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Abstract. This paper formulates a vehicle routing problem where con-
straints have been produced from a real world forestry commissioning
dataset. In the problem, vehicles are required to fully load wood from
forests and then deliver the wood to sawmills. The constraints include time
windows and loading bay constraints at forests and sawmills. The loading
bay constraints are examples of inter-route constraints that have not been
studied in the literature as much as intra-route constraints. Inter-route
constraints are constraints that cause dependencies between vehicles such
that more than one vehicle is required to perform a task. Some locations
have a lot of consignments at similar times, causing vehicles to queue for
loading bays. The aim is to produce an optimal routing of consignments
for vehicles such that the total time is minimised and there is as little
queuing at forests and sawmills as possible. In this paper, the problem
has been formulated into a vehicle routing problem with time windows
and extra inter-route constraints. An ant colony optimisation heuristic is
applied to the datasets and yields feasible solutions that appropriately
use the loading bays. A number of methods of handling the inter-route
constraints are also tested. It is shown that incorporating the delay times
at loading bays into the ant’s visibility produces solutions with the best
objective values.
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1 Introduction

The problem discussed in this paper is a vehicle routing problem faced by
a forestry commissioning operator in Dumfries, Scotland. The data has been
provided by Optrak, a vehicle routing and consultancy company. This is a vehicle
routing problem with time windows and loading bay capacity constraints.

Models of similar vehicle routing problems with time window constraints
have been presented by Fisher et al [6] and by Solomon [11] and are used in
this paper. The travel times in this problem are also non-euclidean, asymmetric
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and the triangle rule does not apply. Such conditions cause problems for many
traditional heuristics such as those discussed by Solomon et al [10]. The loading
bays capacity constraints are examples of inter-route constraints similar to the
inter-tour resource constraints in Hempsch et al [7], which are much less studied
in the literature than intra-route constraints [3]. This paper presents a number
of methods to mitigate delays at the loading bays.

Smaller forestry commissioning operations have been solved using methods
such as column generation (Epstein et al [4, 5]) and mixed integer linear program-
ming models. For larger optimisation problems it is common to turn to heuristics
to produce good solutions.

An ant colony optimisation (ACO) heuristic, which is a population based
search that is both “robust and versatile” [2], is used to find the routing of
vehicles between consignments and minimise the inter-consignment duration and
violations of constraints. The heuristic can be easily adapted to accommodate a
variety of different constraints, specifically the loading bay constraints in this case.
It was suggested by Epstein et al [4] that solutions with periodic vehicle arrivals
at loading bays may be easier to use. A variety of methods have been developed
in this research for handling the loading bay constraints during the construction
of solutions, such as making consignments “invisible” if they cannot be fulfilled
without causing waiting time. These methods are compared and analysed in this
paper.

The rest of this paper is structured as follows: Section 2 describes the problem
and the loading bay constraints faced by this problem. Section 3 describes the
ant colony optimisation heuristic and a number of adaptations to handle the
loading bay constraints. Section 4 shows the experimental results using various
adaptations to the ant colony optimisation heuristic, and discusses the consequent
loading bay usage. Section 5 concludes the findings in this paper.

2 Problem Description

2.1 Routing the Forestry Commissioning Operation

The problem presented in this paper is a vehicle routing problem with time
windows and additional loading bay constraints. The objective is to minimise
the total time to transport logs from a set of forests to a set of sawmills. Forests
have been paired with sawmills a-priori into tuples called consignments. Each
consignment describes a task that needs to be fulfilled by exactly one vehicle;
wood must be picked up from the forest and then driven directly to the paired
sawmill. Since the start and end locations of consignments differ from each other,
the driving times are asymmetric, non-euclidean and the triangle inequality does
not hold, making some heuristics that exploit these characteristics potentially
unsuitable for this problem.

Multiple consignments may share the same forest or the same sawmill (or
both). Also, some consignments may need to be fulfilled simultaneously by
different vehicles, meaning that multiple vehicles can arrive simultaneously at a
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forest or sawmill with a limited number of loading bays. Inter-route constraints
are used to model the usage of these loading bays, as described below.

2.2 Loading Bay Constraints

Let Πib be a variable that is 1 if bay b is used by order i and 0 otherwise. Let
Ai be the pickup location of consignment i and l represent the loading duration,
assumed to be a constant of one hour in this problem. Let O represent the set of
consignments and B represent the set of loading bays.

(Πib +Πjb ≤ 1) ∨ (Ai + l ≤ Aj) ∨ (Aj + l ≤ Ai)
∀b ∈ B, ∀i, j ∈ O, i 6= j, (i and j share the same location)

(2.1)

Constraints (2.1) state that if two different consignments i and j use the same
loading bay at a forest/sawmill (pickup/delivery location), then either the finish
time of the first consignment must be before the start time of the second con-
signment or vice versa. Figure 1 shows how the pickup loading bay constraint
(2.1) is violated (the shaded area) if two consignment loading bay usage times
overlap. A vehicle that arrives at a busy pickup/delivery location (with no free
loading bays) is allowed to wait. However, it sometimes may be preferable for a
vehicle to service a different consignment first and service this consignment later,
when the location becomes free again.

3 Algorithm Description

This section describes the ACO heuristic and a number of adaptations and
implementations that handle inter-route constraints.

3.1 Ant Colony Optimisation

Ant colony optimisation (ACO) is a population based adaptive constructive
heuristic [2]. It was used in Mazzeo et al [8] to build routes for a capacitated

Fig. 1. The pickup constraint is violated when there is a loading bay usage overlap
(e.g when Ai + l > Aj ∧Ai < Aj + l. Ai: the arrival time of a vehicle at order i, l: the
loading time.)
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vehicle routing problem (CVRP) (without inter-tour constraints) and obtained
better results than Tabu Search in some cases. Riemann et al [9] also used an
ACO heuristic in a similar way for vehicle routing problems.

ACO uses a set of constructive agents called “ants” to create paths on a graph
using knowledge (“pheromones”) from previous iterations. After each iteration,
for every solution, the pheromones on each arc of the graph are updated based
on the fitness of the solutions that used that arc. Solutions that have a better
fitness will add more pheromone to the arcs it uses than solutions that have a
worse fitness.

Pheromones evaporate over time at a rate of ρ to prevent the heuristic
converging too early. Shorter arcs with strong pheromone will attract more ants
per iteration than longer arcs with weak pheromone. When more ants traverse
an arc throughout the iterations, the pheromone on the arc becomes stronger.
Eventually the heuristic should identify a selection of arcs in good solutions.

In this paper, the ants in the ACO heuristic represent vehicles. Unlike the
standard ACO heuristic for the travelling salesman problem (TSP) [2], more
than one vehicle is needed to create a full solution for the VRP, so “ant groups”
are formed that share a list of fulfilled consignments, preventing consignments
from being scheduled more than once. A number of ant groups are performed in
the same iteration and leave pheromones on arcs for use by later iterations of ant
groups. The ACO algorithm can be found in Dorigo et al [2]. In this paper, the
ACO heuristic has been further modified to handle time window constraints and
loading bay constraints. Let O denote the set of consignments. Each ant in an ant
group starts at the depot and a probability of pj ,∀j ∈ O is determined for each
unassigned consignment based on a number of things: the amount of pheromone
on the arc that connects the ant’s current position to the consignment, the length
of this arc, whether waiting time is required for a vehicle to be serviced at the
forest/sawmill for the consignment and, finally, whether the time windows can
be met for both the pickup and delivery parts of the consignment. Consignments
that cause constraint violations when added to the ant’s route can be avoided by
setting the probability pj to 0. Let Ψ represent the set of consignments that are
avoided by the ant. Given that the ant is at consignment i, pj can be calculated
using function (3.1), for all j /∈ Ψ .

pj =
ταijη

β
ij∑

k∈O\Ψ τ
α
ikη

β
ik

(3.1)

Let τ represent the amount of pheromone on the arc from the ant’s current position
i to the first customer in the consignment j. Let η represent the “visibility”, which
is typically 1/tij where tij is the travel time from consignment i to consignment j.
Let α be the amount of influence that the pheromone has on the determination of
the next consignment and let β be the amount of influence of the visibility. Using
inequality (3.2), where r is a random number r ∈ [0, 1), the decision to determine
the next consignment j in the route is weighted towards “better” choices with
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higher values of pj .
j−1∑
i=0

pi ≤ r ≤
j∑
i=0

pi j ∈ O (3.2)

3.2 Constraint Handling

ACO heuristics can be implemented differently to fit particular constraints. For
example, a “Heuristic function” is used in the place of the visibility in [1] to
solve a vehicle routing problem with time windows and time dependent travel
times (traffic conditions). This function includes the duration of the arc as well
as the waiting time required to service the customers. A similar approach can
be adopted to use loading bay waiting times to influence the ant’s choice of
consignment. During the construction of the route, an ant can check a loading
bay to see if there is time available for both the sawmill and the forest visits
for a consignment. The ant can also calculate the total duration of waiting time
that will be required at the forest and the sawmill and use this in the decision
making. The loading bay schedule is updated for that group each time an ant
visits a particular place, to ensure that there are no loading bay conflicts and to
calculate delays.

Three options for handling the loading bay constraints have been considered:

Ignoring and Repairing In this method, the loading bay usage is ignored during
the ACO heuristic so infeasible solutions can be created. A repairing procedure
(such as a local search heuristic) is used to re-schedule the routes after each
iteration to remove loading bay conflicts. This method does not require analysis
of arrival times at customers until the repairing procedure, which may reduce
the runtime. However, it may not be possible to re-arrange the consignments
effectively in the repair procedure, or at least without a large increase in the
solution’s objective value.

Avoiding Conflicts For any consignment j, let ωj be the waiting time, which
is the shortest time before the current ant can be serviced at consignment j.
The simple avoidance method will set pj = 0 for all consignments j such that
ωj > 0. Figure 2 shows how a loading bay usage window can be tested against a
customer’s schedule. It shows an example of a customer with two loading bays.
The first example (Accepting) shows that the loading bay usage (labelled insert)
can be inserted into the second loading bay without any waiting time. The second
example shows that the loading bay usage window cannot be directly inserted
into the schedule without having to consider adding waiting time. This method
avoids queuing entirely. However, for a hard dataset, queuing may be required to
get to a feasible solution.

Scheduling & Penalising Waiting Times with W1 and W2 Let ωj denote the
waiting time for consignment j, as above. Rather than preventing the usage, an
alternative approach is to penalise the delays. This can be achieved by using
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Fig. 2. A forest/sawmill j with 2 loading bays, and an example of when a visit is
accepted at the loading bay and and example of when a visit is rejected (when pj is set
to 0)

a weighted visibility ηij calculated by equation (3.3) where W1 and W2 are
constants, rather than setting ηij = 1

tij
in equation (3.1).

ηij =
1

W1tij +W2ωj
(3.3)

For large values of W2, waiting times can be avoided where possible since ants
will be diverted, due to small values of visibility (ηij). However, a strong penalty
could impair the solution in a similar way to setting the probability (pj) to 0.
Consignments that cannot be scheduled without waiting times would be left until
the end of the day because their corresponding probabilities have to compete
with consignments that do not have waiting times. This can lead to infeasible
solutions where these consignments miss their time windows.

3.3 Observing Loading Bay Usage

Although the main objective of the model is to reduce the total time (waiting
and driving) the consecutive arrivals of the loading bays can be measured to give
an insight into how well the loading bay capacity constraint handling techniques
work. Solutions that have a large number of consecutive arrivals and no space
between the loading operations may be harder to manage. Although this property
is not measured in the objective value, it is possible that such solutions that
have good loading bay usages could be better than those that have a lot of
consecutive arrivals due to having fewer delays at loading bays. The schedule
for each specific loading bay is also analysed separately. For a given loading bay
schedule, clusters of loading bay usages are identified by checking for entries that
are “close” together within the duration of the load/unload time (which in this
case is an hour), which is considered to be far enough apart that the deliveries
are independent. Clustered entries are then measured using the ratio between
the loading time and the time between the entries. Figure 3 presents an example
of clusters of loading bay schedule entries that are used in the calculation of the
ratio. A solution that has a low average ratio means that there may be many
consecutive entries in the loading bay schedules.
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Fig. 3. A loading bay with a number of vehicle visits. The “close” visits have been
clustered together, and the sum of the ratio of the time gap between the visits and the
loading time is used in the calculation of the average ratio.

4 Computational Results

The six datasets which were used in this research were generated from real world
data from south west Scotland. All datasets have a number of locations that
are particularly busy (with many consignments in a short duration) with only
one or two loading bays available. These datasets can be found at http://www.
cs.nott.ac.uk/~rxq/benchmarks.htm. The purpose of these experiments is to
analyse the different constraint handling techniques. A number of parameter
settings for the penalty method are also tested, to analyse their effect on the
objective values and the number of delays.

One experiment shows results without the loading bay constraints (for the
purpose of comparing objective values). The other experiments use a waiting
time penalty multiplier W2 set to 0, 1 or 2. An experiment was also performed
with W1 = 2, to see whether better objective values can be achieved if the waiting
time is not prioritised as much as the driving time.

4.1 Results

Results are given in tables 1-6 for different test datasets. Each row in each table
gives the average results over ten runs of the ACO heuristic, with the same
parameter settings. In each column, the parameter settings and the average
values for the following properties are given: the average waiting time across all
final ant groups in each run; the average objective function value for the best
ant group in each run (in seconds); the average number of times there was a
delay across all final ant groups; the average of the loading bay ratios across
all final ant groups; the average (upper bound on the) optimality gap for the
best ant group for each run. The lower bounds of each dataset were calculated
in CPLEX, by assuming a single asymmetric TSP tour that goes through all
consignments without time window constraints. Since CPLEX failed to find the
optimal solution for any of the asymmetric TSP relaxations, the lower bound of
the a-TSP was used to determine (the lower bound for) the optimality gap.

A variety of parameter settings were tried. Firstly, the number of ant groups
was set to a low value (10) to view the effects of the parameter settings more
quickly. ρ was set to 0.99 with α = 0.5 and β = 5 as suggested by Dorigo et
al [2] for travelling salesman problems. However, these values failed to produce
good results, which is unsurprising since it is well known that different problems
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often require different parameter settings. After testing small changes in other
parameter settings, the heuristic produced results with better objective values
with ρ = 0.9, α = 0.7 and β = 1.5 in preliminary tests, so these values were used
for the experiments. Small changes to these parameters did not have much effect
upon the objective value, but changing α to values above 1.0 or β to values below
1.0 produced worse solutions as the heuristic converged too quickly. ρ is set to a
lower value because only 1000 iterations were used in order to keep the runtime
low.

Table 1. 300 Consignments, 40 Vehicles, 79 Points

Expt. W1 W2 Waiting Time Objective Delay Ratios Gap %

1 off N/A 5.464E6 N/A N/A 15.01
2 avoid N/A 5.512E6 N/A 0.46 15.74
3 1.0 0.0 5.463E5 5.493E6 9.51 0.4 15.45
4 1.0 1.0 5.412E5 5.48E6 9.49 0.4 15.26
5 1.0 2.0 5.451E5 5.485E6 9.5 0.4 15.33
6 2.0 1.0 5.38E5 5.485E6 9.59 0.4 15.32

Table 2. 350 Consignments, 40 Vehicles, 84 Points

Expt. W1 W2 Waiting Time Objective Delays Ratio Gap %

1 off N/A 6.297E6 N/A N/A 16.47
2 avoid N/A N/A N/A N/A N/A
3 1.0 0.0 6.656E5 6.431E6 26.6 0.36 18.2
4 1.0 1.0 6.697E5 6.43E6 26.74 0.36 18.19
5 1.0 2.0 6.691E5 6.431E6 26.66 0.36 18.21
6 2.0 1.0 6.649E5 6.435E6 26.72 0.36 18.25

Table 3. 400 Consignments, 40 Vehicles, 98 Points

Expt. W1 W2 Waiting Time Objective Delays Ratio Gap %

1 off N/A 7.016E6 N/A N/A 12.58
2 avoid N/A 7.09E6 N/A 0.46 13.49
3 1.0 0.0 5.752E5 7.072E6 19.6 0.38 13.27
4 1.0 1.0 5.8E5 7.079E6 19.8 0.38 13.36
5 1.0 2.0 5.717E5 7.082E6 19.7 0.38 13.39
6 2.0 1.0 5.771E5 7.076E6 19.72 0.38 13.32
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Table 4. 420 Consignments, 40 Vehicles, 93 Points

Expt. W1 W2 Waiting Time Objective Delays Ratio Gap %

1 off N/A 6.961E6 N/A N/A 13.33
2 avoid N/A 7.036E6 N/A 0.45 14.25
3 1.0 0.0 4.305E5 7.026E6 24.56 0.38 14.13
4 1.0 1.0 4.271E5 7.033E6 24.66 0.38 14.21
5 1.0 2.0 4.367E5 7.031E6 24.74 0.38 14.19
6 2.0 1.0 4.308E5 7.036E6 24.75 0.38 14.24

Table 5. 420 Consignments, 40 Vehicles, 95 Points

Expt. W1 W2 Waiting Time Objective Delays Ratio Gap %

1 off N/A 7.249E6 N/A N/A 12.25
2 avoid N/A 7.371E6 N/A 0.45 13.69
3 1.0 0.0 4.395E5 7.343E6 29.7 0.37 13.37
4 1.0 1.0 4.36E5 7.332E6 29.59 0.37 13.24
5 1.0 2.0 4.458E5 7.328E6 29.72 0.37 13.2
6 2.0 1.0 4.405E5 7.345E6 29.8 0.37 13.4

Table 6. 420 Consignments, 40 Vehicles, 95 Points

Expt. W1 W2 Waiting Time Objective Delays Ratio Gap %

1 off N/A 7.573E6 N/A N/A 12.34
2 avoid N/A N/A N/A N/A N/A
3 1.0 0.0 5.262E5 7.692E6 33.8 0.38 13.7
4 1.0 1.0 5.165E5 7.699E6 33.91 0.37 13.78
5 1.0 2.0 5.209E5 7.685E6 33.85 0.38 13.62
6 2.0 1.0 5.249E5 7.692E6 33.91 0.37 13.7

4.2 Discussion

The “avoid queuing” method failed to produce any feasible solutions for datasets
2 and 6. The time windows could not be met for these datasets because ants
avoid consignments that require queuing, so these consignments were assigned
later in the route and the time windows were missed. There may exist solutions
where vehicles travel times cause arrivals to be outside of each others loading
bay usage times. However, the ant colony algorithm could not find any of these
solutions for datasets 2 and 6.

For other datasets, this approach produced feasible solutions because the time
windows were lenient enough, or the loading bays were more plentiful. However,
the objective values were worse than the other loading bay constraint handling
methods. There are no delays for these solutions that are caused by loading
bays because vehicles do not drive to consignments that have no loading bays
available at the time of the vehicle’s arrival. This causes the vehicles to drive to
consignments that are further away and thus, routes are longer in these solutions.
However, the loading bay ratio was the best in these solutions, meaning that
the loading bays are less busy. Figure 4 shows an example of two loading bay
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schedules; the first example shows vehicles that arrive at similar times, and so the
ratio of time between the loading bay usage and the total loading time is small
because the loading bay usage is consecutive. The second has vehicles that arrive
outside of each other’s loading bay usage times, thus there are gaps between the
entries and so the ratio is larger. The “ignoring queuing” method produces better

Fig. 4. Possible Effects of W2 or of Avoiding Queuing. In (1), W2 = 0 and thus the
vehicles arrive in similar times and have to wait for the loading bay to be free. In (2),
W2 = 2 or the ants avoid queuing. The vehicles arrive slightly further apart, meaning
there is no queuing.

objective values because the loading bay constraints are relaxed, so the heuristic
does not add waiting time to the entries at busy periods. The ratio of the loading
time and gaps between the loading times is not measurable because entries are
able to overlap. Of course, this makes the solutions infeasible in practice.

Considering W1 and W2 The objective values and loading bay ratios of the
solutions obtained when different parameter settings of W1 and W2 are used are
similar. For this reason, a number of Mann-Whitney U tests were performed on
the results of the experiments on each dataset to test the difference in the results.
Specifically, for two given sets of data, a percentage is given for the number
of entries in the set that are larger than entries in the other. A percentage of
U = 100% means that all entries in the first set are larger than those in the
second set.

The objectives appear to vary with the different parameter settings. For
example, comparing W2 = 0 and W2 = 2 gives U = 30% in dataset 3 and
U = 83% in dataset 3. This means that objective values for W2 = 0 were
generally smaller than the objective values when W2 = 2 for dataset 3, but for
dataset 5 they were generally larger. However, over all tests over all datasets with
settings W2 = 0 and W2 = 2, five of these datasets had larger objective values
when W2 = 0 because U > 50%. Similarly, four out of six datasets had a result
of U > 50% for tests between W2 = 0 and W2 = 1. This implies that penalising
waiting times can potentially aid the heuristic to find good solutions more so
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than setting W2 = 0. Ignoring waiting time by setting W2 = 0 means that the
heuristic is able to accept solutions that have large waiting times, worsening the
objective values. For the comparisons between W1 = 1 and W1 = 2, four out of
six datasets showed that the objective values were larger for W1 = 2. These four
datasets were also the same four datasets where the objective values were larger
when W2 = 0 for the tests between W2 = 1 and W2 = 0. Thus, the behaviour of
the objective values is similar when setting W1 = 2 or W2 = 0.

A number of Mann-Whitney U tests showed that the loading bay ratios were
better when W2 = 0. This is because, when the waiting time at loading bays is
penalised, consignments that have no loading bays available are avoided until the
end of the day. Many vehicles then arrive at similar times at the end of the day
causing queuing at the loading bays. The Mann-Whitney U test results for the
loading bay ratios also coincided with the Mann-Whitney U tests for the waiting
times; the waiting time is worse when the loading bay ratios are small.

5 Conclusion

In this paper, a forestry commissioning routing problem was presented based on
real world problem datasets. The problem is a Vehicle Routing Problem with
time windows and inter-route constraints. These inter-route constraints consist of
loading bay capacity limitations at pickup and delivery points, meaning that only
a limited number of vehicles are able to be serviced simultaneously. The forestry
commissioning routing problem was explained and the loading bay constraints
were shown. These constraints contained information to ensure that loading bays
were used properly.

An Ant Colony Optimisation heuristic was used and a number of problem-
specific modifications to the heuristic were tested. These modifications were
created to handle the (inter-route) loading bay constraints to avoid loading bay
queues, ignore the inter-route constraints, or penalise waiting times. Results
showed that, for less constrained problems, queuing can be avoided, but only
at the cost of increased objective function values. Penalising the waiting time
by setting W2 = 1 or W2 = 2 in the visibility function was found to produce
solutions with better objective values and having no cost for waiting time. Setting
W2 = 0 could result in solutions with long waiting times. Similarly, using a large
penalty for travel times (W1 = 2), was also found to decrease solution value,
for the same datasets for which having no delay cost did so. The best objective
values were attained for the parameter settings W1 = 1 and W2 = 1 or W2 = 2.

The simple penalisation method for handling the loading bay constraints that
are present in this model can also be adopted in other heuristics. The waiting
times can be calculated and then included into the objective function of any
heuristic with a penalty value. This method may also work well in other problems
that have inter-route constraints and is worth further investigation.
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