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Although London Heathrow is one of the busiest airports in the world, it has only one runway for use by
departing aircraft at any time. Separations are required between each pair of aircraft at take-off—depending

on their routes, weights, and speeds—to ensure safety. Efficient scheduling of the aircraft for take-off can reduce
the total separations and increase throughput. A runway controller is responsible for take-off scheduling. This is
a very intensive job with responsibility for all communication with aircraft and continuous monitoring to assure
safety. The high workload limits the number of aircraft that the controller can take account of when scheduling.
The geometry of the runway holding points adds physical constraints to the reordering of aircraft that are
usually ignored in the academic literature. We present models for evaluating a schedule and determining the
effects of the physical constraints. We propose a hybrid metaheuristic system that takes account of more aircraft
than a human controller can handle, and so can aid the runway controller by recommending schedules that
anticipate some future problems. We present results to show the effectiveness of this system, and we evaluate
those results against real-world schedules.
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1. Introduction
London Heathrow Airport is one of the busiest air-
ports in the world, but it is situated on an extremely
small area of land, for such a major airport. For rea-
sons of passenger and airline preferences, traffic at
the airport is not evenly spread throughout the day.
Heathrow consequently suffers from congestion at
certain times of the day.

The throughput of an airport is often measured as
the total number of take-offs and landings per hour.
There are two parallel runways at Heathrow. Newell
(1979) showed that the best throughput for this con-
figuration is gained by using both runways for both
arrivals and departures. However, as a result of a local
agreement to control noise, it is only possible to use
one runway at a time for departures at Heathrow.

A symbolic representation of the layout of the air-
port is given in Figure 1. The two runways can be
used in either direction, depending upon the direction
of the wind. The runway name, labelled in Figure 1,
depends upon the current direction of use. For exam-
ple, the northern runway is called 27R when used
by aircraft taking off or landing heading west. There
are four terminals at London Heathrow, labelled T1

to T4 in Figure 1, although a fifth is currently being
built. The departure system involves a ground con-
troller directing aircraft from the stands at the termi-
nals, around the taxiways, to holding points, labelled
HP in Figure 1, near the end of the current departure
runway.

There are many similarities between the departure
systems of the major airports of the world. The depar-
ture flow at Logan Airport was examined in Idris
et al. (1998, 1999), comparing it to other major air-
ports. Various flow constraints upon the departure
operations were identified, and the runway was seen
to be the key constraint. A queuing model was pro-
posed in Idris et al. (2002) to better predict the time
from the stand to take-off, identifying and utilising
the fact that the runway represents the bottleneck in
the departure system.

At the departure runway, separations need to be
imposed between aircraft taking off to ensure safety
and control congestion. The minimum permissible
separation between two aircraft depends upon the
weight classes, departure routes, and speeds of the air-
craft. Changing the order of take-off will often change
the separations that need to be imposed between
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Figure 1 The Layout of London Heathrow Airport

aircraft, and hence affect the throughput of the depar-
ture runway. It is, therefore, important to attain a take-
off order that will avoid large separations, helping to
maintain a high throughput on the runway and low
delays for aircraft. This problem is often referred to as
the departure problem. At Heathrow, the variance in taxi
times, difficulty in predicting in advance the time at
which aircraft will be ready for pushback, and the con-
tention for the stands, where unnecessarily holding an
aircraft at a stand may deny that stand to an arrival
that needs it, collaborate to ensure that it is far more
practical to reorder the aircraft at the holding points
than to attempt to do so at the stands.

A runway controller is responsible for reordering
the aircraft within the holding points. The structure
of the holding point determines what reordering can
be performed and how difficult the reordering is to
achieve. The runway controller is responsible for all
communication with aircraft using the runway, and
for continual monitoring to ensure safety. The task
of sequencing is currently performed manually, with
flight progress strips that may be used as “working
memory.” The speed at which decisions need to be
made in this real-time system limits the number of
aircraft that the controller can account for at any time.

A number of researchers have looked at the depar-
ture problem in the past. Anagnostakis et al. (2000)
and Anagnostakis and Clarke (2002, 2003) analysed
the problem and proposed a two-stage departure
planner. Anagnostakis et al. (2001) proposed a search
tree to solve the problem, and branch and bound or
an A∗ algorithm were recommended for trimming the
tree. Trivizas (1998) suggested a dynamic program-
ming approach to solve the departure-order problem,
substantially reducing the search space by limiting
the possible number of aircraft that are considered
for any place in the schedule. At Heathrow, both the
manually produced and our automatically generated
schedules often require an aircraft to move forward
or backward up to seven or more places in a take-
off schedule. Van Leeuwen, Hesselink, and Rohling

(2002) presented a constraint satisfaction-based model
for the departure problem. However, the problems
that were considered were much smaller than the
Heathrow departure rate dictates.

The effects of one of the simplified holding-point
structures at Heathrow airport were considered in
Craig et al. (2001), and a dynamic programming
solution for scheduling take-offs was given. As the
flexibility of the holding points and the number of
possible positions for aircraft increase, the feasibility
of a dynamic programming approach, accounting for
aircraft positions, decreases. The holding points at
Heathrow are a lot more flexible than the one pre-
sented in Craig et al. (2001), making the solution space
prohibitively large. We presented a solution method
for a simplified problem in Atkin et al. (2004), includ-
ing the effects of the holding-point structures.

There are some similarities (but also important dif-
ferences) between the arrival and departure processes
for the runways at an airport. A genetic algorithm
was presented in Abela et al. (1993) to give an approx-
imate solution for the arrivals problem for a set of
aircraft with landing time windows, and a branch-
and-bound algorithm was presented for solving the
arrival problem exactly. Mixed-integer zero-one for-
mulations were presented for the problem in Beasley
et al. (2000) and genetic algorithms were shown to be
effective in Beasley, Sonander, and Havelock (2001).
Ernst, Krishnamoorthy, and Storer (1999) used a
branch-and-bound algorithm to determine an arrival
order for aircraft, using a network simplex method to
determine optimal arrival times for any partial order-
ing of aircraft. Bianco, Dell’Olma, and Giordani (1999)
showed the equivalency to the asymmetric travelling
salesman problem (ATSP) with release dates as long
as separations only needed to be considered between
adjacent aircraft. They presented heuristic algorithms
for solving the problem.

The differences between the arrival and departure
problems lie in the details of the separation rules,
constraints, and objective functions. The ATSP equiv-
alence does not hold for the departure problem at
Heathrow because the flight time of an aircraft tak-
ing off can be affected by more than just the immedi-
ately preceding flight. An example of this can be seen
in §4.4.

To increase the throughput of the departure process
at Heathrow, it is vital to increase the throughput of
the departure runway. There are important constraints
at London Heathrow Airport that are not normally
considered in the departure problem as it is presented
in the current scientific literature. We will identify
these in the problem description below. We will then
present our solution method for the problem and a
model to both predict take-off times for aircraft and
to calculate a resultant cost for a take-off schedule.
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Finally, we will present some results to show the effi-
cacy of our approach and will draw some conclusions.

We intend to answer two questions in this paper.
First, can a computerised decision-support system
solve the departure problem at Heathrow in a time
fast enough to be of use? Second, would a decision-
support system actually be able to help the controllers
improve upon what they achieve manually?

2. Problem Description
The objective of this research is to increase the through-
put of the departure runway without negatively affect-
ing safety, while satisfying the various constraints on
the reordering detailed below. We propose an auto-
mated advisory system to help the runway controller
to obtain take-off orders that would improve the
throughput and reduce delay.

The throughput of the runway is limited by the sep-
arations that must be enforced between aircraft tak-
ing off. Reordering aircraft can often reduce the total
separations needed in the take-off schedule and so
increase the throughput of the runway. There are var-
ious constraints on the reordering.

When aircraft take off, they have to wait for the
wake vortices left by earlier aircraft to dissipate.
As larger aircraft create stronger wake vortices and
lighter aircraft are more affected by them, a larger
separation is required whenever a lighter-category
aircraft follows a heavier-category aircraft. Addition-
ally, aircraft depart along fixed departure routes,
called standard instrument departure routes (SIDs).
To ensure that aircraft will have the correct in-flight
separation and that airspace is not congested, the fre-
quency of departures along each SID and group of
SIDs is controlled. This is achieved by applying a min-
imum separation between aircraft, depending on their
SID route and speed group.

Some aircraft are assigned departure windows to
avoid congestion en route and at busy destination air-
ports. This window is based upon a calculated time of
take-off (CTOT), which specifies a target time for take-
off. Aircraft cannot take off more than five minutes
before this target time or more than 10 minutes after
the target time, giving a 15-minute take-off window.
At Heathrow, specific rules are in place to allow exten-
sions of up to five minutes to be arranged for a few
aircraft a day. Although these extensions should be
avoided wherever possible, using one of these exten-
sions is by far preferable to having to arrange a new
CTOT for an aircraft.

To improve the throughput and ensure compliance
with CTOTs, the aircraft are reordered within the
holding points by a runway controller. The configu-
ration of the holding points at the ends of the run-
ways, which are different at each runway end, will

determine what reordering operations can take place
and the costs, in terms of time and effort, involved
in each operation. The holding-point structures can
be considered to be one or more entrance queues to
some manoeuvring space before the aircraft enter the
runway.

A decision-support system for the runway con-
troller must ensure that any reordering suggested is
not only possible, given the physical holding-point
restrictions, but also that it will not require excessive
time and effort from the controller or pilots involved.
It is also desirable to control inequitable positional
delay in the take-off queue. If two aircraft have sim-
ilar characteristics, it is often preferable to schedule
the one that arrived at the holding point first to take
off first. Additionally, some aircraft have characteris-
tics that will usually mean a larger separation either
before or after them. The system must ensure that
these aircraft are not unduly penalised.

The departure problem at Heathrow is constantly
evolving as current aircraft take off and new aircraft
become available for sequencing. In deciding what
overtaking is required, a controller uses the knowl-
edge available at that time to make a decision. We
call this problem the static problem, determining what
to do by considering the attributes and positions of
the aircraft at any instant in time. The controller can
be considered to be solving a series of these static
problems, each slightly different from the last, as new
aircraft enter the system or aircraft react to the instruc-
tions of the controller. Any decision-support system
would have to be able to do the same thing, attempt-
ing to reorder the aircraft currently under consider-
ation, with imperfect knowledge of the aircraft that
may enter the system in the future, without unduly
constraining the possibilities for scheduling later air-
craft. The performance of the departure system will
be assessed not upon the solution of a static problem,
but upon the overall performance throughout the day,
so it is vital that decisions made in solving the static
problem do not have a deleterious long-term effect.
Furthermore, as we explain in §5.4.3, it is important
that there is some similarity between the solutions to
the static problems.

3. Solution Approach
We propose a hybrid approach that uses different
search methodologies to solve the static problem. Our
system includes aircraft as soon as they leave their
stands, and so includes both aircraft at the holding
point and those on the taxiways. Only the aircraft
actually in the holding point will be under the control
of the runway controller, so only these will have been
given any instructions. The aircraft on the taxiways
are included in the search to give the system infor-
mation about what is due to reach the holding point
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soon so that the scheduling of those aircraft already
in the holding point will not cause problems to the
later schedule, ensuring that the solution of the static
problems will provide a good solution to the dynamic
problem. Our objective function also aims to ensure
that the solution to the current static problem will
not overly constrain the scheduling of later aircraft.
We evaluate our system using tests that simulate the
dynamic behaviour of the real world, presenting a
series of static problems to the decision-support sys-
tem. Our system performs one search for each static
problem. Later searches change and refine the sug-
gested solution from earlier searches in response to
the changing circumstances.

In this paper, we present a hybridised metaheuristic
approach. The term “metaheuristic” describes a class
of algorithms that impose a higher-level control upon
a heuristic search, with the intention of avoiding the
search becoming stuck in a local optimum. A compre-
hensive introduction to metaheuristics can be found
in Glover and Kochenberger (2003) and Burke and
Kendall (2005). The search time to find a good take-
off order will be perceived by the runway controller
as a delay between the situation changing and the
decision-support system responding. It is, therefore,
vital that this delay be as low as possible. Metaheuris-
tic searches are ideal for this problem, as there is not
usually time for an exhaustive search to be performed
and the characteristics of the holding point make it
difficult to build a solution in the way a dynamic
programming or branch-and-bound approach would
require.

We use a metaheuristic called tabu search to search
for good take-off orders. Each order found by the tabu
search is tested to ensure that the reordering is feasi-
ble given the holding-point constraints, and is rejected
if not. Details of the search and the feasibility test are
given below.

3.1. Tabu Search
Tabu search was first introduced in Glover (1986) and
is covered extensively in Glover and Laguna (1997).
Since then it has been applied to many problems by
many different practitioners. An introductory tutorial
can be found in Gendreau and Potvin (2005). Like
any heuristic, the tabu search does not guarantee that
the globally optimal solution to the problem will be
found, but it usually finds a good solution. Indeed,
our results show that our application of it to this prob-
lem performs well even with a very short search time.

Our search considers the problem of finding the
best order for take-off for the aircraft currently under
consideration. A solution to the search is a take-off
order, i.e., a permutation of the aircraft under con-
sideration. Starting at an initial solution, the search
investigates different possible solutions by making in-
cremental changes to the current solution. The search

is initiated by generating 50 slightly different sched-
ules by making small changes to the initial solu-
tion, for instance, by swapping the take-off order of
two aircraft. The search then adopts the best of these
solutions as the new current solution and generates
another 50 different schedules based on this new solu-
tion. Again, the best of these schedules is adopted
as the new current solution and 50 more new sched-
ules are created based upon the new solution. This is
repeated until a stopping criterion is met. Section 3.2
gives much more detail about what is actually per-
formed within a search iteration.

The main problem with the search summarised
above is that it can very easily get stuck in locally
optimal solutions. The simplest example of this is
where there are two solutions, A and B, where A is
the best solution that can be reached from B and B
is the best solution that can be reached from A. The
simple search could easily cycle between the two
rather than exploring more of the potential solutions.
A tabu search helps to explicitly avoid this cycling
by preventing the search from immediately returning
to where it has been. After moving from A to B, the
search is forced to explore elsewhere, helping it to
escape these local optima and giving more possibility
of discovering better local optima or even the global
optimum.

Our tests move through the test data sets over time,
rerunning the search as the situation evolves and the
problem changes. The initial solution for each search
is generated by taking the best solution found by
the previous search and adding any new aircraft that
have subsequently entered the system, in the order
they are predicted to arrive at the holding point. This
solution is guaranteed to be feasible, as defined in
§3.4, as the solution to the previous search was fea-
sible and the addition of new aircraft to take-off in
arrival order requires no additional overtaking.

Each search is executed for 100 iterations, ensur-
ing that each completes in less than one second on
the test PC, a 2.4 GHz Pentium 4. Section 3.2 pro-
vides more detail about the implementation of the
tabu search, the moves that are used to investigate
the search space, the format of the tabu list, and the
work that has to be performed in each iteration of the
search. As the solution considers only a take-off order,
it is important to also verify that the required overtak-
ing is achievable and to determine how to perform it.
Section 3.2 also shows how this is performed, while
§§3.3 to 3.7 provide more detail about each step.

3.2. A Tabu Search Iteration
This section provides more detail about the steps
involved in each iteration of the tabu search, detailing
the relationship between the path allocation heuris-
tic, feasibility check heuristic, take-off time prediction
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model, and objective function; and how together they
enable a fast search for better take-off schedules. Each
iteration consists of the following steps:
Step 1. Randomly generate 50 new solutions by ap-

plying randomly chosen moves to the current solu-
tion. There is a 30% chance that a swap move will be
used, selecting two aircraft at random and exchanging
their positions in the schedule. There is a 50% chance
that a shift move will be used to move between two
and six aircraft forward or backward in the schedule.
Finally, there is a 20% chance that a purely random
reordering will be applied to a consecutive group of
between three and five aircraft.
Step 2. Assign holding-point paths to the aircraft in

each new solution and check for feasibility against
the holding-point structure. This is explained in detail
in §3.3.
Step 3. Test the feasibility of the reordering by feed-

ing the aircraft through a network model of the hold-
ing point. This is explained in detail in §3.4.
Step 4. For each schedule that was determined to

be feasible, use the model described in §4.4 to predict
a take-off time for each aircraft.
Step 5. Using the take-off times, evaluate a cost for

each schedule as described in §4.6.
Step 6. If the feasible solution of least cost is better

than the current best solution, then record it as the
best solution found so far, even if it involved a tabu
move.
Step 7. Adopt, as the new solution, the feasible

solution of least cost that did not involve a tabu move,
if there is one. Details of the move that is adopted
are stored in a tabu list, described below, to avoid the
move being reversed in the near future.

The tabu list stores information about the last 10
moves that were made. For each move, the initial po-
sition is stored for each of the aircraft that was moved.
Any move that places all of the aircraft that moved
back into their initial positions, therefore reversing the
effect of a move on the tabu list, is declared as tabu
and rejected.

As the tabu search only has to consider the take-
off order, the search space is far smaller than if it
included information about how the aircraft move
through the holding point. Also, as the cost of the
schedule is based on the take-off order, rather than
how it is attained, it is easier to design moves that
will move between good take-off orders in this case.
The selected moves reflect the characteristics of a
good schedule and make it easier to move between
good schedules in a single move. For example, where
northbound and southbound departures are alter-
nating, moving a single aircraft is much less likely
to obtain a better schedule than moving two air-
craft. Conversely, if the holding-point movement was
included in the search space, reversing the take-off

order of two aircraft may require a lot of change in the
movement of other aircraft within the holding point,
as well as the two concerned.

A large number of different moves are made avail-
able to the search in order to reduce the number of
local optima. A solution that is a local optimum for
one type of move may not be so for another type of
move. The percentage distribution of move selection
was determined experimentally by running the search
on separate test data and evaluating the performance
with different percentages of each move. The absence
of any of these three move types caused a significant
reduction in the performance on the test cases. Tests
with a high proportion of shift moves performed well,
and the randomisation moves improved the perfor-
mance when used in moderation. The tests indicated
that the search is not particularly sensitive to exact
percentage distributions of moves, however.

3.3. Path Assignment Heuristic
A heuristic is used to assign paths through the hold-
ing point to aircraft. The heuristic takes account of the
different complexities of the various paths for each
holding-point entrance and assigns a path based on
how quickly the aircraft needs to navigate the holding
point. Although the allocation heuristic is different
for each holding point, as the available paths differ, a
similar approach is used for each.

An example graph for the 27R holding point is
shown in Figure 2. Each node represents a valid posi-
tion for an aircraft. The arcs represent the transitions
that aircraft can make between nodes when moving
through the holding point. The graph is deliberately
overly restrictive to provide a conservative view of
feasibility.

A valid holding-point traversal path for an aircraft
consists of a sequence of nodes, where each adjacent
pair of nodes is joined by an arc, the first node being
an entrance node and the final node being the run-
way. We label the paths according to the nodes on
the path, where node R refers to the runway. Each
possible path has been discussed with an experienced
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Figure 2 An Example Holding-Point Network Structure for 27R
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runway controller to identify which paths it is possi-
ble to use and how desirable the use of each path is.

For example, an aircraft that enters the holding
point at node B could take a number of paths. BEHR
is the most straightforward path to the runway.
BEDGHR is a longer path, involving two right-angle
turns. This could be used, but is not favoured due
to the amount of time and work needed to make
the turns. BEFR is a short path, but it involves a
significant turn, so it is not desirable. BEFIJR is a
longer path, with fewer turns, and could be used by
an aircraft that needs to be delayed for a while—for
instance, to await the start of its CTOT. BEDHR is
not practical, so is eliminated as an option. BEDR is
a very short route, allowing aircraft to enter the run-
way further up than the end. This runway entrance is
close enough to the end of the runway to avoid spe-
cial considerations for intermediate entrances, but is
not desirable, especially for larger aircraft where the
pilot may require the use of the full runway.

Different path allocation heuristics can be used
to reflect different modes of operation, but we will
restrict our consideration here to the normal mode
of operation, used in the tests we performed for this
paper. To control the workload, we allow only the
paths BEHR, BEFIJR, and BEDR for aircraft that enter
at B. Similarly, we allow only ADHR, ADGHR, and
ADR for aircraft starting at A, and CFIJR and CFR
for aircraft starting at C. This ensures that none of
our schedules will require excessive manoeuvring by
aircraft.

Once the allowable paths have been determined,
the following heuristic is used to assign paths to air-
craft:
Step 1. If the aircraft is already in the holding point,

then keep the current path. This reflects the fact that
instructions will already have been given to the air-
craft.
Step 2. If the aircraft is overtaken by another air-

craft from the same entrance, and does not overtake
any aircraft from the same entrance, then assign a
slower path—for example, ADGHR, BEFIJR, or CFIJR.
Step 3. If the aircraft must overtake a number of air-

craft from the same entrance, or must overtake an air-
craft that is already overtaking another aircraft, then
the other runway entrance may be needed. In this
case, assign paths such as ADR or BEDR unless the
aircraft needs the full runway for take-off.
Step 4. If the aircraft overtakes other aircraft, then

assign the fast path—for example ADHR, BEHR,
or CFR.
Step 5. Otherwise, assign the default path—for

example, ADGHR, BEHR, CFR. These are usually the
fastest paths, but ADGHR is used because it is fast,
and using it maintains flexibility in case a later aircraft
needs to overtake.

This heuristic is very quick to apply and ensures
that the controllers and aircraft do not undergo un-
necessary workload. It also ensures that longer paths
are only ever allocated to aircraft that are overtaken,
and therefore have more time available to cross the
holding point. Both of these provide sensible prun-
ing of the solution space, removing solutions that
would be undesirable for reasons of workload, an
objective not covered by the objective function used
by the search. Because this system is intended for
decision-support for a runway controller, it is point-
less to suggest a schedule that the runway controller
would immediately reject.

The take-off schedule is designated to be infeasi-
ble if the path allocation heuristic is unable to assign
paths to the aircraft. In this case, the rest of the fea-
sibility check is not necessary. This only happens if
the desired reordering requires more overtaking than
is possible using the selected paths, or if it involves
a reallocation of a path to an aircraft for which the
traversal path has been fixed. In both cases, these
schedules can be considered to have been rejected on
the grounds of prohibitive workload.

3.4. The Feasibility Check
A directed graph representation has to be designed
for each holding-point structure. An example for the
27R holding point can be seen in Figure 2. The
holding-point model is used to verify the feasibility of
reordering the aircraft within the holding-point struc-
ture, feeding the aircraft through the holding-point
structure and ensuring that they can exit the structure
onto the runway in the desired take-off order. Each
node in the holding-point graph can contain a maxi-
mum of one aircraft, so an aircraft can only move if
the next node on its path is empty.

The feasibility check starts with a queue of aircraft
at each of the holding-point entrances, queued in the
order they are predicted to arrive at the entrance.
For aircraft already in the holding point, the feasibil-
ity check can be started with aircraft occupying the
node representing their current position in the hold-
ing point, or the next node they will enter if they
are between nodes. The experiments performed for
this paper did not make assumptions about where
aircraft were, and instead always started them from
the entrance queue. A live system at Heathrow would
have this information available from the ground radar.

Aircraft that have already taken off are left in the
feasibility check until they can have no more effect
upon the movement of aircraft currently being sched-
uled. This ensures that previously enforced holding-
point movement is still performed by aircraft in the
holding point. In all tests performed, a final feasibility
check was also executed at the end of the test, includ-
ing all aircraft in the data set, to validate the feasibility
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of the entire schedule. Additionally, the schedule can
be viewed using a graphical playback tool to ensure
that decisions were sensible from the point of view of
a controller.

The following algorithm is then used to determine
feasibility.

Algorithm 1.
Step 1. Place the first aircraft from each entrance

queue at its entrance node.
Step 2. Repeat until all aircraft have entered the

runway node.
Step 3. Iterate through each aircraft currently in the

graph.
Step 4. If the next node for the aircraft is empty,

and moving the aircraft will not block another aircraft,
then move the aircraft to the next node on its path.
Step 5. If the aircraft vacated an entrance node,

then move the next aircraft in the queue for that
entrance into the entrance node.
Step 6. End iteration of aircraft.
Step 7. If no aircraft moved, then declare the sched-

ule infeasible and end.
Step 8. End repeat.
Step 9. Declare the schedule feasible as all aircraft

reached the runway in order.

A fast method to ensure that blocking of other aircraft
does not occur is explained in §§3.6 and 3.7. Speed
is ensured by maintaining partial take-off orders at
each node and by performing many of the required
calculations for each holding point offline, reducing
the amount of work that needs to be performed at the
time of the feasibility check. By the end of the fea-
sibility check, every aircraft will have a known path
through the holding point, and the order of aircraft
passing each node in the holding point will have been
determined.

3.5. Traversal Times
The take-off time prediction model in §4.4 requires
information about the traversal time that aircraft
would be expected to need to cross the holding point.
This time can be estimated because both the current
position and the traversal path will be known for each
aircraft as it approaches the holding point. This infor-
mation is used to force the schedule to allow the air-
craft at least this long to traverse the holding point
and line up on the runway. We refer to this as a min-
imum holding-point traversal time because aircraft will
have at least this minimum time available. This time
should be a pessimistic estimate of how long the air-
craft will need to avoid wasted runway throughput
due to aircraft not lining up for take-off in time. These
values can be provided by controllers and from his-
torical data for the different combinations of current
position, path, and aircraft type.

In this paper, we assume an extremely pessimistic
value, far larger than would actually be required. We
require all aircraft on the most direct, fastest traversal
paths to have at least two minutes to make the traver-
sal. Because aircraft are only allocated to the slower
paths if they are overtaken, aircraft on the longer
paths will have at least three minutes to make the
traversal, the aircraft overtaking it will have at least
two minutes, and there will be at least a one-minute
separation between the overtaking aircraft taking off
and the overtaken aircraft following it.

Once aircraft are in the holding point, their traver-
sal paths are not changed. This ensures that the
minimum required traversal time will also be fixed.
Additionally, aircraft will always have at least a two-
minute warning of take-off because the first two min-
utes of the take-off schedule are fixed, so pilots would
be aware of any need to get to the runway quickly.

3.6. Path Suffixes and Partial Orders
It is important, when performing the feasibility check,
to be able to determine whether an aircraft can safely
enter the next node on its path without blocking
another aircraft from reaching the runway in time
for take-off. Here we explain a generic method that
uses automatically generated holding-point knowl-
edge, partly created offline, to provide two rules
that can easily check whether this is the case. Some
holding-point-specific additional rules may also be
needed, and we discuss this in more detail later.

We define a path suffix for a path and selected
node to be a set of nodes on a path beyond the
selected node. For example, the possible path suffixes
for Node E in Figure 2 are DR, DGHR, DHR, HR,
FR, and FIJR. For the workload reasons noted above,
only DR, HR, and FIJR would normally be used.
Because the possible paths are known before any
search begins, the path suffixes for each node, and
which paths they relate to, can be calculated offline
before any search is performed.

Where two or more paths do not diverge beyond a
node, they have the same path suffix at that node. For
example, ADGHR and BEDGHR both have the suffix
GHR at Node D. Aircraft on these paths must be in
the desired take-off order relative to each other prior
to entering this node because there is no possibility
for them to be reordered beyond that point. Once a
desired take-off order is known, the paths’ suffixes for
each node can be very quickly populated with partial
take-off orders by considering each aircraft in take-off
order and storing the aircraft at the end of the current
list for its path suffix for each node on its path. The
lists for each path suffix then form a partial ordering,
and an aircraft is only permitted to enter a node if it is
the next aircraft on its path suffix for that node. Take-
off order is ensured at the runway node, as it has only
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one path suffix, with no nodes, and all aircraft are on
this suffix in take-off order.

3.7. Blocking Other Suffixes
Given two aircraft on different path suffixes that both
wish to enter the same node, it is important to know
whether one entering the node could block the other
from reaching the runway on time. For simplicity,
here we define an aircraft priority as its position in the
planned take-off schedule. The next aircraft planned
to take off will be the highest priority, the one after it
the next-highest priority, and so on.

We only permit an aircraft to enter a node in front
of a higher-priority aircraft if there is at that time
room for it to immediately exit the node to get out of
the way of the higher-priority aircraft. An exact feasi-
bility check would only require that the aircraft would
be able to exit the node prior to the take-off time of the
higher-priority aircraft. However, we have not explic-
itly included the time dimension in the holding-point
movement, so we use the stronger condition of requir-
ing room for an immediate exit of the node. Moving
out in front of a higher-priority aircraft risks adding
a delay to it, but ensuring that an immediate exit is
available ensures that any delay for the other aircraft
is minimal.

The availability of an exit node can be ensured by
verifying that there is at least one spare node beyond
the node of contention that is not on the path of the
other aircraft. This check can be performed very eas-
ily by first precalculating, for each path suffix for each
node, a count of later nodes that are not shared with
each of the other route suffixes at that node; then cal-
culating how many of these nodes are occupied. For
example, in Figure 2, Node D has three path suffixes:
R, HR, and GHR. R has no nodes that are not shared
by HR and no nodes that are not shared by GHR. HR
has one node that is not shared by R and no nodes
that are not shared by GHR. GHR has two nodes that
are not shared by R and one that is not shared by HR.

These counts can be easily and automatically calcu-
lated offline for each holding-point structure. Assum-
ing that all nodes were empty, the number of nodes
that the aircraft could possibly use to move out of the
way is given by the count of the not-shared nodes, as
the aircraft must be able to move into a node that is
not also on the path suffix for the aircraft it is mov-
ing out of the way of. By determining how many of
these nodes are already in use, the algorithm can ver-
ify whether there is at least one free node available
into which to move, and if not, then prevent the air-
craft from moving.

If all later nodes for the path suffix are used only
by aircraft on that path suffix—in other words, every
node on the path suffix has only one input arc—then
the number of occupied nodes is simply given by

the number of aircraft on this path suffix that have
already passed the current node but have not yet
taken off. If this is not the case, then the number of
nodes that are being used by aircraft on other paths
must be added to the number used by aircraft on
this path suffix. This cannot be performed generically
because it requires examination of the holding-point
structure but is usually simple to perform, as shown
in the following example.

In Figure 2, after Node D the path suffixes GHR
and GH converge on Node H. Assume that Aircraft 1
desires to take the path DR and Aircraft 2 the path
DGH, and that Aircraft 1 should take off before Air-
craft 2. Aircraft 2 is permitted to enter D before Air-
craft 1 only if there is an available node for it to exit to,
to vacate D. Node D will have a count of how many
aircraft have already passed on the suffix GHR and
have not taken off. Similarly, the not-shared nodes
count will show that there are two possible nodes
available. Comparing these two values makes it easy
to check whether there is a spare node available to
move into. However, Node H is also used by the suf-
fix HR, so it is possible that an aircraft from HR is
currently occupying it. In this case, due to the con-
vergence of paths beyond Node D, the algorithm also
needs to verify the current contents of Node H and,
if the current contents is on suffix HR rather than
GHR, reduce the number of available nodes by one.
If Node H has no current contents, then it is impor-
tant to check against the next aircraft that will enter
it instead of against the current contents. This will
always be known for H because it has only one path
suffix, R, so the order in which aircraft must pass H
is known uniquely. Doing this ensures that the algo-
rithm will even, for example, account for the fact that
if the next aircraft to pass H is following the path
BEHR, it will be using one of the nodes on the Node D
path suffix GHR.

Appropriate use of data structures ensures that all
of these checks are extremely fast at runtime, usually
involving a comparison of very few values to verify
whether each aircraft can move. The major speed ben-
efit gained is in identifying infeasibility very quickly.
As soon as no aircraft can move the schedule is
known to be infeasible.

This speed is achieved by the caching of the various
holding-point-specific data after performing holding-
point-specific calculations offline and by a linear time
preprocessing stage to store partial orders of aircraft
at nodes. The amount of precalculation that needs to
be performed can be vastly reduced by noting that
it is only needed for nodes that have at least two
input arcs. If there is only one input arc to a node,
then there is never any decision about which aircraft
should enter it next because it will always be the same
as the aircraft that is the next to enter the preceding
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node. Further reduction in precalculation work and
runtime can be obtained by considering only the path
suffixes for the paths that are actually being allocated
at the time. This is easy to achieve by calculating the
counts for the paths used by each of the different path
allocation methods that relate to the different modes
of operation and by using the value for the allocation
method that is currently in use.

4. Formal Model
In this paper we aim to increase the throughput of
the runway while attempting to meet all CTOT con-
straints and limit the workload of the pilots and
runway controller. It is important for the objective
function to represent the real objectives of the con-
trollers so it has various component parts, explained
below. The formal model is required to predict take-
off times for aircraft in a potential schedule as well
as to calculate the consequent value of the objective
function.

4.1. Definitions
Let n be the number of aircraft currently under con-
sideration and let i ∈ �1� � � � �n� be an integer to rep-
resent an individual aircraft. Let ai represent the
position of aircraft i in the arrival order at the holding
point, so if i is the first aircraft to arrive, then ai = 1.
Let ci be the position of aircraft i in the take-off order,
so if i is the second aircraft to take off, then ci = 2.

As mentioned earlier, aircraft follow specific paths
through the holding point. Let each possible path
through the holding point be denoted by a unique
integer, and let the path that has been assigned to air-
craft i be denoted by ti.

Let vi be an integer representing the weight cate-
gory of aircraft i. Let si be an integer to represent the
speed group of aircraft i and ri be an integer to rep-
resent the SID route of aircraft i. Let hi be the time
aircraft i entered the holding point and di be the take-
off time of aircraft i in the schedule.

Where aircraft have a CTOT time allocated, then let
bi and li be the earliest and latest times, respectively, at
which aircraft i can take off while complying with the
CTOT, so �bi� li� denotes the 15-minute CTOT window.
Where aircraft i has no CTOT allocated, then set bi to
be a large negative value and li a large positive value
so that the aircraft effectively has a CTOT window
spanning the entire duration of the take-off schedule.

4.2. Positional Delay
It is better to avoid unnecessary overtaking or
reordering of the aircraft. Aircraft being overtaken
need to wait somewhere while being overtaken, occu-
pying part of the holding-point structure and limiting
the reordering that can be performed on other aircraft.

Additionally, overtaken aircraft are being penalised,
so this penalty must be controlled.

The amount by which aircraft are overtaken is
given by the positional delay, which can be calculated
for each aircraft, i, as max�0� ci − ai�. Small positional
delays are inconsequential, but larger delays become
an increasing problem both in terms of unfairness and
in constraining later reordering. We therefore include
a factor in the objective function, Formula 3, which
is proportional to the sum of the squares of the posi-
tional delay for each aircraft.

4.3. Throughput, Duration, and Delay
For the static problem, the throughput of the runway
could be considered to be the inverse of the duration
of the take-off schedule. Rather than directly minimis-
ing the duration of the schedule, we instead aim to
minimise the total holding-point delay for the aircraft
in the schedule. The holding-point delay for aircraft i,
the time spent within the holding point, can be calcu-
lated as di−hi. As the aircraft will always take time to
traverse a holding point, this “delay” consists of both
travel time and queueing time.

Both duration-based and delay-based measures
penalise schedules that include large separations be-
tween aircraft, but minimising delay has the effect of
penalising larger separations more if they are earlier
in the schedule than if they are later. Reordering air-
craft so that the larger separations are placed later
may also help to reduce separations overall; it allows
more time in which further aircraft may appear, and
these may permit smaller separations from those air-
craft currently in the queue.

Although the separations depend on the circum-
stances, some examples should illustrate this. As there
will be a larger separation after a heavy aircraft if it
is followed by a medium or light aircraft than if it is
followed by another heavy aircraft, it can make sense
to group larger aircraft together. If a larger separation
is due to a heavy aircraft, then encouraging schedules
where the larger separation is later in the schedule
increases the possibility of grouping the heavy aircraft
with other heavy aircraft that may arrive at the hold-
ing point later. Similarly, it is often possible for a later
aircraft on a different route to take off between two
aircraft on similar routes without affecting the take-off
times of these aircraft. Scheduling these larger sepa-
rations associated with aircraft on similar departure
routes later increases the possibilities for fitting in air-
craft not currently available at the holding point.

Where the last aircraft in the take-off schedule
needs to be delayed for some reason (for example,
to wait for the start of its CTOT slot), the dura-
tion of a schedule would be artificially increased. A
duration-based minimisation would make no effort
to decrease the separations of the previous aircraft
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because this would have no effect on the duration.
A delay-based approach will reduce the separations
of the earlier aircraft, effectively leaving the larger
gap before the delayed aircraft in a place where new
arrivals at the holding point could use it. Finally, the
calculated delay that aircraft experience at the hold-
ing point directly relates to the real time that aircraft
spend at the holding point, and therefore to journey
delay, fuel costs, and pollution.

4.4. Predicting Take-off Times
To determine a value for the holding-point delay and
CTOT compliance, a take-off time must be known
for each aircraft. This often has to be predicted. At
busy times, when it is imperative to get the highest
throughput, the aircraft usually take off as early as
possible. This will mean that as one takes off, the next
lines up and waits for the required separation to be
attained before it sets off. To predict a take-off time
for an aircraft, we calculate the earliest possible take-
off time for each aircraft that has not taken off and
assume that all aircraft take off as early as possible.

There is an important difference between aiming to
obtain optimal take-off times given a take-off order
and the analogous case for arrival scheduling of
searching for optimal landing times given a landing
order. In take-off scheduling there is never a bene-
fit from delaying the take-off of an aircraft beyond
the earliest time it can do so. It is, therefore, reason-
able to assume that all aircraft take off as early as
they can. In models for arrival scheduling this is not
always the case; see, for example, Beasley et al. (2000)
and Ernst, Krishnamoorthy, and Storer (1999). Land-
ing earlier than a target time may require more fuel
burn if the aircraft has to fly faster than its optimal
cruise speed, and some models aim to minimise fuel
burn rather than minimising landing times.

We define a function V �vi�vj� to calculate the re-
quired wake vortex separation and R�ri� si� rj� sj � to
calculate the required route and speed separation
from the weight categories, vi and vj ; departure
routes, ri and rj ; and speed groups, si and sj ; of lead-
ing aircraft i and following aircraft j . These func-
tions are defined to return standard separation values
in accordance with current regulations. The separa-
tion rules will change depending upon which runway
is being used for departures. The runway controller
also has discretion to change some in good weather
and, at times of congestion in the airspace, some will
increase. A fully operational decision-support sys-
tem would allow these separations to be modified
by appropriately modifying the values returned by
R�ri� si� rj� sj �.

The current wake vortex separation rules obey
the triangle inequality so that V �vi�vj�+ V �vj�vk� ≥
V �vi�vk� for aircraft that take off in the order i,

j , k. SID route and speed separations do not; there-
fore, it is not possible to ensure that all separations
are maintained by merely ensuring sufficient separa-
tion between adjacent take-offs. For example, imag-
ine that a slow aircraft heads north, followed by a
faster aircraft heading south, then a faster aircraft
heading north. A northbound followed by a south-
bound departure, or vice versa, needs a one-minute
separation, often regardless of speed class because the
flight paths diverge so quickly. A fast northbound air-
craft following a slow northbound aircraft may need a
three-minute separation, but ensuring the separations
between adjacent departures would only guarantee a
two-minute separation. There are many other similar
cases, some of which do not even need the aircraft
speed groups to differ.

Given the above definitions, the earliest take-off
time, ei, for which all separations are maintained, can
be calculated by Equation (1). Even though the wake
vortex separations currently obey the triangle inequal-
ity, we do not assume this, so we verify the wake vor-
tex separations for all previous aircraft. For efficiency
at runtime, as this will be used by a real-time system,
the value of max�V �vj� vi��R�rj� sj� ri� si�� can there-
fore be precalculated for all aircraft i and j prior to
any search being performed:

ei =




0 if ci = 1�

max
j∈�1�����n��cj<ci

(
dj +max�V �vj� vi��

R�rj� sj� ri� si��
)

if ci ≥ 2�

(1)

Every aircraft, i, will have been heuristically allo-
cated a traversal path, ti, through the holding point
prior to the feasibility check. We define a function T �t�
to return the minimum traversal time for an aircraft
to traverse the holding point along path t and take
off. Given a holding-point arrival time, hi, for each
aircraft, i, the earliest time at which the aircraft can
reach the runway and take off is given by hi + T �ti�.

The earliest take-off time for an aircraft is limited
by the physical taxi time to reach the runway, the
necessity to maintain safe separations from preceding
aircraft, and by the start of the CTOT slot, bi, if one
applies to the aircraft. Assuming that aircraft take off
as early as possible, the take-off time for an aircraft, i,
can be predicted using Equation (2):

di =max�ei� hi + T �ti�� bi�� (2)

In real life there is a variation in the time taken
to traverse the holding point, line up on the runway,
and become airborne, and in the time of the take-off
clearance and the controller reaction. This variation is
discussed below.
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4.5. CTOT Constraints
Aircraft must adhere to their CTOT slots. The earliest
take-off time, bi, is implemented as a hard constraint
in Equation (2) because it is always possible to delay
an aircraft. At congested times, it is not always pos-
sible for an aircraft to meet the assigned CTOT slot,
so the objective function must penalise this noncom-
pliance to obtain schedules where as many aircraft as
possible meet their CTOT.

Take-off times do not always match the prediction
to the second. A natural variance is expected. As the
CTOT is an absolute time, a divergence between the
predicted take-off times and the real take-off times
can have an effect on whether a CTOT is missed. The
CTOT evaluation function therefore includes elements
to penalise schedules that place aircraft near to either
extreme of the CTOT slot; otherwise, if the schedule
is shifted forward or backward due to the real-life
variation in take-off times, aircraft could waste time
waiting for the start of a CTOT, or be forced to miss
the end of a CTOT slot. The CTOT evaluation func-
tion we use, C�di� bi� li� hi�, to measure the compliance
of aircraft i, is given by Equation (3), where W3, W4,
W5, W6, W7, W8, and W9 are weights for the different
parts of the objective and FH , FL, and FB are constants
explained below.

C�di� bi� li� hi�

=




W3��di − li�
1�1�+W4 if di ≥ �li + 300�� (3a)

W5��di − li�
1�1�+W6

if �li + 300� > di >max��hi + FH�� li�� (3b)

W7�di − li�+W6 if �hi + FH�≥ di > li� (3c)

W8�FL+ di − li� if li ≥ di > �li − FL�� (3d)

0 if �li − FL�≥ di > �bi + FB�� (3e)

W9�bi + FB − di� if �bi + FB�≥ di� (3f)

Term (3b) usually applies to aircraft that are sched-
uled too late for their CTOT slots, but within a five-
minute extension. The nonlinear form of this penalty
helps to avoid the larger extensions, biasing towards
equity of extensions where they are required—for
example, slightly preferring two two-minute exten-
sions over a one-minute and a three-minute extension.
As the separation rules are in multiples of 60 seconds,
moving the position of an aircraft in a schedule will
usually alter the delay by a multiple of 60 seconds.
The cost escalates as the delay increases, so aircraft
with problematic CTOT times are not just shifted later
in the schedule in favour of aircraft with less restric-
tive CTOTs. W5 is sufficiently large to ensure that the
primary objective is to reduce CTOT misses. The fixed

penalty for a CTOT miss, W6, is also large to ensure
that as few as possible are missed.

If aircraft are more than five minutes late for their
CTOT slot, then there is a problem because the CTOT
slot will need to be rearranged. Term (3a) of Equa-
tion (3) ensures that any schedule for which the
departure time of an aircraft is more than 300 sec-
onds after the end of the CTOT slot will be heavily
penalised. W4 is the largest weight in the system and
is significantly larger than all of the other weights. In
addition, W3 is significantly larger than W5 so that the
model will accept schedules where multiple aircraft
miss their CTOT by up to five minutes in preference
to a single aircraft missing by over five minutes.

Sometimes aircraft will be delayed at the stands or
in taxiing around the runway, and their CTOT may be
extremely tight so that meeting it becomes unrealistic.
In these cases, penalising the deviation from CTOT as
severely as in (3b) will result in a schedule where the
aircraft is scheduled as early as possible, regardless of
the effect this has on the rest of the schedule. To avoid
this, a period of flexibility is introduced whereby, for
a given number of seconds, FH , after arrival at the
holding point, any CTOT miss by the aircraft will be
less severely penalised. W7 is set to a relatively low
value so that CTOT misses within this period soon
after arrival at the holding point are penalised less.

Terms (3d), (3e), and (3f) relate to aircraft that
are scheduled to depart correctly within their allo-
cated CTOT. By determining a minimum number of
seconds of flexibility, FL, which should be allowed
between any aircraft’s scheduled take-off time and the
end of its CTOT slot, a penalty can be assigned to
ensure that there is some leeway to account for pos-
sible delays and ensure that aircraft still meet their
CTOT slot, term (3d). Similarly, a minimum number
of seconds of flexibility, FB, can be assigned to aircraft
scheduled at the start of their CTOT slot to ensure that
the schedule can take account of opportunities for ear-
lier take-off if they become available. The constants
W8 and W9 are set to low values because moving air-
craft further into their CTOT period is desirable, but
not essential if it would mean increased delay in the
schedule or another aircraft missing their CTOT slot.
For any aircraft, i, without a CTOT, bi and li were
chosen to ensure that term (3e) applies and CTOT
restrictions do not contribute to the cost.

4.6. The Objective Function
As described in §4.3 above, the objective to reduce
delay will move problematic separations later in the
schedule, where they are more likely to be utilised by
aircraft entering the system later. However, some air-
craft are almost always associated with larger separa-
tions, before or after them. For example, because there
are so few light aircraft flying from Heathrow, light
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aircraft will invariably be forced to follow heavier-
weight-category aircraft, therefore requiring a larger
separation to be enforced, regardless of how long
they are delayed. The function P�ci� ai� vi� si� exists
to ensure that where the characteristics of an air-
craft will always mean there is a larger separation
before or after it, schedules that delay the aircraft are
penalised. Delaying these aircraft merely constrains
the holding-point reordering by congesting the hold-
ing point unnecessarily. The CTOT slots and holding-
point structure, combined with the positional delay
measures, also help avoid the undue penalising of cer-
tain aircraft.

The final objective function, Formula 3, is a
weighted sum of the delay, reordering cost, CTOT cost
as given by function C�di� bi� li� hi�, and the additional
penalty cost, P�i� ai� vi� si�. The weights W1 and W2 are
used to ensure that CTOT compliance is of primary
concern, minimising delay is secondary, and avoiding
reordering is tertiary:

Minimise
n∑
i=1

�W1�di −hi�+W2�max�0� ci − ai��
2

+C�di� bi� li� hi�+ P�ci� ai� vi� si��� (3)

In this paper, we used W1 = 1, W2 = 3, W3 = 10�000,
W4 = 10�000�000, W5 = 1, W6 = 100�000, W7 = 2�000,
W8 = 5, W9 = 10, FL = 120, FB = 60, and FH = 120. The
exact values used can be modified to change the rel-
ative priorities of the different objectives. The impor-
tant factors are that W3 and W4 should be extremely
high, and W6 and W7 should be very high compared
with the other weights. By choosing a very low value
for W5 we are indicating that if an aircraft is arriving
too late for its CTOT, it is not so important where in
the extension it takes off because putting too much
importance on this may overly restrict the rest of the
schedule.

5. Results
To evaluate the effectiveness of the different search
techniques, an automated testing system was used to
simulate the operation of a live system. The aim of the
real system is to get the best schedule for the entire
data period, even though the system is only aware of
a subset of the aircraft at any time. Section 3 presents
a solution for the problem of scheduling a known set
of aircraft. The objective function in the model in §4
is designed to ensure that scheduling the aircraft that
are in the system at the time will not overly constrain
the scheduling of aircraft that will arrive later.

The tests moved through the data set in 15-second
intervals, from the start time until the last aircraft
had been scheduled for take-off. At each step, air-
craft were added if they had left their stands, and

removed if they had taken off and could no longer
affect the schedule. At each step, one search was per-
formed to find a good order for take-off and the best
schedule found was adopted, giving little opportu-
nity for later searches to find schedules missed by
earlier searches. A live system would be running con-
tinuously, re-solving the static problem every second
as the situation changes and taking advantage of any
reduced separations the controller may allow.

Aircraft can usually traverse the holding point in
less than one minute, but a two-minute minimum
traversal time was used to allow for some uncertainty
in holding-point arrival time, delay in traversal time,
and to allow extra time for the line up for take-off.
It should be noted that this is a minimum traversal
time and that, due to queueing time, most aircraft
will actually take much longer to traverse the hold-
ing point. The heuristic holding-point traversal path
assignment ensures that the aircraft with the longer
paths through the holding point will be those that
are overtaken within the holding point and there-
fore have more time available to traverse the holding
point.

This test is deliberately overly restrictive in what
can be performed—for example, in fixing the holding-
point traversal path as soon as the aircraft reaches the
holding point, only using the simpler paths and using
a restrictive holding-point network model. The inten-
tion is to ensure that the tests do not find schedules
that are prohibitively difficult to enact in practice. The
early fixing of the holding-point traversal path and
the restriction to only use good paths both limit the
reordering that can be performed to that which is easy
rather than that which is possible. In a live decision-
support system with a controller present, more flex-
ibility could be allowed and the schedules produced
may be even better.

5.1. Test Data
Real, historic data, provided by National Air Traffic
Services (www.nats.co.uk), was used for the testing.
The test data covered six time periods, each for a sin-
gle runway configuration. Table 1 gives information
about the test sets and the holding-point configura-
tion they were for. Test data included details of the
weight class, SID route, speed group, and CTOT for

Table 1 Details of the Data Sets

Data set Holding point Aircraft CTOTs Light Medium Heavy

1 27R 329 172 0 235 94
2 27L 304 90 0 205 100
3 27L 341 158 0 245 96
4 27L 330 100 1 239 90
5 27R 345 98 1 244 100
6 27L 259 42 2 193 64
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every aircraft with the times the aircraft left the stand,
arrived at the holding point, and actually took off.

The holding-point configuration is important be-
cause it can greatly change the constraints upon
reordering. There are three different categories of air-
craft for the purpose of wake vortex departure sep-
arations: light, medium, and heavy. The table shows
that there are very few light aircraft and that most
aircraft are in the medium weight category.

5.2. Test Results
Tables 2 to 7 present the results of the tests that have
been performed using each of the six data sets. Five
sets of results are provided for each data set; these
are explained below. In each case, we show the results
when the schedule containing all of the aircraft in the
data set is evaluated as a whole.

The CTOT column shows the total number of CTOT
slots that were missed. The primary aim of the search
process is to ensure CTOT compliance. The delay col-
umn gives the total holding-point delay, in seconds,
suffered by the aircraft in the schedule. The cost col-
umn shows the cost of the final schedule, calculated
using the model presented earlier. This is not very
meaningful for the manual schedules, but it gives an
idea of the worth the model attributes to each of the
automatically generated schedules.

The results for the real, manually produced sched-
ule are given for two methods of evaluation. The “real
order, actual times” results are for the real take-off
order, using the real take-off times. The “real order,
predicted times” are the results for the real take-
off order, using the model to predict take-off times
for the aircraft. The “first-come-first-served” (FCFS)
schedule is produced by assuming that no reordering
is performed within the holding point. Aircraft are
assumed to take off in the order they arrived at the
holding point, and the model is used to predict the
take-off times.

Table 2 Results for Data Set 1

Search CTOTs missed Total cost Total delay

Real order, actual times 10 13�823�992 99�805
Real order, predicted times 13 26�950�174 110�248
FCFS order 94 1�697�393�350 413�350
Tabu search order 4 (0) 452,017 (6) 83,913 (3)
SAES order 4 453�261 85�079

Table 3 Results for Data Set 2

Search CTOTs missed Total cost Total delay

Real order, actual times 9 12�025�641 127�891
Real order, predicted times 9 11�171�470 121�734
FCFS order 68 1�607�102�025 671�926
Tabu search 4 (0) 510,041 (19) 88,019 (28)
SAES order 4 511�183 89�239

Table 4 Results for Data Set 3

Search CTOTs missed Total cost Total delay

Real order, actual times 6 82�627�619 117�894
Real order, 11 89�398�804 121�037

predicted times
FCFS order 94 1�477�545�168 421�168
Tabu search order 3 (0) 56,085,290 (144) 93,508 (121)
SAES order 4 57�444�798 95�248

Table 5 Results for Data Set 4

Search CTOTs missed Total cost Total delay

Real order, actual times 5 9�560�770 120�893
Real order, predicted times 13 22�876�359 124�510
FCFS order 55 1�435�684�737 602�737
Tabu search order 3 (0) 94,736 (24) 92,719 (29)
SAES order 3 98�553 96�609

Because the tabu search has a stochastic element, it
was performed 20 times for each data set. The mean
result is presented in the table, and the standard devi-
ation is given in parentheses. Finally, within the time
allowed to the tabu search algorithm, an exhaustive
reordering of the first seven aircraft in the sched-
ule would be possible. We call this the seven-aircraft
exhaustive search (SAES), and the results of doing this
are presented in the tables and discussed below.

5.3. Real and First-Come-First-Served Schedules
The accuracy of the take-off time predictions can be
evaluated by comparing the real take-off times against
the predicted take-off times for each schedule. The
predictions for the take-off times have been observed
to be slightly pessimistic at busy times and slightly
optimistic at quiet times, so that the predicted sched-
ule will lag slightly behind the actual schedule at busy
times and lead it at quiet times.

The predicted times work on the assumption that
it is imperative for aircraft to take off as early as

Table 6 Results for Data Set 5

Search CTOTs missed Total cost Total delay

Real order, actual times 5 2�558�965 107�786
Real order, predicted times 5 2�537�579 112�400
FCFS order 53 1�266�005�125 647�125
Tabu search order 1 (0) 84,225 (3) 82,958 (16)
SAES order 1 89�450 88�097

Table 7 Results for Data Set 6

Search CTOTs missed Total cost Total delay

Real order, actual times 4 33�617�393 96�235
Real order, predicted times 8 33�120�710 131�261
FCFS order 33 1�019�792�389 572�389
Tabu search order 4 (0) 26,575,020 (26) 73,581 (47)
SAES order 4 26�581�742 80�160
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possible. The accuracy of these predictions is very
good at busy times when there are a number of air-
craft waiting for take-off. At quiet times, the system
acts slightly differently to the model because the time
between the aircraft entering the holding point and
taking off becomes increasingly unpredictable when
there is less pressure to keep the throughput high.

Conversely, in some cases controllers can safely
reduce certain separations, provided the aircraft in-
volved have visual contact. In these cases, aircraft can
sometimes take off earlier than predicted, reducing
the delay for any aircraft following it. In some cases,
smaller aircraft can enter the runway at intermediate
points rather than at the end of the runway via the
holding point. Our generated schedules do not allow
this at present, but when this was actually done in
the real schedule it would mean that the time the air-
craft reached the runway, and the consequent take-off
time, could be earlier than predicted by the model.

A real system would have constant feedback from
the real-world situation to correct for slight deviations
between the predicted and actual take-off times. This
feedback is absent from our automated tests, so the
cumulative discrepancies often increase through the
busy times until they realign at periods of relative
quiet. Importantly, the model will usually overesti-
mate the delay in a schedule. The times when it does
not do so are the quieter times, i.e., those times when
there is no necessity to do so. We can have confidence,
therefore, that the results using the predicted take-off
times are pessimistic rather than optimistic, and that a
real system would be able to perform at least as well
as the simulations predict.

The FCFS results are provided for comparison with
the manually produced schedules to see the effects
of not having a controller performing the reordering.
It is obvious from the results in the table that the
controllers perform an important job both in reduc-
ing delay at the holding point and in complying with
CTOTs. If the controller did not reorder the aircraft,
a very large increase in the holding-point delay for
the aircraft in the schedule would occur. Cumulative
delays mean that a large number of CTOT misses
should be expected for this schedule.

A value of only 30 seconds was used for the min-
imum holding-point traversal time for the evaluation
of the manual schedule. This is closer to the times
that are seen in practice and gives better predictions
of the take-off times. When evaluating automatically
generated schedules, it is important to ensure that
the schedule is not only achievable, but also easy to
achieve, so a two-minute minimum traversal time is
used to ensure this. When examining the real take-
off schedule, the feasibility is already known, so the
lower, more realistic traversal time can be used. We
will show later that the increased minimum traversal

time makes the predicted delay higher, not lower, and
so is not the reason for the good results obtained.

5.4. Automatically Generated Schedules
The tabu search always performed better than the
seven-aircraft exhaustive search (SAES). In one case,
it even obtained a better CTOT compliance than the
SAES search, while simultaneously reducing the delay
for aircraft. The only advantage that the tabu search
has over SAES is that it can consider more than just
the first seven aircraft. We therefore conclude that this
added flexibility, being able to reorder later aircraft,
shows that the metaheuristic search is worthwhile.

Both the tabu search and SAES performed better
than the real controllers in all cases, even though
the automated searches are more constrained in what
they can do in a holding point than the real con-
trollers. Due to the heuristic allocation of paths
through the holding point, only good paths are ever
used. Furthermore, the network model of the holding
point is deliberately overly restrictive to ensure that
schedules adopted are easy to achieve. Some of the
reordering that is currently rejected may be accept-
able to some controllers in some circumstances. There-
fore, it is envisaged that even better results could
be obtained when combining the system with a real
controller.

Any decision-support system should allow input
from the controllers—for instance, to use reduced sep-
aration rules. A live decision-support system should
also be able to take into account the real times of take-
off and adjust the schedule forwards or backwards to
take account of these.

The schedules produced by the tabu search were
evaluated using a two-minute minimum holding-
point traversal time. Table 8 shows the results for a
minimum traversal time of one minute. Again, the
mean number of CTOTs missed and the total delay
for aircraft is given, with the standard deviation in
parentheses.It is obvious from Table 8 that reducing the mini-
mum holding-point traversal time to 60 seconds can
considerably decrease the total delay at the holding
point. The main reason for the decrease in the delay
is due to new schedules becoming available. In some
cases, it is possible to fit an aircraft into an earlier gap

Table 8 Tabu Search, 60-Second Minimum
Traversal Time

Data set CTOTs missed Seconds delay

1 2 (0) 68,248 (164)
2 4 (0) 73,491 (66)
3 3 (0) 78,520 (93)
4 3 (0) 75,313 (110)
5 1 (0) 66,704 (13)
6 3 (0) 59,388 (28)
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in the schedule, with a corresponding effect upon the
departure times of a number of aircraft.

In practice, it is wise, in general, to assume a
two-minute minimum traversal time to allow for
delays, enable the schedule to slip forward without
rescheduling aircraft, make it easy for an aircraft to
reach the runway in time, and allow some leeway
for errors in predicted holding-point arrival times for
aircraft not yet at the holding point. Examination of
where the one-minute and two-minute schedules dif-
fer implies that it would be wise, in a live implemen-
tation of the system, to allow the controller to specify
a lower minimum traversal time for some aircraft—
for instance, those with tight CTOTs.

5.4.1. The Performance of the Controllers. Run-
way controllers generally have time only to consider
the aircraft actually in the holding point. We per-
formed the SAES considering only the aircraft in the
holding point rather than also including those on the
taxiways, and the results were much more compara-
ble to those obtained by the controllers.

To control their workload, controllers give condi-
tional clearances to aircraft, giving pilots early infor-
mation about which aircraft they will follow for
take-off and, hence, fixing the take-off order for those
aircraft. We performed the SAES, assuming that the
next six minutes of departures, roughly six aircraft at
busy times, were fixed. In this case, due to the overly
constrained nature of the rest of the model, the search
failed to create schedules that were as good as those
that the controllers created.

The results show that the controllers are performing
very well, given the time constraints and workload
conditions under which they are working. The results
also show that the gain that the controllers would see
from a decision-support system is due to the advance
notice of future aircraft that such a system could give.

5.4.2. Workload and Dissatisfaction. Controlling
the amount of work for the controller and pilot was
key, as was avoiding undue dissatisfaction. We con-
trol workload by allowing only good holding-point
traversal paths to be used and by allowing any air-
craft at least two minutes to reach the runway. To
evaluate the equity of delay, we examined the amount
of positional delay and overtaking that takes place in
the generated schedules.

The maximum delay of the most delayed aircraft is
slightly higher in the automatically generated sched-
ules. However, in all cases these aircraft were delayed
to achieve their CTOT slots. Where aircraft were
delayed to wait for the start of their CTOT slots, con-
trollers usually let the aircraft take off as soon as
possible. The automatic searches, however, favoured
scheduling the aircraft further into the take-off slot
because the objective function allows for slight move-
ment of the schedule forward over time.

The automatically generated schedules positionally
delayed fewer aircraft. Additionally, the total num-
ber of places by which aircraft were delayed was
lower for the automatically generated schedules. The
improved results for the generated schedules were
therefore due to identifying the correct aircraft to
delay rather than increasing the reordering. The auto-
matically generated schedules produce less positional
delay on average. However, they penalise specific air-
craft more than the real controllers do. This suggests
that real controllers value equity of delay more highly
than the objective function used by the search algo-
rithms does.

The total number of aircraft overtaking is higher
for the automatically generated schedule, but each
overtakes fewer aircraft than in the manual schedule.
This is not surprising because the overly restrictive
holding-point model ensures that only a limited num-
ber of aircraft can be overtaken at any time.

5.4.3. Schedule Evolution. Over the duration of
each test, the simulation generates a number of static
problems for the decision-support system to solve.
Examining the solutions to each of the static prob-
lems is useful in understanding exactly what decision
support would have been given to controllers and
how the suggestions changed over time. In particu-
lar, it is important that at least the early part of the
schedule is stable over time, rather than constantly
fluctuating between wildly different schedules of sim-
ilar cost. The early part of the schedule is important
because these are usually the aircraft in the holding
point, under the control of the runway controller, so
they are the only aircraft that would have been given
instructions.

During the execution of the tests, we observe that
the schedule does not usually change until a new
aircraft enters the system, at which point it changes
to accommodate the new aircraft. In the majority of
cases, new aircraft leaving their stands do not over-
take more than a couple of aircraft to reach a good
take-off position, and these overtaken aircraft are usu-
ally those still on the taxiways, so most of the time
only the last few aircraft in the schedule are affected.

The most excessive change to the schedule is
observed when aircraft with tight CTOTs leave their
stands. At this point, the system will try to schedule
them within CTOT if possible, often requiring over-
taking a number of other aircraft to do so. This is
the case that is seen in Data Set 3, where the tabu
search improves on the CTOT compliance of the SAES
search. In this case, the aircraft needed to overtake
more than six other aircraft to hit the CTOT.

Even in the case of a tight CTOT, the constraints
that we imposed upon rescheduling within the hold-
ing point and upon late rescheduling act to limit
changes. For instance, as the first two minutes of the
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schedule are fixed, no new aircraft can overtake these
aircraft. Similarly, if an aircraft in the holding point
was not already being overtaken, then it will have
been assigned a direct path through the holding point.
In this case, there is no way for a later arrival at the
same holding-point entrance to overtake it.

The relative stability of the early part of the sched-
ule is not unexpected because the delay-based objec-
tive function penalises larger separations much more
if they are nearer the start of the schedule. The objec-
tive function, therefore, puts much more value on get-
ting the first part of the schedule right. This means
that the search is much more likely to find solutions
that schedule the first few aircraft well than those that
schedule the last few aircraft well. Additionally, the
fact that each subsequent search is seeded with the
resulting schedule from the previous iteration helps
to ensure that the best schedule found in the previ-
ous search will be rediscovered in this search, so if
there is a good schedule that is similar to the previ-
ous iteration, it is more likely to be found than a good
schedule that is very different.

6. Conclusions
The job of the runway controller is complex, and
involves a high workload. With all of the communica-
tion involved in the job, there are limits to how much
consideration a controller can give to the reordering
of the aircraft at the holding points. The complexity
of the reordering task, the physical constraints of the
holding point, and the limited time that controllers
have available mean that they have an extraordinarily
difficult task to perform. The successful development
of a decision-support system could alleviate this dif-
ficulty to some extent.

The presentation of the take-off scheduling problem
in the academic literature usually fails to take account
of the physical constraints on the scheduling problem
at airports such as Heathrow. Much of the previous
research has been concerned with the arrivals prob-
lem, but there are considerable differences between
the arrival and departure problems. Where research
has looked specifically at the departure problem it is
usually assumed that reordering can take place easily,
and so assumes that the physical holding-point struc-
tures are not relevant to the problem. However, at
London Heathrow the most practical place to reorder
departures is within the holding points at the end of
the runway.

This paper presented a hybrid metaheuristic and
a heuristic approach to this reordering of aircraft
that can take account of the physical holding-point
structure, presents only good orders of take-off to
the controller, and does so very quickly. Real-world
constraints, such as partially fixed schedules and
fixed routes through the holding points, have been

accounted for in addition to the usual constraints,
such as maintaining required separations and meeting
calculated time of take-off slots.

Because this is a real-world problem, the objective
function is not simple, but is key to obtaining relevant
results. It has components to avoid overconstraining
future searches, as well as to obtain the best delay and
CTOT compliance at the time of the search. The desir-
able schedules include a degree of leeway to allow for
natural movement of a schedule forward or backward
in response to the real-world situation. The presented
results show that, even though at each iteration of the
test the system has knowledge of only a subset of the
aircraft, good overall schedules can be achieved.

A decision-support system can consider many more
aircraft than a human controller can and hence help
to avoid future problems from aircraft not currently
under the control of the runway controller. The pre-
sented results show that if the controller had more
information about the aircraft taxiing around the run-
way, the CTOT compliance and delays at the holding
point could be improved. We have also shown that
the controllers do a very good job, given the informa-
tion they currently have and that any improvement
would come as a result of the increased knowledge
of aircraft taxiing toward the holding points. Even
though a human controller could not reasonably be
expected to handle the increased amount of data,
we have presented a hybrid metaheuristic approach
that can.

If a computerised system is to be of any use to
the runway controller in ordering the aircraft at the
holding points, then it must be able to find good
take-off schedules in real time. The system should
only present schedules that are easy to achieve, rather
than requiring complex manoeuvring and compli-
cated instructions. Our decomposition of the prob-
lem with heuristic allocation of holding-point paths,
ensures that any reordering can be easily achieved
and that the aircraft that have longer routes through
the holding point are the ones that are overtaken and
hence have more time in which to traverse it. Analysis
of the results shows that the automated searches find
schedules that do not involve either excessive posi-
tional delay or reordering when compared with the
manually produced schedules.

The evaluation of our system was deliberately
overly restrictive to ensure that the results for the
automated searches were pessimistic. With a real con-
troller, we would expect the system to perform better
than these results imply.

First, we have shown that a decision-support sys-
tem could help at Heathrow because the increased
search power could improve the holding-point delay
and CTOT compliance. Second, we have shown that
with the presented decomposition of the problem
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schedules can be found fast enough for use in a real-
time system. Having developed a methodology that
has produced successful results on real-world data,
we have a number of future research directions that
we would like to explore.

We will extend our work by explicitly considering
the effects of the uncertainty implicit in the system—
for instance, in the taxi times and traversal times. We
aim to develop the system to cope with uncertainty—
for example, by enabling fail-over schedules and pro-
ducing schedules that are less sensitive to uncertainty.
Successfully achieving these goals should allow us to
improve upon the current results.

We also plan to improve the simulation part to pre-
dict holding-point positions of aircraft and update
them as the simulation progresses. We then aim to
use the simulation to evaluate the effects of other
influences such as holding-point structure changes or
decisions by the ground movement planner, as well
as to evaluate how well the system can cope with
unforeseen circumstances—for example, a situation in
which the next aircraft planned to take off is suddenly
unable to do so.

Finally, we intend to look at push-back times and
stand holding. Push-back times are defined to be the
time when aircraft push back from the stands onto the
taxiways. At the moment, due to the large degree of
uncertainty involved in predicting push-back times,
we do not even include knowledge of aircraft at the
stands, never mind predicting push-back times for
them. The scheduling is currently performed at the
holding point, as that is where the greatest amount
of knowledge is available with the least amount of
uncertainty. The inclusion of the taxiing aircraft pro-
vides sufficient information about the future aircraft
that will need to be scheduled to ensure that good
schedules can be obtained by reordering aircraft in the
holding point. However, scheduling at the stands, if
the difficulties with doing so can be overcome, facil-
itates the possibility of holding aircraft at the stands
for longer, without the engines running, rather than
queueing at the holding point. So even if the total
take-off times are no earlier, the fuel burn should be
significantly less.
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