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Abstract The appropriate assignment of airport re-

sources can greatly affect the quality of service which

airlines and airports provide to their customers. Good

assignments can help airlines and airports keep to pub-

lished schedules by minimising changes or delays while

waiting for resources to become available.

In this paper, we consider a resource allocation prob-

lem, namely the problem of assigning available bag-

gage sorting stations to flights which have already been

scheduled and allocated to stands. A description and

model for the problem are presented, illustrating the

different objectives which have to be considered. A num-

ber of constructive algorithms for sorting station assign-

ments are then presented and their effects are compared

and contrasted when different numbers of sorting sta-

tions are available. In particular, it can be observed that

the appropriate algorithm selection is highly dependent

upon whether or not reductions in service time are per-

mitted and upon the flight density in relation to the

number of sorting stations.

Finally, since these constructive approaches produce

different solutions which are better for different trade-

offs of the objectives, we utilise these as initial solutions

for an evolutionary algorithm as well as for an Integer
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School of Computer Science
University of Nottingham
E-mail: a.asco@cs.nott.ac.uk

Dr. Jason A. D. Atkin
School of Computer Science
University of Nottingham
E-mail: jason.atkin@nottingham.ac.uk

Prof. Edmund K. Burke
Department of Computing and Mathematics
University of Stirling
E-mail: e.k.burke@stir.ac.uk

Linear Programming (ILP) model in CPLEX. We show

that in both cases they are helpful for improving the

results which are obtainable within reasonable solution

times.
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Scheduling · Heuristics · Constructive Algorithms ·
Greedy Algorithms

1 Introduction

The mishandling of baggage in airports has been one of

the more important passenger issues for several years

in both Europe and the U.S.A. It was ranked third in

complaints after cancellations and delays in the 2009 re-

port of the Air Transport Users Council (2009), and its

importance was further emphasized in the April 2010

report of the Office of Aviation Enforcement and Pro-

ceedings (U.S. Department of Transportation (2010))

where over a hundred thousand baggage reports were

logged, ranking baggage complaints in second place. Ex-

pected increases in civil air traffic (ICAO (2010) and

Federal Aviation Administration (2010)) will continue

to increase the complexity of these problems. Systems

to improve this situation are therefore extremely valu-

able.

A stand is an area on the ground where aircraft are

parked. Gates are the exits from the terminal through

which passengers pass to reach the aircraft. Stands may

be located at gates, in which case the terms stands

and gates are often used synonymously, or may be re-

mote stands, located elsewhere on the airport surface,

for which passengers will usually catch a bus from the

terminal to the aircraft. In order to increase the number

of gates at a terminal, piers often protrude, with gates

http://link.springer.com/10.1007/s10951-013-0361-x
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along one or both sides, as illustrated in Figure 2. Bag-

gage sorting stations are often located at the bases of

the piers, rather than along the sides, as also illustrated

in Figure 2.

Baggage which is checked-in will travel through the

baggage system to baggage sorting stations where it

is temporarily stored. Baggage handlers at the sorting

stations will sort the baggage and load it onto baggage

carts or into special containers which go directly into

the aircraft. These sorting stations are not usually co-

located with the aircraft, so the pairing of sorting sta-

tions to gates is important. Furthermore, baggage often

arrives or accumulates at the sorting station prior to

the aircraft arriving at the gate, so the sorting station

is needed earlier than the gate, and usually for a longer

period.

Better modelling and solution of resource allocation

operations at the stands, including baggage sorting sta-

tion allocation, is also extremely important in improv-

ing the overall departure system. As stated in Atkin

et al (2008), it is often impractical to accurately pre-

dict pushback times in advance due to the uncertainty

involved in the turnaround process. Collaborative de-

cision making (see European Airport CDM) is key for

improving this situation and gaining the huge potential

benefits. Such decision making requires more accurate

predictions for process finish times. Reducing the prob-

ability of baggage being in the wrong place or mixed

with baggage for other flights, and reducing the dis-

tance to get baggage from the sorting station to the

aircraft, will all aid this. Reducing this uncertainty can

allow runway sequencing to be performed at the stands,

allowing delays to be decreased significantly Atkin et al

(2012).

A model is presented for the baggage sorting station

assignment problem at airports, along with a consider-

ation of the various objectives. The problem can be

observed to be a multi-objective resource constrained

assignment problem, where the aim is to assign the

limited baggage handling resources amongst the var-

ious flights which have to be serviced. Research into

a similar problem was performed in Abdelghany et al

(2006) which uses a constructive algorithm, but various

questions were left unanswered. This paper aims to an-

swer these questions and to perform a rigorous analysis

of the effects and benefits of various constructive algo-

rithms for the problem, with a view to utilising these

when providing initial solutions for further search me-

thods. The intention is not to determine the ‘perfect’

algorithm for constructing a sorting station assignment,

but instead to understand the effects and trade-offs of

different choices.

An example of flight assignments is shown in Figure

1, which can be considered to be a type of Gantt chart,

where the vertical axis represents the stands and the

horizontal axis shows the time of day. Each rectangle

on the diagram represents a specific flight and shows the

times at which the flight will use the stand. Each stand

is numbered: the first digit is the terminal number, the

second digit is the pier number, and the last two digits

are the individual stand identification. For example the

top row shows five flights assigned to stand 1101, which

refers to terminal 1, pier 1 and stand 1.

The root of the problem for baggage sorting station

assignment is that baggage sorting stations are required

for a longer period than gates, so there can be no one-to-

one correspondence between baggage sorting stations

and stands, and ideal locations cannot be guaranteed.

Indeed, there should also ideally be a buffer time be-

tween sorting station usages, to reduce the risk of small

perturbations affecting the assignments and of the mix-

ing of baggage between flights, but the contention for

baggage sorting stations means that this sometimes has

to be reduced or eliminated. One of the purposes of

this paper is to better understand the way in which the

potential reductions in buffer times affect the various

algorithms.

This is not an easy problem to solve, as will be

apparent from Section 4. There are a number of ob-

jectives to consider in the baggage sorting station as-

signment problem (for example, maximising the num-

ber of assignments, maximising available buffer times

and assigning flights to the closest sorting stations) and

these are in obvious conflict with each other. Any so-

lution method needs to take this into account. Some of

these objectives are easier than others to handle inde-

pendently, and the robustness objective can be particu-

larly hard to optimise, but the interaction of the objec-

tives results in a much more complex overall problem.

In particular, different constructive algorithms will be

observed in this paper to perform better for different

objectives. Hybridisation of the algorithms themselves

or the appropriate utilisation or recombination of solu-

tions from different algorithms may potentially lead to

assignments which better reflect the overall objectives.

This paper is structured as follows: Firstly, the prob-

lem description and model are presented, followed by a

description of the algorithms considered. The results

of applying these algorithms to the problem are then

provided and various observations are made and expla-

nations given. Results are then provided to illustrate

the benefits of using the constructed solutions as initial

values for other solution methods. Finally some conclu-

sions are presented in Section 5.

http://www.euro-cdm.org/
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Fig. 1 Allocation of 46 stands to 163 flights from 1st March 2010.

2 Problem Description and Model

The problem under consideration in this paper may

be summarised as the assignment of available baggage

sorting stations to flights which have already been sched-

uled. In the baggage sorting station assignment prob-

lem, the flights will already have been assigned to stands,

which are often grouped along piers around the termi-

nals, and there will usually be some bias in this alloca-

tion, according to airline preferences.

2.1 Airport Layout

Airport geometry plays an important role in the as-

signment of resources and the safety of the airport op-

erations. An overview of the airport configurations and

technologies for the transportation of passengers and

baggage was presented by Pitt et al (2002), who con-

centrated on airport configurations and the availabil-

ity of different types of resources. Rijsenbrij and Ottjes

(2007) provided an overview of different elements of the

baggage handling system and gave a description of the

way in which baggage is currently handled, identifying

potential areas of improvement.

Figures 2 and 3 provide stylised diagrams of two ex-

ample layouts. The stands are grouped on piers, which

have their baggage sorting stations at their bases, placed

perpendicularly to the pier. For any stand it will be

better to assign the luggage to the sorting stations on

the same side of the same pier. Alternatively, more dis-

tant sorting stations could be used, but these are less

preferable. A ‘cost’ or ‘distance’ (dij in this model) can

be associated with a stand-sorting station pairing and

one aim is to reduce this cost by assigning as many

flights as possible to their preferred sorting stations.

Provided that the distances are specified, the model

which is presented in this paper can be used to rep-

resent many different topologies. For example, Figure
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Fig. 2 Simple one terminal topology with 3 piers and 48
stands.

Fig. 3 Simple London Heathrow T1 topology with 4 piers
and 46 stands.

2 shows the generic topology which was used in Ascó

et al (2011) whereas a closer representation of London

Heathrow Terminal 1 is shown in Figure 3. Rather than

being specific to the example layouts provided here, the

model which is utilised in this paper is appropriate for

any airport where there are groupings of aircraft/gates

which enforce a sorting station group preference (such

as when aircraft are on piers) and where there is a

distance or cost metric for the assignment of a sort-

ing station to a flight. For example, at some airports

the sorting stations may be at the ends of the piers,

as in Figures 2 and 3. In others, the sorting stations

may be between the gates, in which case the preference

for the distance/cost of assigning flight-sorting station

pairs may be much stronger, whereas the group/pier

preference may not be so strong. The model given here

is equally valid in either case.

2.2 Input Data and Constants

Table 1 summarises the various constants which are

used in the model described in this paper.

Table 1 List of the constants and input values for the model.

Name Description

N The total number of baggage sorting stations un-
der consideration.

M The total number of flights to which sorting sta-
tions should be assigned.

Tj The base service time for flight j.
Bj The desired buffer time for flight j.
Rj The maximum reduction of service time allowed

for flight j (we assume Rj = Bj for this paper, so
that the buffer time can be reduced but the base
service time cannot).

ej The end service time for flight j.
tj The target starting service time for flight j, tj =

ej −Tj −Bj , assuming the full buffer time is avail-
able.

Cj A flight specific constant representing the amount
of baggage to be processed for flight j. This deter-
mines the difficulty involved in assigning the flight
to a sorting station which is further away. For ex-
ample, this may represent the number of delivery
trips required to move the baggage from the sort-
ing station to the aircraft. In the absence of bag-
gage load figures, we set Cj = 1 for all aircraft for
the results in this paper.

dij The distance between baggage sorting station i

and flight j.

2.3 Service Period

A service period is associated with each departing flight,

during which the baggage for the flight is accumulated

at the assigned baggage sorting station and finally loa-

ded onto baggage carts for transfer to the flight. This

service period may (optionally) be extended by apply-

ing a buffer time, since it is preferable to have a gap

between the servicing of consecutive flights by the same

sorting station.
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2.4 Buffer Time

A buffer time is applied between two consecutive flights

on the same baggage sorting station in order to absorb

small disturbances in the real system behaviour. Buffer

times are a common means of increasing robustness to

avoid delays, as studied by Nikulin (2006) and Mulvey

et al (1995). Buffer times were used in the scheduling

of baggage sorting stations by Abdelghany et al (2006),

and Wu and Caves (2004) used them in the optimiza-

tion of the aircraft turnaround process. The Airport

Gate Assignment Problem (AGAP) has some similar

characteristics to the baggage sorting station assign-

ment problem and buffer times were also considered for

the AGAP by Hassounah and Steuart (1993), Yan and

Chang (1997), Bolat (2000), Yan et al (2002) and Wu

and Caves (2004). Yan and Huo (2001) performed a

sensitivity analysis on the buffer time for the AGAP,

noting that the length of the buffer time significantly

influences the gate assignment process, so a reasonable

minimum value should be used. Yan et al (2002) looked

at the suitability of Flexible Buffer Times (FBT), and

showed that given low delays, even short FBTs usu-

ally improve real-time objectives. Wei and Liu (2009)

showed the feasibility and effectiveness of using a fuzzy

model in conjunction with fixed buffer times for the

GAP. Wu and Caves (2000) and Wu and Caves (2004)

demonstrated the significance of a proper use of sched-

ule buffer time in maintaining schedule punctuality and

performance by balancing trade-offs between schedule

punctuality and aircraft utilization.

2.5 Decision Variables

Table 2 List of the decision variables which are used in this
model.

Name Description

yij Specifies the assignment of flights to sorting sta-
tions. yij = 1 if baggage sorting station i ∈
{1, . . . , N} is assigned to flight j ∈ {1, . . . ,M}, and
0 otherwise.

rj Specifies the necessary reduction in service time
for flight j ∈ {1, . . . ,M}, given the assigned start-
ing service time, sj .

sj The assigned starting service time for flight j ∈
{1, . . . ,M}, since a sorting station can only service
one flight at a time. In this model sj = tj + rj .

Table 2 lists the decision variables which are used

in this model. The solution algorithms will attempt to

find values of yij and rj such that the constraints in

Section 2.6 are met and the relevant objectives (e.g.

maximising the number of assignments and minimising

reductions in service times) in Section 2.7 are improved.

The actual start of service sj can be calculated from rj
and tj (sj = tj + rj) and the service time of a flight is

the duration from sj to ej and the target service time

is the duration from tj to ej .

2.6 Constraints

The various constraints which apply to baggage sorting

station assignments can be summarised as follows.

2.6.1 Assignment Limits

Each flight may be assigned to at most one baggage

sorting station, as expressed by Inequality 1. In normal

operations, each flight should be assigned to exactly

one sorting station, in which case Inequality 1 would

instead be an equality. However, in extreme situations,

where there are insufficient sorting stations (as consid-

ered in this paper) there may be no feasible assignment

of flights to sorting stations such that all flights can be

assigned. We note that, in some airports, some flights

may be assigned to multiple sorting stations, in which

case this inequality should reflect that fact and the ob-

jectives should be modified accordingly.

N∑
i=1

yij ≤ 1 ∀j ∈ {1, . . . ,M} (1)

2.6.2 Reduction in Service

Baggage sorting stations can only be used simultane-

ously by one flight, so it may be necessary to reduce

the buffer time between flights in order to assign fli-

ghts to the same sorting station, in order to increase

the number of flights which can be allocated.

For any pair of different flights whose service times

overlap, if the overlap in service times is greater than

the maximum reduction allowed (Rl for flight l), then

both flights cannot be assigned to the same baggage

sorting station. Thus, Inequality 2 applies to any such

pair of flights, j and l (j 6= l), where tl < ej ≤ el and

(ej − tl) > Rl.

yij + yil ≤ 1 (2)

They may otherwise be assigned to the same bag-

gage sorting station as long as the service time of flight

l is reduced sufficiently to remove the overlap. Inequal-

ity 3 applies to any such pair of flights, j and l (j 6= l),

where tl < ej ≤ el and (ej− tl) ≤ Rl. We note that one
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objective is to minimise these service time reductions,

as discussed later.

rl ≥ (yij + yil − 1) · (ej − tl) (3)

The service time reduction has both upper and lower

limits, as expressed by Inequality 4.

0 ≤ rl ≤ Rl ∀l ∈ {1, . . . ,M} (4)

2.7 Objectives

A number of objectives need to be considered for this

problem, and there is a trade-off to be made between

them.

2.7.1 Maximise the number of Assignment of Baggage

Sorting Stations

The first and most important objective is to maximise

the number of flights assigned to baggage sorting sta-

tions, as expressed by Formula 5. In practice at airports,

this objective would probably be a hard constraint at

most times, since all flights would normally have to be

serviced, but we wish to observe the performance of the

algorithms when there are too few sorting stations as

well as when these are sufficient or plentiful.

max

N∑
i=1

M∑
j=1

yij (5)

2.7.2 Minimise Distance

The distance between the assigned baggage sorting sta-

tions and the flights should be as short as possible. This

objective aims to minimise the inconvenience, work and

time involved in getting baggage to the aircraft, as pre-

viously discussed, and could relate to preferences rather

than strictly to distances, as discussed later. It can be

expressed by Formula 6 where
∑N

i=1 (yij · dij) corre-

sponds to the distance between flight j and its assigned

baggage sorting station.

min

M∑
j=1

(
Cj ·

N∑
i=1

(yij · dij)

)
(6)

2.7.3 Robustness

The ability to absorb the effects of uncertainty and vari-

ability in a schedule is normally referred to as robust-

ness. More robust assignments are, obviously, preferred

over less robust assignments. The size of the gaps be-

tween consecutive assignments to the same sorting sta-

tion can be regarded as a measure of the robustness.

Robustness could be increased in a number of ways and

two of these are presented below.

Fig. 4 Plot illustrating how uij varies depending upon the
gap (el − Tl − ej).

Minimise Reduction in Service

Given the detrimental effects that the reduction in ser-

vice time has for the robustness of the assignment as

against real-life delays, it is advisable to minimise the

total reduction in service time, thus maximising total

buffer times. This objective can be expressed by For-

mula 7.

min

M∑
j=1

rj (7)

Gaps Between Assignments

Given that it may be necessary to reduce the service

times of some flights, it is preferable to have more flights

with small reductions in service rather than fewer but

larger reductions in service time. A non-linear cost for

service time reduction can be used for this purpose.

uij =


arctan

(
(el−Tl−ej)

Bl

)
− U

if j < l, yij = 1,

yil = 1 and∑l
k=j+1 yik = 1

0 otherwise

(8)

max

 N∑
i=1

M−1∑
j=1

uij

 (9)

Although many objective functions could model this

preference, we will limit our discussion here to the arc-

tangent function, since we have adopted this ourselves

for use in our follow-on perturbative algorithms, which

we apply to further improve the assignments that are

generated using these constructive algorithms (see Sec-

tion 5). This was previously used by Diepen (2008) and

is shown in Equation 8 and Formula 9. This considers

the ratio between the actual gap and the desired gap be-

tween two consecutive flights which have been assigned
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to the same sorting station. Since flights assigned to

different sorting stations are preferred to those assigned

to the same sorting station the arctangent needs to be

offset by a constant U = π/2 in order to reflect this

preference. A plot of the resulting function is given in

Figure 4.

This robustness objective can be considered to han-

dle the objectives of ‘Minimising the Service Reduction’

and spreading the reductions in service which were pre-

sented in Ascó et al (2011).

2.7.4 Fair Workload

The fairness objective corresponds to the minimisation

of the total deviation of the actual usage of each bag-

gage sorting station from the mean usage of all baggage

sorting stations. This is expressed by Formula 10, where

ej − sj corresponds to the actual service time for the

flight j, which is the usage time of the baggage sorting

station. This objective aims to find a fairer assignment

across sorting stations, as discussed in Abdelghany et al

(2006).

min
N∑

i=1

∣∣∣∣∣∣∣∣∣∣∣
M∑
j=1

(yij · (ej − sj))

︸ ︷︷ ︸
workload for station i

−
∑N

i=1

∑M
j=1(yij · (ej − sj))

N︸ ︷︷ ︸
mean workload over all stations

∣∣∣∣∣∣∣∣∣∣∣
(10)

2.7.5 Preferred Piers

Flights may have preferred piers and these should be

considered when assigning baggage sorting stations. In

this paper, we consider that it is preferable to assign to

each flight those sorting stations which are on the same

pier. This objective is correlated to the distance min-

imisation objective (Formula 6) and is not, therefore,

considered separately. The assignment of baggage sort-

ing stations to preferred piers is considered in different

ways by the different sorting station assignment algo-

rithms which are described in Section 3.2.1, and which

differ in whether they first consider pier preferences or

avoid buffer time reductions.

2.7.6 Other Objectives

It is preferable that flights from the same carrier to the

same destination be assigned to the same baggage sort-

ing station, so that, for example, any delayed baggage

could be transported on the next flight. However, flights

would also normally be assigned to stands according to

carrier, and potentially according to destination (or at

least long-haul vs. short-haul).

Other objectives are also possible, such as a reduc-

tion in the number of open sorting stations (to reduce

the number of baggage handlers required), however,

these are in direct conflict with equity and reduction

in service considerations. These are not considered in

this paper for reasons of space, although there are some

observations made about them in Section 3.2.2, in the

Last In First Out (LIFO) discussion.

3 Algorithms

The constructive algorithms considered in this paper

assign baggage sorting stations to flights one at a time

until no more assignments are possible. Flights are first

ordered according to one of the flight ordering methods

discussed. A sorting station is then selected for each in

turn. The flight ordering and baggage sorting station

assignment problems are considered below.

3.1 Flight Ordering Methods

The flight ordering method determines the order in

which flights are selected for assignment. The follow-

ing different sorting approaches are considered here:

1. Order by Starting Time (OST). This orders fli-

ghts into ascending order by their tj values. From

the algorithm pseudo code presented therein, this

appears to be what was previously used in Abdel-

ghany et al (2006).

2. Order by Departure Time (ODT). This was

previously used by Ding et al (2005) for the Airport

Gate Assignment Problem (AGAP). This orders fli-

ghts into ascending order of their ej values. When

two flights have the same service end times, this will

implicitly sort them by their target starting time

tj . When service time reductions are not permit-

ted, sorting by service end times provides maximum

assignments when using Last In First Out (LIFO)

baggage sorting station selection and not constrain-

ing the set of sorting stations from which to select

(see Section 3.2.2).

3.2 Baggage Sorting Station Assignment

Once the flight to assign has been identified, the next

stage is to determine which sorting station to assign it

to. Baggage Sorting Station Assignment involves two

stages. The first decision is upon which sets of bag-

gage sorting stations to consider for assignment and in
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what order. In particular, whether only those for the

same pier should be considered first, and whether ser-

vice time reductions should be considered. The second

decision involves the ranking of baggage sorting stations

within each set, to enable the selection of an individual

baggage sorting station for assignment.

3.2.1 Baggage Sorting Station Assignment Algorithms

The baggage sorting station assignment algorithm de-

termines which sets of baggage sorting stations (for ex-

ample only those on the same pier, or on all piers)

are considered, in which order, and at what point re-

ductions in service times are considered within each

set. The baggage sorting stations within each set are

then considered according to a selection priority given

in Section 3.2.2. We note that these algorithms were

previously presented in Ascó et al (2011), although al-

gorithms ‘A’, ‘B’ and ‘C’ were named ‘A’, ‘C’ and E

respectively.

Algorithms ‘A’ to ‘C’ express different priorities. Al-

gorithm ‘A’ will attempt to assign all aircraft to their

own piers before considering assigning any aircraft to

other piers. Algorithm ‘B’ is similar to ‘A’ but considers

alternative piers or reductions in service for the current

aircraft prior to considering the next aircraft, giving a

much weaker preference overall. Algorithm ‘C’ will not

impose any restriction.

Algorithm ‘A’: Baggage Sorting Station Assign-

ment Algorithm A (Pier Preference)

Order flights using the flight ordering method (Sec. 3.1).
forall flights in order, assign to sorting station

On own pier without service time reductions.
Otherwise, on own pier allowing reduced service.

end
forall unassigned flights in order, assign to sorting
station

From anywhere, without service time reductions.
Otherwise, from anywhere, allowing reduced service.

end

Algorithm ‘B’: Baggage Sorting Station Assign-

ment Algorithm B (Partial Pier Preference)

Order flights using the flight ordering method (Sec. 3.1).
forall flights in order, assign to sorting station

On own pier without service time reductions.
Otherwise, on own pier allowing reduced service.
Otherwise, from anywhere, without reduced service.
Otherwise, from anywhere, allowing reduced service.

end

Algorithm ‘C’: Baggage Sorting Station Assign-

ment Algorithm C (No Pier Preference)

Order flights using the flight ordering method (Sec. 3.1).
forall flights in order, assign to sorting station

From anywhere, without service time reductions.
Otherwise, from anywhere, allowing reduced service.

end

In each case, once the algorithm has determined the

set of sorting stations for consideration, the appropriate

sorting station to assign from amongst those available

at the time is determined by the baggage sorting station

selection method which is being used (see Section 3.2.2).

3.2.2 Baggage Sorting Station Selections

The Baggage Sorting Station Selection method deter-

mines which of the baggage sorting stations in the cur-

rent set should be assigned to the current flight. The

following methods are considered:

1. First In First Out (FIFO): The baggage sorting

station with the earliest free service time amongst

all the baggage sorting stations in the set under con-

sideration is selected. This will initially keep open-

ing new service stations, while they exist, since a

new one would always be the least recently used.

This is useful for meeting the fairness objective ex-

pressed by Formula 10.

2. Last In First Out (LIFO): The most recently

used baggage sorting station amongst those in the

set is selected. This selection reduces the number of

baggage sorting stations in use at any time, since

a new baggage sorting station is only opened when

the previous ones cannot be assigned to the flight.

When flights are ordered by their departure times,

service time reductions are not permitted and as-

signment Algorithm ‘C’ is used (so that all sorting

stations are considered, rather than only those on

the preferred pier), this selection method guaran-

tees the maximum assignments (maximising the ob-

jective expressed by Formula 5), by minimising the

wasted/idle time between flights, Ding et al (2004)

and Cormen et al (2001).

3. Closest: The baggage sorting station with the least

distance to the current flight is selected from those

in the set under consideration. This considers both

new and previously used service stations. This me-

thod is useful for meeting the distance reduction ob-

jective expressed by Formula 6. Using the distance

measure used in this paper, this objective will en-

sure that flights are assigned to sorting stations on

their own pier by preference. Where sorting stations
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have the same distance, a LIFO method is used to

break the ties.

3.3 Lookahead and Improvement

Haralick and Elliott (1980) considered the concept of

“Lookahead and anticipate the future in order to suc-

ceed in the present” and “Lookahead to the future in

order not to worry about the past”. A type of look-

ahead was also used in Voß et al (2005). The Order by

Departure Time (ODT) flight ordering method could

potentially perform badly on the maximisation of as-

signments. The aim of the Order by Departure Time

Lookahead and Improvement (ODTLI) look-ahead is to

keep the ODT flight ordering but to look ahead when

assigning sorting stations, thus improving the assign-

ment objective. The developed ODTLI algorithm main-

tains a list of available sorting stations for this flight.

Rather than immediately making a selection from this

list using the ordering method, it first looks ahead to

find whether the selection of any of the available sort-

ing stations may deem a future flight infeasible. If this

is the case, and there are other available sorting sta-

tions from which to select, this sorting station will be

removed from the list. At the improvement stage of the

process, sorting stations which have been removed will

be reconsidered and may be exchanged for a station in

the list if this improves the current selection method

used.

4 Results

This section details the experiments which were per-

formed to evaluate the differences between the algo-

rithms described in Section 3 and the ways in which

these depend upon the number of sorting stations avail-

able for assignment to flights. The behaviour was stud-

ied both when there are too few sorting stations as well

as when sorting stations are plentiful.

4.1 Problem Data

Since it would be unrealistic to assume that baggage

from a flight at a stand in one terminal is serviced by

a baggage sorting station in another terminal (e.g. pas-

sengers usually go through security and board flights

from the same terminal at which their baggage was

checked in), it was decided to centre the analysis on

a single terminal.

Following the work in Ascó et al (2011), NATS Ltd

(NATS) provided us with more detailed data for Lon-

don Heathrow airport, which contained the details of

the assignments of flights to stands. It was composed

of 194 flights for 16th December 2009 and 163 flights

for 1st March 2010 and only considered flights which

were departing from Terminal 1. In this work we will

present only the results for the 1st March 2010 data,

since the 16th December 2009 results are very similar.

We will point out any cases where the results differed

between the data sets. Although we executed experi-

ments considering both three and four pier topologies,

we will only present the results for the three pier topol-

ogy since the results were similar for both and the three

pier topology was used in Ascó et al (2011), thus allow-

ing a comparison of the results in the relevant papers.

Ascó et al (2011) used information from the British Air-

ports Authority (BAA) website, which did not include

stand allocation information. Despite this, many of the

results here are identical to those from Ascó et al (2011)

and comparisons between these results and the earlier

results in Ascó et al (2011) will be made where this is

useful.

Fig. 5 Minimum number of required baggage sorting stations
throughout the day.

For the moment, we will assume that reductions in

service time can only reduce the buffer time rather than

the base service time, so Rj = Bj . Service times were

set based upon the flight destination so that Tj = 1

hour and Bj = 15 minutes for European flights, and

Tj = 1 3
4 hours and Bj = 30 minutes for non European

(longer haul) flights, since these are usually larger fli-

ghts with more baggage to process and often with a

requirement to check-in earlier. Figure 5 shows the to-

tal number of flights requiring service at different times

of the day when full buffer times are used (i.e. where

there is no service time reduction allowed) and when

no buffer times are included. It is possible to draw the

following conclusions:

1. With a limited number of baggage sorting stations,

the maximum line heights shown in Figure 5 can be

considered as an indication of the difficulty of the

assignment problem.



10 Amadeo Ascó et al.

Fig. 6 Number of sorting stations assigned, OST ordering
and LIFO selection method.

2. Fewer sorting stations are required when buffer times

are not included, so the peaks are lower, but the

absence of buffer times would result in less robust

solutions.

All of the experiments described in this section were

executed using a single threaded Java application, run-

ning on a 3GHz MS Windows XP SP3 PC. The number

of sorting stations was varied from 3 to 54. For the pur-

pose of the distance reduction objective, a distance of

one unit was assumed between different sides of a pier

and a distance of two units was assumed between dif-

ferent piers, so that it is preferable to use the other side

of the same pier before considering sorting stations at

other piers.

4.2 Initial Observations

Experiments were executed for different numbers of bag-

gage sorting stations, using each of the sorting station

assignment algorithms and sorting station selection me-

thods. Two cases were considered: firstly without allow-

ing reductions in service times (i.e. requiring full buffer

times) and secondly allowing reductions in service times

(i.e. allowing buffer times to be reduced).

Figure 6 shows the number of sorting stations which

could be assigned to flights for the Order by Starting

Time (OST) flight ordering method with Last In First

Out (LIFO) sorting station selection method, for var-

ious numbers of available sorting stations, comparing

the situation when reduction in service is and is not

allowed. We had originally planned to use Order by

Departure Time (ODT), but it was shown in Ascó et al

(2011) that the Order by Starting Time (OST) ordering

method provided better assignments than Order by De-

parture Time Lookahead and Improvement (ODTLI)

when reductions in service were allowed and the num-

ber of sorting stations was close to, or above, the lower

maximum assignment point (LMAP). This persuaded

us to use OST in our initial observations here. Figure 6

gives an idea of the behaviour of the algorithms as the

number of baggage sorting stations changes. Compar-

ing the results for the different baggage sorting station

assignment algorithms the following can be observed:

1. As expected, allowing reductions in service times al-

lows more flights to be serviced since smaller service

times may allow a flight to sit between two other fli-

ghts where this would otherwise be impossible.

2. Regardless of whether reductions in service are per-

mitted, sorting station assignment Algorithm ‘A’

achieves fewer assignments than the other algorithms.

This is a consequence of Algorithm ‘A’ assigning

aircraft to their own pier by preference when an as-

signment to a different pier may have allowed more

flights to be packed in.

3. When reductions in service are not permitted, the

performance of Algorithm ‘C’ was exactly the same

as Algorithm ‘B’ in this case. The results in Ascó

et al (2011) show that in general Algorithm ‘C’ al-

ways performed at least as well as Algorithm ‘B’,

and sometimes better, as we would expect since the

pier preference can sometimes conflict with max-

imising the allocations. Interestingly, this was not

always the case when reductions in service were per-

mitted, and there are instances when the preference

for the same pier actually means that more flights

can be assigned. Similar results were obtained in

Ascó et al (2011) for different data sets with ran-

dom allocation of stands to flights, indicating that

the advantages of Algorithm ‘C’ when reductions

are not permitted no longer apply when reductions

are allowed.

4. When reduction in service was not permitted, Algo-

rithm ‘C’ achieved the maximum assignment at the

upper maximum assignment point (UMAP) from

Figure 6, when there are 25 baggage sorting sta-

tions. We note however, that this is only actually

guaranteed when ordering flights by departure times

with LIFO selection method.

It was also noted that, in each case, these results cor-

roborate those from Ascó et al (2011), where different

data sets were used and that both sets of results in-

dicate that the better assignment method will depend

upon the ratio of flights to sorting stations. Further-

more, we note that the counts of the minimum number

of sorting stations which are needed with and without

reductions in service time, shown in Figure 5, provide a

simple method to determine whether the available sort-

ing stations are sufficient or not for avoiding reductions

in service times.

In order to determine the maximum sorting station

assignments when reduction in service time is permit-

ted, experiments were executed with the buffer times re-

moved (equivalent to maximal service time reduction),
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OST ordering method, Algorithm ‘C’ and LIFO selec-

tion method. The results are shown in Figure 7, for the

163 flight problem. More flights can be assigned when

reductions are permitted, as expected, until sufficient

sorting stations are available to assign the maximum

number of flights even without needing reductions. In

most cases, allowing reduction is almost as good as us-

ing maximum reductions.

Fig. 7 Number of assignments, OST ordering method, Algo-
rithm ‘C’ and LIFO selection method.

With maximum reductions (i.e. no buffer times), the

maximum assignment occurs when there are 19 baggage

sorting stations for the 163 flight problem. These val-

ues are the same as the theoretical minimum (the lowest

maximum assignment point, LMAP) shown in Figure 5.

Here, OST (Order by Starting Times) is achieving max-

imal number of assignments at the theoretical minimum

points (LMAP for maximal reductions and UMAP for
no reductions in service times), even though it gives no

guarantee of doing so (unlike ODT, Order by Departure

Times).

Figure 6 can also be used to compare the perfor-

mance of Algorithms ‘A’, ‘B’ and ‘C’ in terms of the

number of assignments which are achieved when reduc-

tion in service time is permitted, using the OST order-

ing method and the LIFO selection method. This shows

that Algorithm ‘A’ provides the lowest number of as-

signments, as was also seen in Ascó et al (2011). Both

algorithms ‘B’ and ‘C’ provided a similar number of as-

signments, with Algorithm ‘B’ providing slightly more

than ‘C’ in some cases.

Since reductions in service time have obvious bene-

fits, the remaining experiments consider the cases where

these are permitted and evaluate the differences be-

tween Algorithms ‘A’, ‘B’ and ‘C’ and also between the

different flight ordering and baggage sorting station se-

lection methods.

4.3 Comparison of Assignments With Service

Reduction

Figure 8 compares the ODTLI and OST flight order-

ing methods, showing the number of sorting station as-

signments which were made with the LIFO selection

method. This shows that the ODTLI flight ordering

method provided a better assignment when there were

fewer sorting stations (between 13 and 16 sorting sta-

tions), but at some point, as the number of sorting sta-

tions increases, the difference decreases and as it ap-

proaches the number necessary for optimal assignment

(LMAP), the OST flight ordering actually improves

upon ODTLI.

Fig. 8 Number of assignments for LIFO selection method
with different algorithms and ordering methods.

Comparison of some resulting assignments showed

that, perhaps counter intuitively, not only was ODTLI

(Order by Departure Time Lookahead and Improve-

ment) failing to assign more flights at these times, but

the flights which were not assigned had longer service

times than those which OST (Order by Start Time)

failed to assign. Indeed, there were cases where every

aircraft which OST failed to assign was a short-haul

flight and every aircraft which ODTLI failed to assign

was a long-haul flight. The order of consideration of

flights appears to be important in this case.

The key to understanding this behaviour is to con-

sider the size of the remaining gaps. Since the ODT and

ODTLI methods order the flights by their departure

times, where flights have similar service starting times,

preference will be given to flights with shorter service

times (i.e. earlier departure times). On the other hand,

the OST choice of flights could be regarded as prefer-

ring flights with longer service times (for similar de-

parture/end of service times). By assigning long-haul

flights first, the OST algorithm was able to fit short-

haul flights into the remaining gaps (with appropriate

service time reductions). However, by assigning short-

haul flights first the ODTLI was then unable to sched-
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ule the long-haul flights which remained, resulting in

fewer assignments. When there are few sorting stations,

the ability of the ODTLI choice to minimise the gaps

is a useful one and results in more sorting station as-

signments than the OST ordering method. However, as

the number of sorting stations increases, the remain-

ing gaps start to become large enough to accommodate

short-haul aircraft, and OST performs better.

Further experiments showed that this behaviour was

not restricted to the LIFO selection method, but also

occurred for the First In First Out (FIFO) and ‘Closest’

selection methods, and did so at the same number of

sorting stations.

4.4 Comparison of Distances With Service Reduction

Figure 9 shows the results as far as the distance reduc-

tion objective (expressed by Formula (6)) is concerned.

These show the total distance between the assigned

baggage sorting stations and the stands at which the fli-

ghts are located. Results are shown for the three sorting

station selection algorithms ‘A’, ‘B’ and ‘C’, with the

‘Closest’ selection methods and the ODTLI and OST

flight ordering methods.

Fig. 9 Total distance for ‘Closest’ selection method.

The distance basically measures the number of fli-

ghts which could not be assigned to sorting stations on

their preferred pier. It can be observed that the total

distance decreases as the number of sorting stations is

increased, since more sorting stations become available

on the preferred piers. Even after all flights have been

assigned to sorting stations, the distances can be pos-

itive, since the availability of a sorting station at the

terminal does not imply that it is on the correct pier

for the flight.

As expected, since Algorithm ‘A’ first attempts to

assign flights to the same pier and considers apply-

ing a service time reduction before considering other

piers, Algorithm ‘A’ performs better than algorithms

‘B’ and ‘C’ when there is a shortage of piers. For sim-

ilar reasons, Algorithm ‘B’ performs better than Algo-

rithm ‘C’. However, Algorithm ‘C’ assigned more flights

to sorting stations, and unassigned flights are here as-

sumed to have no distance, so we also need to take this

into account. Figure 10 shows the mean distance per as-

signed flight to avoid the problem of unassigned flights,

and it can clearly be seen that Algorithm ‘A’ attained

the lower mean distance.

Fig. 10 Mean distance, ODTLI and OST ordering methods
and ‘Closest’ selection method.

It is possible to conclude from this that, in the cases

where Algorithm ‘B’ achieves at least the same number

of assignments as Algorithm ‘C’, Algorithm ‘B’ would

be the preferable choice since the distances would be

lower. On the other hand, by the time that Algorithm

‘A’ would be achieving maximal assignment (which is

usually considered to be the primary objective); there

is no distance benefit from using Algorithm ‘A’ rather

than Algorithm ‘B’.

4.5 Fair Workload With Reduction in Service

As a measure of fairness we considered the deviation of

total usage times of the sorting stations from the mean

usage time. This corresponds to the fairness objective

which was expressed by Formula (10).

Figure 11 compares the results for the ‘Closest’,

FIFO and LIFO sorting station selection methods and

the ODTLI and OST flight ordering methods, show-

ing the total deviation in seconds from the mean usage

across all baggage sorting stations, using sorting station

assignment Algorithm ‘C’.

The FIFO selection method can be considered to

take fairness into account, only reusing a sorting sta-

tion once the others have been used, and indeed it con-

sistently performs better than LIFO and ‘Closest’ for

both flight ordering methods. However, although the

FIFO selection method will cycle through the sorting
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Fig. 11 Fair workload for different ordering methods, selec-
tion methods and Algorithm ‘C’.

stations, giving a more equitable number of flights to

each sorting station, long-haul and short-haul flights are

treated identically. This can result in differences in the

total service times. These differences will depend upon

how many of the long-haul flight assignments coincide

so that they are assigned to the same service stations.

As the number of sorting stations is increased, a cyclic-

type behaviour is observed.

Conversely, the LIFO selection method will continue

to re-use the same sorting stations wherever possible,

so increasing the number of sorting stations will further

increase the inequity, as can be observed in Figure 11.

The ‘Closest’ method takes no explicit account of

equity or sorting station reuse frequency, and instead

will tend to follow the flight assignment. It can be ob-

served that this results in an inequity almost as great

as for the LIFO method.

4.6 Reduction in Service

Figure 12 shows the total reduction in service time (ex-

pressed by Formula (7)) for all assigned flights, with

differing numbers of baggage sorting stations, using Al-

gorithm ‘C’, comparing the performance of ODTLI and

OST flight ordering methods and ‘Closest’, LIFO and

FIFO sorting station selection methods.

Fig. 12 Total reduction in service time and Algorithm ‘C’.

Fig. 13 Mean reduction in service time and Algorithm ‘C’.

Figure 12 shows the total reduction in service time.

Figure 13 shows the mean reduction in service time for

the flights which have had a reduction in service time.

When comparing Figures 12 and 13 we observe that,

for the ODTLI ordering method, as the number of sort-

ing stations increases so the reduction in service time

initially increases, as more assignments are achieved,

although the mean reduction in each case increases ei-

ther more slowly or not at all. Figure 8 shows that the

number of assignments increases at this point. This in-

dicates that the increased number of sorting stations

available plus the ability to reduce the service time are

both contributing to an increase in the number of flights

assigned at that time.

As the number of sorting stations increases further,

a point is soon reached where the total reduction de-

creases, but the mean reduction per reduced sorting sta-

tion goes up. This indicates that more and more flights

are being assigned without reduction in service. This

situation continues until the number of sorting stations

is sufficient to allow all of the assignments to be made,

at which point the total reduction in service decreases,

until all flights can eventually be assigned without a re-

duction in service time. This was also observed in Ascó

et al (2011).

In the OST ordering method, the mean reduction

is relatively stable, whereas the total reduction is con-

stantly decreasing, indicating that the number of sort-

ing stations with reduced service is decreasing over the

same period. Soon after the LMAP, when there are 20

sorting stations, a point is reached where the number

of sorting stations is sufficient to allow all of the assign-

ments to be made (see Figure 8), with ever decreasing

reductions in service time as the number of sorting sta-

tions is further increased, so that the total reduction in

service and the mean reduction in service times both de-

crease, until eventually all flights can be assigned with

no reduction in service time.
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4.7 Comparison between Constructive Solutions and

CPLEX

To compare the quality of the solutions obtained when

applying the different constructive algorithms with other

approaches presented in this and the following sections,

a weighted sum of the three main objectives (Maximise

Assignment of Baggage Sorting Stations 2.7.1, Min-

imise Distance 2.7.2 and Minimise Reduction in Service

2.7.3) was considered, Equation 11. The weights used

are the same as those presented in Ascó et al (2012)

with the weights of W1 = 90, W2 = 1 and W3 = 0.008

respectively, which give an appropriate balance between

these objectives.

f = W1 ·
N∑
i=1

M∑
j=1

yij −W2 ·
M∑
j=1

rj

−W3 ·
N∑
i=1

Cj ·
N∑
j=1

yij · dij

 (11)

For an objective quality assessment, the solutions

obtained when applying the constructive algorithms were

compared both with the Upper Bound and the best so-

lutions obtained from applying CPLEX to the Integer

Linear Programming (ILP) representation of the Air-

port Baggage Sorting Station Problem (ABSSP), pre-

sented in Ascó et al (2012), running on a 2.4GHz Win-

dows 7, 64bit machine with 4GB RAM for 1 hour for

each group of baggage sorting stations (BSSs) for a 3-

pier topology. Initially, the study was conducted for the

two original data sets presented in Ascó et al (2011)

composed of 219 flights and 270 flights respectively us-

ing CPLEX. The results are presented in this and the

next sections. Then the study was extended to the data

sets presented in Ascó et al (2012) and was compared

against the best solution obtained by a Genetic Algo-

rithm (GA), the results of which are presented in Sec-

tions 4.9 and 4.10.

Figure 14 shows the improvement percentage in the

fitness of the results for different constructive algorithms

compared to the solution obtained from CPLEX with

a 1 hour run. Different numbers of BSSs were assessed.

The scale is from the worst constructed solution (fw, 0%)

to the Upper Bound obtained by CPLEX (fUB , 100%)

and the values are calculated using Equation 12. The

best constructed solution is also shown for compari-

son, labelled ‘Best’, which refers to the best solution

of all of the solutions obtained by application of the

constructive algorithms described in this paper for the

given number of BSSs. It should be noted that 100%

improvement represents solutions which reach the up-

per bound for their specific number of baggage sorting

stations, whereas 0% corresponds to no improvement

over the worst initial (constructed) solution. We note

that application of the constructive algorithms to ob-

tain the solutions requires no more than 9 milliseconds

per solution whereas CPLEX was run for 1 hour.

%Fitness =
f − fw
fUB − fw

· 100 (12)

Fig. 14 Percentage improvement in fitness for 219 flights.

Three areas can be clearly identified with differ-

ent comparative fitness between the constructive algo-

rithms and CPLEX. For a very low number of BSSs

(N � Lower Maximum Assignment Point (LMAP))

the solutions obtained by CPLEX after one hour are

better that any of the solutions obtained by applying

the different constructive algorithms. There is then a

region from a low number of BSSs (∼ 51, below the

LMAP) to a higher number (∼ 92, between the LMAP

and Upper Maximum Assignment Point (UMAP)) where

CPLEX does not do as well as any of the constructive

algorithms (for a mere 9 milliseconds run against 1 hour

for CPLEX solutions). Finally, for a number of BSSs

near the UMAP, both methods provide solutions with

similar or equal fitness.

4.8 Using Constructive Solutions for CPLEX

Figure 15 shows the effect of the final solution on the

fitness (Equation 11) from CPLEX when using different

types of initial solution. Where ‘Best’ and ‘Worst’ are

defined in the same way as for Figure 14. These results

show that feeding CPLEX with any of the solutions

obtained by application of the constructive algorithms

improves the final solution obtained by CPLEX, with

the exception of the worst generated solution, which

when fed to CPLEX may not assist in finding better

solutions any earlier, as can be seen in the case of 102

BSSs. In the two areas where CPLEX performs well

when compared with the constructive algorithms, the
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use of these constructive solutions does not in some

cases seem to help CPLEX find fitter solutions.

Fig. 15 Percentage improvement in fitness for 219 flights.

It is also interesting to examine the effect of using

the different solutions obtained from the constructive

algorithms in reaching the final solution as CPLEX pro-

gresses in the search, as can be seen in Figure 16. The

initial solution fed to CPLEX appears to make a huge

difference to CPLEX, allowing it to reach better solu-

tions earlier, and in many cases improving the fitness

achieved by the final solution after an hour. It can also

be seen that some of the constructive solutions provide

very good solutions, which CPLEX is unable to improve

upon, as is shown in Figure 15.

Fig. 16 CPLEX progress fitness for 83 BSSs (LMAP) and
219 flights.

4.9 Constructive Solutions and an Evolutionary

Algorithm

Evolutionary Algorithms (EAs) are population based

algorithms, part of the group of metaheuristics which

use the solutions within a population to guide the search,

hopefully to the optimal solution(s). For the purpose of

assessing the potential value of the constructive solu-

tions obtained here, new experiments were designed and

executed for an implementation of the Canonical Ge-

netic Algorithm (CGA) using the Evolutionary Com-

putation Java library (ECJ) (Java-based Evolutionary

Computation research system, reviewed in Wilson et al

(2004)). The data sets used were those provided by

NATS for London Heathrow airport Terminal 1. The

operators used are 1-point random crossover and ran-

dom mutation.

An integer encoding of the Airport Baggage Sorting

Station Assignment Problem (ABSSAP) was also used

with randomly generated initial solutions and a popu-

lation size of 1,000. The average fitness from the solu-

tions obtained by the GA implemented together with

the constructive algorithm solution fitness is shown in

Figures 17 and 18. The fitness for the GA in such figures

corresponds to the average fitness for all of the best so-

lutions found amongst the thirty instances run. These

results show that the constructive algorithms which

were used generally provided better solutions than the

CGA throughout all of the ranges of numbers of bag-

gage sorting stations.

Fig. 17 Fitness for 194 flights, a 3-pier topology and 48
stands for CGA and some constructive algorithms.

Fig. 18 Fitness for 163 flights, a 3-pier topology and 48
stands for CGA and some constructive algorithms.
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4.10 Using Constructive Solutions for the

Evolutionary Algorithm

Further experiments were run to identify whether the

use of the constructive solutions as part of the initial

population for the CGA may help the algorithm to

reach fitter solutions. The CGA was run thirty times for

each number of BSSs, for a population size of 1,000, us-

ing both an initial population of random solutions and

the best solutions obtained from applying the construc-

tive algorithm 2,000 times. The ‘Best’ refers to the best

solution amongst all of those generated using the con-

structive algorithms described. The results show that

this approach is not detrimental to the algorithm, and

in some cases it is seen to help the CGA to reach fitter

solutions, as shown for number of BSSs lower than 17

in Figures 19 and 20.

Fig. 19 Fitness for 194 flights, a 3-pier topology and 48
stands for some constructive algorithms and CGA for dif-
ferent initial population.

Fig. 20 Fitness for 163 flights, a 3-pier topology and 48
stands for some constructive algorithms and CGA for dif-
ferent initial populations.

The solutions provided by these constructive algo-

rithms have also been used in Ascó et al (2012) to ini-

tialise some metaheuristics, and were shown to help in

finding fitter solutions.

5 Conclusions

It was observed that the behaviour of the assignment

methods (flight ordering, sorting station assignment al-

gorithm and selection method) depends upon the rela-

tionship between the number of flights and the num-

ber of sorting stations. It was also observed that the

different methods have different effects and can prefer

different objectives. It was previously observed in Ascó

et al (2011) that a data set with higher flight density

(the number of flights requiring service at any time of

the day) but fewer flights was more problematic than

one with more flights but lower density which, as ex-

pected, implied that the flight density was more impor-

tant than the total number of flights when determining

the number of sorting stations required throughout the

day. Some points have been identified in this paper, in

terms of the number of baggage sorting stations, where

the performance of the algorithms changes, and it has

been noted that these depend upon the distribution of

the flights over time. It has also been noted that the

choice of whether or not to allow reductions in service

time can affect the relative efficacy of the algorithms. In

particular, if reductions in service time are to be per-

mitted, then it may be better to select an algorithm

which will not minimise the gap sizes, since these are

then less likely to be available for use by other flights af-

ter application of the service time reductions. Together,

these effects show that the appropriate algorithm for

use depends not only upon the objective which is under

consideration but also upon the problem characteristics

and the relative flight density in relation to the number

of sorting stations available.

Given the differences between Order by Starting

Time (OST) and Order by Departure Time Lookahead

and Improvement (ODTLI), the use of a generalisation

of the ‘Flight Ordering Methods’ which uses a point in

time between the starting and end flight service times

to order them, namely Order Between Times (OBT), as

expressed in Equation 13, is also suggested for future

study. α = 0 is equivalent to the OST, whereas α = 1

is equivalent to the Order by Departure Time (ODT),

thus by changing the α it is possible to cover the ‘Flight

Ordering Methods’ presented in this paper and others.

tOBT
j = α ∗ (ej − tj), α ∈ [0 . . . 1] (13)

The aim of this research was not to identify the per-

fect constructive algorithm which would meet all objec-

tives, but to gain insights into the differing behaviour

of the algorithms, particularly when service time reduc-

tions are permitted. Further experiments showed the

potential of using these solutions to aid other solution
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approaches. Subsequent research, Ascó et al (2012), has

also used these insights to generate better initial so-

lutions for use with perturbative algorithms (particu-

larly other Genetic Algorithms, Tabu Search and other

Metaheuristics), improving the quality of the solutions

which can be generated within very limited search times.

The ability to quickly generate a variety of solutions

which have different trade-offs between the objectives

has also been particularly useful.
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