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Abstract. Airport baggage sorting stations are the places at which the
baggage for each flight accumulates for loading into containers or directly
onto the aircraft. In this paper the multi-objective and multi-constraint
problem of assigning Baggage Sorting Stations in an Airport is defined
and an Evolutionary Algorithm is presented, which uses a number of
different operators to find good solutions to the problem. The contribu-
tions of these different operators are studied, giving insights into how the
appropriate choice may depend upon the specifics of the problem at the
time.

1 Introduction

Passengers at an airport proceed to the check-in desks assigned to their flight
where they leave their baggage to be processed. The baggage enters the baggage
system at this point, where it is processed and delivered to baggage sorting sta-
tions (BSSs). There it is temporarily stored before being sorted and transported
by carts to the aircraft.

This paper considers the task of assigning baggage sorting stations to flights
at an airport, which will already have been allocated to stands along piers around
the terminals. The aim is to maximise the number of flights which are assigned to
sorting stations, using the sorting stations which are most conveniently situated
for the stands when possible, while ensuring that the gaps between sorting station
usage are at least as large as a specified buffer time, to cope with real world
perturbations and uncertainties.

Research into a similar problem was previously performed by [1], who de-
scribed the problem and applied the activity selection algorithm. In [2], we stud-
ied the quality of solutions which could be obtained from a variety of constructive
algorithms. Different algorithms were found to prefer different objectives and a
selection of these constructed solutions has been used for initial solutions of the
evolutionary algorithm which is described in this paper.

The Airport Baggage Sorting Station Assignment Problem (ABSSP) has
many similarities to the Airport Gate Assignment Problem (AGAP), which has
had considerable study in the past. The basic gate assignment problem is a
quadratic assignment problem, shown in [3] to be NP-hard. [4] used a Genetic
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Algorithm (GA) for the AGAP with uniform crossover. [5] applied a GA, using an
elitist selection method, with an additional mechanism composed of mutation
operators to repair the infeasible solutions which resulted from applying the
crossover operator.

We initially applied CPLEX and Gurobi to the Integer Linear Programming
(ILP) representation of the ABSSP, both with and without an initial solution
chosen as the fittest of the constructed solutions presented in [2]. Both systems
were allowed a maximum runtime of 24 hours. Although CPLEX ran out of
memory (using over 84GB of disk space) after 16hrs on a 2.4GHz Windows 7,
64bit machine with 4GB RAM. Results were inadequate, so we developed the
evolutionary algorithm which is described in this paper. This has turned out to
perform much better, even with a much shorter search time.

2 Airport Baggage Sorting Station Problem

Aircraft are usually parked at their allocated stand, around an airport terminal.
Two example layouts which are considered in this paper are shown in Figure
1, showing aircraft parked around the piers of a terminal, and illustrating the
position of baggage sorting stations at the bases of the piers. The aim of this work
is to allocate each flight to a sorting station. In general, it is better to allocate a
flight to a sorting station on the same pier, but it is not usually important which
of the sorting stations in that group the flight is allocated to. Furthermore, a
minimum gap should be ensured between flights.

(a) 3 piers and 48 stands. (b) 4 piers and 46 stands.

Fig. 1. Topologies.

Let i ∈ {0, . . . , N} denote a sorting station where sorting station 0 represents
a dummy sorting station to which flights are assigned, if they cannot be assigned
to a real sorting station. Let j ∈ {1, . . . ,M} denote a flight. Let Tj denote the
required service time for flight j (1 hour for short haul and 1 1

3 hours for long
haul) and let Bj denote the desired buffer time for flight j - the time for which its



sorting station should be idle prior to this flight being serviced. Bj is assumed to
be 15 minutes for short haul and 30 minutes for long haul flights. Let ej denote
the end service time for flight j and let tj denote the target starting service
time for flight j (tj = ej − Tj − Bj). Let yij be a decision variable defined to
be 1 if flight j is assigned to sorting station i, and 0 otherwise. The aim is to
find yij values such that the objective function (4) is maximised, subject to the
constraints expressed by (1), (2) and (3).

N∑
i=0

yij = 1 ∀j ∈ {1, . . . ,M} (1)

yij + yil ≤ 1 ∀i ∈ {1, . . . , N}, j 6= l, tl +Bl < ej ≤ el (2)

Equation (1) states that each flight can be assigned either to exactly one real
sorting station or to the dummy sorting station. Inequality (2) states that flights
cannot be assigned to the same real sorting station if their service times overlap.

If the service periods of two flights are closer together than the buffer time
of the second flight, then they can still be allocated to the same sorting station,
but the buffer time will have to be reduced. The required reduction in buffer
time for flight l is denoted rl and can be calculated using (3), where 0 ≤ rl ≤
Bl ∀ l ∈ {1, . . . ,M}.

rl ≥ (yij + yil − 1) · (ej − tl) ∀i ∈ {1, . . . , N} (3)

Although this is inherently a multi-objective problem, the importance of
ensuring maximal assignment of flights to sorting stations (top priority) and
the relative importance of keeping reasonable buffer times (second priority) al-
lows these objectives to be combined into a single compound objective (4) with
weights W1, W2 and W3 chosen to implement these priorities.

max

W1 ·
N∑
i=1

M∑
j=1

yij −W2 ·
M∑
j=1

rj −W3 ·
N∑
i=1

Cj · M∑
j=1

yij · dij

 (4)

The first element in (4) aims to maximise the assignment of flights to sorting
stations, the second aims to minimise the reduction in buffer times and the third
aims to minimise some distance cost associated with the assignments, where Cj
is a factor related to the amount of baggage for flight j (assumed to be 1 in
all cases for this paper) and dij is a measure of the distance or cost incurred
from assigning sorting station i to flight j. This aims to ensure that flights are
allocated to appropriate sorting stations.

3 Algorithm

In this paper we describe an Evolutionary Algorithm which we have developed for
solving the Airport Baggage Sorting Station Assignment Problem (ABSSAP).



Our algorithm uses a number of custom problem-specific operators and we have
categorised them as either mutation operators, if they modify a single existing
solution, or crossover operators, if they combine multiple solutions. We describe
the algorithm, selection methods and operators in this section.

3.1 Steady State Evolutionary Algorithm

A steady state GA does not replace all the parent solutions by their children as in
generational GAs. In our Steady State Evolutionary Algorithm (SSEA) the next
population is obtained by applying the population selector (Sp) to the current
population. One of the operators is applied to the required number of individuals
which are chosen by applying the member selector (Sm) to the population. This
selection and modification is called an iteration and is repeated L times for each
population. The newly obtained individuals are then added to the population
which will then constitute the new current population and a population selector
is used to determine which population members to keep. This is repeated until
the termination condition is reached, as shown in Algorithm 1.

Algorithm 1: Steady State Evolutionary Algorithm

input : Initial population P0

input : Number of iterations in a generation L ∈ ZZ+, L > 0
input : Operators; O1 : p1, O2 : p2, · · · and OR : pR where

0 < pk ≤ 1 ∀ k ∈ (1, · · · , R) and
∑R

k=1
pk = 1

input : Population selector, Sp

input : Population member(s) selector, Sm

1 begin
2 P ← P0; // initialise population

3 repeat
4 P ← Sp(P ); // get the current population for this generation

5 Pt ← ∅; // empty temporary population

6 i← 0; // initialise the generation

7 repeat
8 Select randomly an operator, Ok; // roulette wheel selector

9 Q← Sm(P,Ok); // select population member(s)

10 Q← Ok(Q); // generate new solution(s)

11 Pt ← Pt ∪Q; // add new solution(s)

12 i← i + 1;

13 until i = L or Termination Condition;
14 P ← P ∪ Pt; // add new solutions to the current population

15 until Termination Condition;
16 return P ;

17 end



3.2 Population Selectors

The population selector (Sp) has the responsibility of selecting the solutions
within the current population that will form part in the next generation. A
comprehensive analysis of selection schemes used in Evolutionary Algorithms
can be found in [6]. We present below an overview of the population selection
algorithms used.

Elitist Sampling (ES): Select the fittest µ population members from the
current population.

Stochastic Universal Modified Sampling (SUMS): Stochastic Univer-
sal Sampling was introduced by [7]. SUMS was used since the order of mag-
nitude of the fitness values are much larger than the differences between the
fitness values, so it was not appropriate to use Stochastic Universal Sampling.
The population members are mapped by sections, as in Roulette Tournament

Selection, [pi−1, pi) with p0 = 0 for pi =

∑i

j=1
fj−F∑λ

j=1
fj−F

where F = fλ−(fλ−1 − fλ),

fj corresponds to the fitness of solution j and λ is the current population size.
µ individuals are selected by obtaining an initial random number (rnd) within
[0, 1

µ ) and subsequent ones spread 1
µ from the previous one. Solution i is selected

once per each pi−1 ≤ rnd+ j−1
µ < pi∀j ∈ {1, . . . , µ}.

Remainder Stochastic Sampling (RSS): This method was also inves-
tigated due to its diversity retention properties (see [8]), but provided worse
results, so we have not discussed the results in this paper.

3.3 Member Selectors

The member selectors (Sm) distribute the chances that the individuals have to
take part in the production of new offsprings in a generation. The roulette wheel
selection method was used as the member selector on this paper.

3.4 Operators

Whenever a time has to be determined (for instance for a start or end of a time
range) a uniform random variable is used so that any time within the time range
of the flights under consideration has an equal probability of being chosen.

Mutation. Guided mutation operators are introduced here which are based
upon local search operators which guarantee to generate feasible solutions.

Dummy Single Exchange Mutation Operator (DSEMO). This operator is equiv-
alent to the ‘Apron Exchange Move’ used by [9] and [10]. A solution is selected
from the population by the member selector (Sm) then a new solution is built by
moving a flight from the ‘dummy’ sorting station to a randomly selected sorting
station, potentially moving another flight back onto the ‘dummy’ sorting station
if it can no longer fit in. This operator may increase the number of assignments
if the operation does not move a flight back onto the ‘dummy’ sorting station.
It requires some flights to be unassigned in the parent solution.



Multi Exchange Mutation Operators. A time period is randomly selected, trs to
tre. All assignments for which the base service times are entirely within the time
period are then moved to the next sorting station in the set, as shown in Figure 2,
as long as they will fit. These operators generalise the ‘Interval Exchange Move’
which was presented by [10], and cannot increase the number of assignments.
Two variants have been developed:

1. Multi Exchange with Fixed Number of Resources (MEFNRn): The number of
sorting stations to exchange flights between is fixed at n, where 2 ≤ n ≤ N .

2. Multi Exchange with Random Number of Resources (MERNRn): The number
of sorting stations to exchange flights between is randomly chosen each time,
between 2 and n, where 2 ≤ n ≤ N .

Fig. 2. Multi Exchange Mutation Operator.

Multi Exchange By Pier Mutation Operators. These operators are a specialised
case of the Multi Exchange Mutation Operators, where the sorting station selec-
tion element ensures that no two consecutive sorting stations in the set are on
the same pier. The idea is to improve the distance objective by encouraging the
movement of assignments between piers. Again, this operator cannot increase
the number of assignments. As for the Multi Exchange Mutation Operators, two
variants have been created: Multi Exchange By Pier with Fixed Number of Re-
sources (MEBPFNRn) and with Random Number of Resources (MEBPRNRn).

Range Multi Exchange Mutation Operators. These are the same as the Multi Ex-
change Mutation Operators. However they add an additional feasibility recovery
step when flights cannot be moved. Such flights are added to the set of flights
which will be considered for assignment to the next sorting station, potentially
reducing this number. Again, this operator cannot increase the number of as-
signments. As for the Multi Exchange Mutation Operators, two variants have
been created: Multi Exchange with Fixed Number of Resources (RMEFNRn) and
with Random Number of Resources (RMERNRn).

Crossover (reproduction). The crossover operators involve the generation
of new solutions from multiple parents. Each parent will be chosen using the
Population Member Selector (Sm) and multiple child solutions will be generated.



2-Point Crossover (C2P): Two points in time are randomly selected to generate
a time window. A child solution is created from each parent by re-assigning all
flights within the time window to the sorting station they were assigned to in
the other parent. Although the flight timings are identical across all solutions,
flights in the swapped region may overlap flights which are not swapped for some
sorting stations. Such overlapping flights in the swapped region are re-assigned
to other sorting stations, if possible, or assigned to the dummy sorting station
otherwise.

1-Point Crossover (C1P): This is a specific case of the above 2-Point Crossover,
where the window extends to the end time of the solution.

4 Results

Since it would be unrealistic to assume that baggage from a flight at a stand in
one terminal is serviced by a baggage sorting station in another terminal (e.g.
passengers usually go through security and board flights from the same terminal
at which their baggage was checked in), this paper is centred on a single terminal.

For this paper, we assumed that all flights require only one sorting station.
Two datasets, provided by NATS (formerly National Air Traffic Services) were
used, from 16th December 2009 (194 flights) and from 1st March 2010 (163
flights) for Heathrow terminal 1. All the experiments were executed for 800,000
iterations. The same random number generator was used throughout.

The Steady State Evolutionary Algorithm (SSEA) which was used in these
experiments had L = 1 and a population size of 30. The value of W1 was de-
termined by running initial experiments with our Evolutionary Algorithm (EA)
using different values, from 15 to 100, for the data set of 16th December 2009,
3-pier topology, a fixed W2 of 0.008 and W3 of 1. A value of W1 = 90 appeared
to give an appropriate balance between the objectives and was adopted. The
SSEAs were run with just one of the presented operators at a time, to show
their individual behaviour in the considered landscapes. A distance of 1unit is
assumed between sides of the same pier, 2units to move between piers and a
distance of zero is assumed for those assignments that are as close as possible.

The Lower Maximum Assignment Point (LMAP) is the minimum number
of sorting stations needed to assign all flights without buffer times. The Upper
Maximum Assignment Point (UMAP) is the minimum number of sorting stations
needed to assign all flights without reducing the service time. The LMAP and
UMAP points will be observed to be useful when interpreting the results.

4.1 Experiments

Figure 3(a) shows the percentage improvement in average fitness of the results
for the Multi Exchange with Fixed Number of Resources (MEFNRn) operator,
n ∈ {2, 3, 4, 9, 10}, with the population selectors Elitist (ES) and Stochastic
Universal Modified Sampling (SUMS), applied to different numbers of baggage



sorting stations (BSSs) with respect to the best initial solution (f bestIni , 0%) and
the Upper Bound obtained by CPLEX (fUB , 100%). The achieved improvements
range from 25% to over 55%, depending on the number of BSSs. It should be
noted that 100% improvement corresponds to solutions which reach the upper
bound for their specific case, whereas 0% corresponds to no improvement over
the best initial (constructed) solution.

(a) 4-pier and 46 stands.

(b) 3-pier and 48 stands.

Fig. 3. Improvement on average fitness for 194 flights, MEFNRn, n ∈ {2, 3, 4, 9, 10}.

When the number of sorting stations is lower than the Lower Maximum
Assignment Point (LMAP), it is impossible to fully assign all of the flights. Since
the initial solutions already provide at least one solution which is guaranteed to
achieve the maximum number of assignments for the given number of baggage
sorting stations ([2]), the EA can only improve upon this by improving the



‘distance’ and ‘reduction in service’ objectives. For example, it may be possible
to swap out flights in order to lower the reduction in service time. The results
show that the largest benefits in this region are due to the ability to swap which
flights are assigned, however, in practice it is unlikely for an airport to operate
in this mode - where some flights cannot actually be serviced.

In contrast, full assignment can be achieved between the LMAP and Upper
Maximum Assignment Point (UMAP), but only by reducing the service times.
As long as there are solutions with unassigned flights, it may be advantageous
to use the operators which use the dummy sorting station. These operators do
not contribute once all solutions have full assignment, and should no longer be
used.

Finally, after the UMAP full assignment can be achieved without reduction in
service time so the only objective that contributes to the fitness is the distance.
The fitness is still improved by the EA but by a much smaller amount since the
weights and the values of this objective are much lower than in the others.

All of the operators always improve upon the initial solutions by at least
10% except for the crossover and DSEMO operators (Figure 4(a)). Crossover
alone could not always find improvements over the constructed initial solutions,
since crossover operators are dependent upon the quality of the building blocks
which are already present in the population. If the current solutions do not
contain many useful differences, then the crossover will not be able to improve the
solution. Similarly initial solutions of lower fitness may contain better building
blocks from the point of view of the crossover operator, but may be removed too
early in the search.

When N < LMAP , DSEMO provided better solutions in most cases than all
of the crossover operators which are considered in this paper, irrespective of the
selection method used, but the solutions are of lower fitness than those obtained
by the other considered mutation operators.

For N ≥ LMAP the solutions obtained by DSEMO are generally no better
than the initial solution and the main reason for this is that the highly fit so-
lutions in this area will already have all of their flights assigned. However, not
all individuals in the population will have maximal assignments, so in some of
the instances, where the operator is applied to a lower fitness solution, doing so
can reach better areas of the search space and achieve a better fitness. Thus,
the use of DSEMO may help the algorithm to reach different parts of the search
space when the initial population is composed of more diverse solutions. These
results imply that it may be wise to adjust the use of DSEMO dynamically to
accommodate to the changing structure of the population.

With the Multi Exchange with Fixed Number of Resources (MEFNRn), the
results observed for the different population selectors do not differ much on
average for different values of n. This is not the case with the Range Multi
Exchange with Fixed Number of Resources (RMEFNRn), where the obtained
solutions deteriorate as n increases, so n = 2 and n = 3 provided the best
solutions, as shown in Figure 4(b). When considering the execution speed of using



(a) C1P, C2P and DSEMO.

(b) RMEFNRn, n ∈ {2, 3, 4, 9, 10}.

Fig. 4. Improvement on average fitness for 4-pier and 194 flights.

these operators, lower values of n are also faster, as is also true for MEFNRn
and MEBPFNRn.

Figures 3(a) and 4(b) show that SUMS provides better average results than
an elitist strategy, which could be considered to be a consequence of SUMS
preserving the diversity better than the ES.

In general the results did not differ across airport topologies (i.e. 3 or 4
pier models) or days (i.e. number of flights), however there were some minor
differences. For example, in the 3-pier topology, with 194 flights, shown in Figure
3(b), Elitist selection performed better than SUMS for 17 sorting stations and
15 sorting stations (163 flights). We believe that this is because the constructive
algorithms perform well on these problems, so that the initial population contains
solutions which are much better, and the diversity which SUMS introduces is not
beneficial for the search. This behaviour is not present in the 4-pier topology, for



either of the datasets for the range of sorting stations studied, shown in Figure
3(a).

5 Conclusions

The aim of this research was to gain more general insights into the appropriate
operator choices, especially since some operators (such as crossover) are slower
than others to apply, and the appropriate operator percentages may differ de-
pending upon the situation.

The Dummy Single Exchange Mutation Operator (DSEMO) extends the
search to other areas of the search space which may help to improve the solutions,
but it is only useful when there are unassigned flights, eg. for N < LMAP.
Whereas for N ≥ LMAP, the DSEMO should only be used when the selected
solution from the population has unassigned flights, most commonly nearer the
start of the search.

Given the diverse ways the studied operators work it is expected that their
combination will further improve the solutions. Furthermore, the combination
of different operators together with an adaptive method of selecting operators
seems to be the most promising approach for future work.

In further research we plan to shed some light upon the effects of changing
the value of L, both statically and dynamically, as well as to consider statically
and dynamically changing the proportions of usage of different operators.
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