced ap-
proach using a concept of collaborative virtual queues
was presented in Burgain et al. (2009), with the idea be-

ing to limit the number of aircraft which were taxiing
on the surface to a specified maximum and maintaining
a virtual queue of those waiting to start, forcing them to

wait until the count allows them to pushback. The natu-
ral ordering (the expected wheel-on time on the runway
for arrivals and the expected earliest pushback time at

the gate/stand for departures) was adopted by default
for this paper, but the potential benefits of using bet-
ter sequences have also been considered, as explained

in the next section.
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4.9 Heuristic for finding better aircraft sequences

A number of heuristic improvements to the order in
which aircraft are considered were evaluated, as de-

scribed in Ravizza and Atkin (2011). A simple swap
heuristic was found to perform well without prohibitively
increasing the execution time of the algorithm, as shown

in Section 5.3.
The key idea behind the heuristic is the following:

If an aircraft is routed and scheduled using the decision

support system, the aircraft either has an uninterrupted
planned taxi route or the aircraft has a detour and/or
a delay due to the presence of another aircraft. Noth-

ing has to be done in the first case, but in the second
case, the heuristic identifies the causer aircraft, the one
causing the delay or re-routing. If multiple aircraft are
affecting the current aircraft, the one which affects the

planned aircraft’s route the earliest is used as the causer
aircraft. The swap-heuristic then attempts to swap the
order of the causer and current aircraft in the aircraft

sequence and the new generated routes and times are
used if the total taxi time is lower with the swap than
without it.

Importantly, the considered sequence stays close to
the initial sequence, reducing the number of changes
which need to be communicated to pilots in a dynamic

situation, keeping the communication to a minimum.
To further reduce the schedule/route changes, all of the
other aircraft’s routes and schedules are fixed. Further-

more, the swap-heuristic does not make changes to the
initial sequences or the timings at the runways.

5 Results and discussions

This section starts with a table collating the key results,
to ease comparison. The explanation of the results fol-
lows. The results of the taxi time estimation which was

presented in Section 3 are then discussed. An analysis of
the results from the ground movement decision support
system, which was described in Section 4, is then pro-

vided and followed by more detailed results considering
the swap-heuristic.

The relevant results are summarised in Table 2. The

first row of results shows the actual total and average
taxi times for the supplied dataset, including queuing
time at the runway. The taxi time function which was

developed was then applied to each aircraft, to esti-
mate the taxi times and the results are shown in the
next two rows. In the first case, the function was ap-

plied assuming the actual traffic level and we note that
the difference between the predicted and actual times
is less than 2%. In the second case, the traffic related

components of the function were zeroed, to estimate

the taxi times if there had been no delays due to other

aircraft, and the difference illustrates the amount of the
taxi time which was a result of such delays. The unim-
peded taxi times were then used within the QPPTW

algorithm based on FCFS ordering of the aircraft and
the total and mean resulting taxi times are shown in the
table. These results are analysed and explained further

in the following two sections.

5.1 Analysis of taxi time estimation

Once the pushback duration had been included in the

Mamdani fuzzy rule-based system (see Section 3.2), the
coefficient of determination R2 of 94.15% showed that
the FRBS was able to explain the variability of the taxi

time data very well for the real world Zurich dataset.

The fitted FRBS model was then used to predict a

taxi time for each aircraft in the dataset, with and with-
out the factors which represented the effects of the de-
lays due to other aircraft (see Section 3.2). The results

can be seen in Table 2. The model predicts that 31.4%
of the taxi time was related to delays due to other air-
craft, including delays in queues behind other aircraft

at the runway. There would be an average saving of
137.7s per aircraft if these delays could be eliminated.
The influence of the interactions between the aircraft

which lead to the waiting times is analysed in the next
section.

5.2 Experimental details using the QPPTW algorithm

The framework was programmed in Java as a single-
threaded application and executed on a personal com-
puter (Intel Core 2 Duo, 3GHz, 2GB RAM). In these

experiments, all aircraft were allowed to use all of the
taxiways and only intersecting and adjacent edges were
considered to be in conflict and were, therefore, not al-

lowed to be used by two aircraft simultaneously. The
buffer time (Section 4.7) was set to zero. Analysis of
different buffer times showed that the taxi time would

have been enlarged by only a linear factor of the buffer
time. Similar results were also found in Ravizza (2009).

Extensive analysis was performed using the QPPTW
algorithm, with FCFS consideration sequence for air-

craft, to solve the ground movement problem using the
data from and layout of Zurich Airport. The aircraft
were routed sequentially using the taxi speed estima-

tions from the fuzzy rule-based system which was dis-
cussed in Sections 3, 3.2 and 5.1. The resulting total taxi
times can be found in Table 2, where the taxi times used

were those which were estimated for unimpeded aircraft
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Table 2 Summary of the results

Total taxi time Average taxi time

[s] per aircraft [s]

Actual total taxi time 2489262.0 443.5

Fuzzy rule-based system

Total taxi time estimation 2458400.4 438.0

Total taxi time estimation (unimpeded) 1685798.5 300.3

QPPTW algorithm with FCFS

Using unimpeded taxi time estimates 1736020.9 309.3

(ignoring the influence of factors related to other air-

craft on the surface), the average taxi time (including
re-routing and waiting delays) was 309.3s per aircraft.

The estimations of the unimpeded taxi times from

the FRBS prediction approach provide a lower bound
for the taxi times, since they assume no re-routing de-
lays or queuing behind other aircraft. The QPPTW

algorithm is designed to predict the delays which are
actually necessary due to the interactions between air-
craft for the specific routings and timings which the

algorithm assigns to aircraft. Comparison of the result-
ing taxi times from the QPPTW algorithm against the
lower bound reveals an increase in the taxi time from

1685798.5 to 1736020.9 seconds, showing that the addi-
tional taxi times for the re-routing and waiting summed
to 50222.4s over the entire week, an increase of around

3% in the total taxi time. The 3% increase over the
lower bound (rather than optimal) times indicates that
its use as a ground movement decision support system

seems very promising for this problem.

It is also interesting to compare the approach de-
scribed here against the actual performance of the air-

port on this particular week of operation. Data from
Zurich Airport reports a total taxi time of 2489262.0s.
Comparison with the results for the QPPTW algorithm

with unimpeded taxi time estimation highlights savings
of about 30.3% or an average of 134.2s per aircraft. Ob-
viously, this only indicates an upper bound for the po-

tential savings, since the real times will include some
slack time for the departures at the runway to ensure a
high runway throughput.

The solution time to solve the entire week of opera-
tion with 5613 aircraft was 216887ms, an average solu-
tion time of 39ms per aircraft. This supports the poten-

tial use of the algorithm in an online decision support
system. No infeasible solution occurred within any of
the executions of the experiments. These findings are

consistent with earlier work by Atkin et al. (2011b),
using another dataset from Zurich Airport (from 2007)
and taxi times which were generated from the linear

regression approach.

5.3 Studies of a swap-heuristic

Table 3 provides a comparison of the routing and sched-
uling algorithm with and without the swap-heuristic.

The different columns represent the different days in
the dataset and the total for the entire week. The first
three rows of the table report the number of aircraft

movements during each day and it can be seen that at
the weekend (day 6 and day 7), the airport has lighter
traffic. Rows two and three differentiate between de-

partures (DEP) and arrivals (ARR). The second block
shows the results of the QPPTW algorithm with the
FCFS order (without the swap-heuristic) and the third

block shows the results with the swap-heuristic. The
lower bound was computed using the estimated taxi
times but with each aircraft routed in isolation, so no

waiting times or detours were included. The following
block shows the absolute gap between the lower bound
and the results for the FCFS and the swap-heuristic,

respectively. The reduction in the gap is the relative
improvement from using the swap-heuristic compared
with the FCFS ordering.

The results were similar for the different days and
the total taxi times were approximately double for de-
partures compared to arrivals, independent of the se-

quencing method. Obviously, the more advanced swap-
heuristic increased the solution time per aircraft, how-
ever, the algorithm is still fast enough to be used in an
online environment. The approach would also be fast

enough to respond to unforeseen delays of aircraft and
could instantaneously adjust a schedule and the choice
of the route, if needed.

The swap-heuristic based sequencing method was
able to reduce the gap between the routing which was
found and the lower bound by 30% on average over the

entire week, with a bigger reduction rate for departing
aircraft (33%) than arriving aircraft (25%).

The sorted individual delays for the aircraft which

resulted from the analysis with and without the swap-
heuristic are shown in Figure 4. In both cases, at least
the first 4578 (out of 5613) aircraft had no delays in

their planned schedules and are not included in the fig-
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Fig. 4 Sorted delay for each aircraft with and without swap-
heuristic

ure. The delays from Figure 4 are summarised in Table
4, showing the percentage of aircraft which have more

than a certain amount of delay. The swap-heuristic was
able to improve most of the percentages by almost a
factor of 2. Again, these results are consistent with ear-

lier work by Ravizza and Atkin (2011) which was based
on an older dataset from the same airport.

Table 4 Percentage of aircraft with more than a certain
amount of delay

Without With

swap-heuristic swap-heuristic

Have a delay 18.47% 18.31%

More than 1min 4.22% 2.51%

More than 2min 1.57% 0.86%

More than 3min 0.80% 0.48%

More than 4min 0.45% 0.27%

More than 5min 0.27% 0.12%

5.4 Scenarios with more ground traffic

New scenarios were generated based on the data from

summer 2011, simulating more ground traffic at Zurich
Airport. The analysis focused upon Monday as a repre-
sentative day. Each movement of an aircraft was dupli-

cated and the copy was shifted by 30 minutes to gener-
ate the scenario with 200% ground traffic. For the 300%
scenario each movement was duplicated twice and one

copy was shifted by 15 minutes and the other copy by
30 minutes. The scenarios for the settings with 120%,
140%, 160% and 180% were generated by randomly

removing some of the duplicated aircraft movements
from the 200% case and the scenarios between 200%
and 300% were created by randomly removing move-

ments from the second duplication. It has to be noted
that within this analysis the focus was entirely upon
analysing the ground movement problem with more

ground traffic and, obviously, separations and deadlines

were considered for neither taking-off nor landing (since

the runway throughput would not be achievable), nor
was it guaranteed that no overlaps occurred in the gate
allocations. The aim is to consider only whether the al-

gorithm can cope with increased traffic load, and if so
what the consequent delays are which would be allo-
cated to aircraft.

Table 5 shows the results of the analysis. Each col-
umn represents a scenario with the appropriate amount
of ground traffic related to the actual setting. The table

is structured similarly to Table 3 to ease comparison.
It can be seen that the lower bound increases linearly
which is due to the construction of the problems. The

numbers also show an approximately linear increase of
the approach which was based on the FCFS considera-
tion of aircraft until the ground traffic reached the 240%

level. After that the gap between the QPPTW algo-
rithm without the swap-heuristic increased from values
between 3% to 9% before that to values between 16%

and 27% after it. The swap-heuristic achieved an aver-
age of a 22% reduction in the gap between the lower
bound and the QPPTW algorithm with FCFS order-
ing. This was relatively consistent for the scenarios with

lower traffic and higher traffic levels. The only exception
was the 240% scenario, where the reported reduction of
the gap was only 4%. The implementation of the swap

heuristic was, therefore, generally worthwhile.

5.5 Further use for simulations

The main purpose of this paper is to enhance deci-

sion support systems which can be used in control tow-
ers. Nevertheless, a prototype of this approach can also
be used for simulations of management or operational

strategies. From an airport point of view several kinds
of analysis would be possible. A taxiway layout could
be analysed to highlight where the bottlenecks are and

by how much the operations are restricted if a part of
the network is blocked, such as for maintenance require-
ments. Airports often have a concept of where certain

aircraft should be routed and variations of such con-
cepts could also be tested by either restricting certain
combinations of taxiway parts or by favouring certain

combinations. Furthermore, a ground movement simu-
lation could be integrated with runway sequencing or
gate assignment to perform a broader analysis.

Airlines could also use simulations to better under-
stand the situation at an airport, to improve their own
operations. For instance, they could be used to identify

which times of the day are less likely to cause waiting
times. Airlines could then adjust their schedules to im-
prove the operational performance, assuming that the

other carriers maintain their existing schedules. A good
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example of such a study is “Delta’s Operation Clock-

work” (Petroccione 2007). De-peaking of their opera-
tions at Hartsfield-Jackson International Airport was
able to save waiting times for aircraft equivalent to

adding nineteen aircraft into the fleet, which were then
re-inserted into the system to provide more connections.
A test phase confirmed the findings of the analysis, but

the airline decided to revert to the old schedule after-
wards due to reductions in revenue from reduced pas-
senger demand.

Simulation has been widely used by research groups
and software vendors to get insights into airport op-
erations and to evaluate the impacts of uncertainties.

Rosenberger et al. (2000, 2002) presented a stochastic
model for airline operations within the SIMAIR project,
with the primary purpose being to evaluate crew sched-

uling plans and recovery policies. Simulation tools for
airport and airspace operations, such as SIMMOD from
the Federal Aviation Administration (FAA), RAMS from

Eurocontrol, DPM from Sabre and TAAM from the
Preston Group, can model existing and planned op-
erations very well, but may lack in the area of auto-

matically improving operations which can be performed
with optimisation systems.

5.6 Impact of results

This section highlights the possible savings in fuel costs
of the introduced algorithm by using the same approach
as in the analysis by Brinton et al. (2011). An average

aircraft used 306.6 seconds of fuel burn in our anal-
ysis with the integration of taxi time estimation, the
QPPTW algorithm and the swap-heuristic, instead of

443.5 seconds as was reported from the historic data.
The saving of 136.9 seconds per aircraft movement ac-
cumulates to around 637000 minutes per year based on

279000 movements as it was reported at Zurich Airport
in 2011. Brinton et al. (2011) based their calculations
on a jet aircraft using 25 pounds of fuel per minute

while taxiing, which fits the guidelines from ICAO for
the settings of a “Single Aisle Jet”. With an assumed
$4 US per gallon of fuel, the annual cost savings in fuel
at Zurich Airport would be approximately $9.6 million.

However, it should be noted that other sources ques-
tion the actual fuel rate for taxiing, which is possibly
slightly overestimated by ICAO (Morris 2005; Kim and

Rachami 2008).

6 Conclusion

This paper described a more realistic and potentially

more environmentally friendly ground movement deci-

sion support system, compared to previous approaches.

The overall framework is designed to combine the run-
way sequencing problem and ground movement prob-
lem, aiming for better global solutions, although only

the ground movement element was considered in this
paper. This work extends the basic ground movement
problem of minimising the travel times to include the

concept of absorbing possible waiting times for depar-
tures at the gate/stand, to reduce the fuel burn and en-
vironmental impact. The sequential QPPTW algorithm

which was described here is based on graph theoretical
concepts and can include restrictions such as limitations
upon which taxiways aircraft can use, which taxiways

block which and when, and any turning limitations at
taxiway junctions. In addition, the algorithm provides
the opportunity to add buffer times for blocking the

reserved taxiways for longer than expected, to absorb
small delays and schedule disturbances.

Experiments used data for an entire week of op-
erations at Zurich Airport, the largest hub airport in
Switzerland. This data was used to generate more ac-

curate taxi time estimations for each aircraft, using a
taxi time prediction function which was generated from
an extensive statistical analysis and a fuzzy rule-based

system, applied to the same dataset. These taxi time
estimations were then utilised within the QPPTW al-
gorithm to route and schedule the ground movement.

The results are very promising and show potential max-
imum savings in total taxi time from using the decision
support system described here, together with the taxi

time prediction system, of about 30.3%, compared to
the actual performance at the airport. Further research
is necessary to determine the amount of buffer time

and runway delay which should be utilised to account
for any remaining taxi time uncertainty and to avoid
starving the runways.

The experimental results of the developed decision
support approach show average solution times of only

a few milliseconds per aircraft, and are, therefore, ade-
quate for the implementation of such a system for real
time use at airports.

We intend to investigate various extensions of this
work in future, in addition to the combination of the

ground movement problem with the runway sequencing
problem. Firstly, the QPPTW algorithm enables the
possible waiting times to be spread in different ways.

In this paper, they were allocated so as to maximise
the stand hold time and to better adapt to schedule
disturbances, but an alternative approach would be to

develop smoother speed profiles for aircraft, using the
engine in a more efficient and environmentally friendly
way. Secondly, we would like to perform a similar analy-

sis for different airport layouts, to better understand the
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effects of the layout upon the best solution approach,

but it will be necessary to obtain more data and sup-
port from other airports in order to do so.
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