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ABSTRACT 
 
London Heathrow is an extremely popular airport, where efficient take-off sequencing is 
important for ensuring a high runway throughput. Aircraft are usually released from the 
stands as soon as possible, providing the maximum pool of aircraft at the runway from which 
to choose from when sequencing. This paper considers the task of predicting the delay that 
aircraft will experience, so that some of it can be absorbed at the stand before the engines are 
started, reducing the fuel burn, with consequent environmental and economic benefits. Doing 
this requires determining the value of a take-off sequence, in order to identify good 
sequences. This paper considers the trade-off between three mutually conflicting objectives – 
minimising delay, complying with network departure constraints, and treating aircraft 
equitably - and provides important insights for use in tuning the system to controller 
preferences. It also indicates potential benefits for controllers from the implementation of 
such a system.  
 
 



1 INTRODUCTION 
 
London Heathrow is one of the busiest airports in the world, but it normally has only one 
runway available for departures, with the other being used for arrivals. Demand exceeds 
capacity, so it is important that runway capacity is not wasted. The take-off sequence can have 
a large effect upon the runway throughput since the separations which are required between 
aircraft at take-off depend upon the sequence in which aircraft take off. Re-sequencing can 
significantly increase the throughput of the runway, thus appropriate sequencing is extremely 
important, however obtaining the best overall take-off sequence is far from simple. Minimum 
separation requirements apply not only to allow wake vortices to dissipate to safe levels, but 
also to control the frequency of departures along each departure route or in each direction. 
Noise considerations and the complexity of airspace over London give rise to complex rules 
for the required time separations for departure routes, so that separations depend upon both 
the departure routes and speed groups of the two aircraft involved in addition to their wake 
vortex categories (based upon their weight classes). 
 
The departure system involves each aircraft pushing back from a stand (either direct onto a 
taxiway or into a cul-de-sac between the piers of a terminal), then starting its engines, taxiing 
to a holding area near the current departure runway and awaiting its turn to enter the runway 
and line up for take-off. The complex take-off sequencing task is currently performed by a 
runway controller once aircraft have reached a holding area adjacent to the current departure 
runway. The runway controller has to sequence the departures so as to attain as high a 
throughput as possible (and, consequently, as low a delay as possible) while ensuring that all 
constraints upon the take-off sequence are attained, including those imposed by capacity 
limitations in the airspace and at destination airports. The task of the runway controller at 
Heathrow was considered by Atkin et al. (2007, 2008a, 2008b) and Atkin (2008) where a 
design for a decision support system was proposed which would be able to help the runway 
controller, while working within the current operating environment. 
 
In order to ensure maximum flexibility for the runway controller (by maximising the number 
of aircraft at the holding area from which to choose), current operating procedures mean that 
departing aircraft are usually released from stands as soon as possible. Any take-off delay for 
an aircraft therefore occurs while it is queued at the holding area adjacent to the runway, with 
its engines running. Where it is possible to do so without having a detrimental effect upon the 
runway sequencing, it would be preferable to absorb as much of this delay as is practical at 
the stand, prior to starting the engines. This would lead to a reduction in the amount of fuel 
burnt, with both economic and environmental benefits. Since the load on different departure 
routes is not usually even, so some aircraft will necessarily have longer delays than others, 
adding a global hold to aircraft risks starving the runway of the types of aircraft which could 
actually take off at that time, and thus reducing runway throughput. In order to determine how 
much delay it is appropriate to absorb at the stand, it is important to be able to predict the 
delay that aircraft would otherwise have at the holding area.  
 
This paper discusses a system to allocate TSATs (Target Start-At Times) to aircraft at 
Heathrow, specifying a target time at which an aircraft should commence its push back and 
engine start-up operation. This system includes an algorithm to predict take-off times for 
aircraft while they are still at the stand, and to then use these predictions to allocate 
appropriate stand holds to aircraft. 
The objectives of the take-off sequencing that controllers perform are actually more than 
merely to minimise delay, since it is also important to consider the equity of delay between 



aircraft and avoid penalising aircraft with specific characteristics. It is, furthermore, important 
to meet the take-off time-slots which are allocated to around 30% to 40% of the Heathrow 
departures by the the Central Flow Management Unit of Eurocontrol in order to control 
downstream congestion. These three objectives (delay, equity and time-slot compliance) are 
mutually interacting.  Sometimes constructively to guide a search towards good overall 
schedules, but this paper will show that they usually in conflict for the best schedules. In order 
to predict the take-off schedule that will be adopted, a three-part objective function is used to 
evaluate each schedule, where each part evaluates the compliance with one of the three 
objectives. In order to produce a more useful and accurate take-off time prediction system, 
and generate an objective function which will more accurately model the preferences of 
controllers, it is important to understand the way in which these objectives actually interact. 
Investigation of the interaction between these three objectives is the focus of this paper. In 
particular, this paper considers the effect of the weights used in the objective function and the 
ways in which the three objectives interact when used in the TSAT (i.e. stand-hold) allocation 
system described in this paper. 
 
 
2 TSAT ALLOCATION AND TAKE-OFF SEQUENCING 
 
The research described in this paper considers the TSAT (Target Start-At Time) allocation 
project, which is one element of the CDM (Collaborative Decision Making) project 
(Eurocontrol Experimental Centre, 2005) now being implemented at Heathrow. TSAT 
allocation involves determining a time for each aircraft at which its engine start-up should 
take place, so that it can push back from the stand, taxi to the holding area near the runway 
and arrive not long before it should take off. The risk in changing the operations in this way is 
that a bad allocation of stand hold time could prevent the controller from having available the 
aircraft that are necessary to achieve the better take-off sequences, thus wasting runway 
capacity. The system described in this paper, that is currently being implemented by NATS 
for use at Heathrow, avoids this problem by ensuring, as far as possible, that the best take-off 
sequence it can find will be achievable, while also making it likely that good alternative, 
schedules will also be available if necessary.  
 
Not only are there obvious benefits from waiting at the stand, in terms of the fuel used, but 
there are also benefits in terms of increasing the visibility for airlines of when an aircraft is 
expected to be released from the stand, potentially facilitating better allocation strategies for 
resources needed during turnround to clean and re-fuel the aircraft, to load passengers, and the 
tugs which push aircraft back from stand. Finally, the strategic allocation of stand holds 
should reduce the congestion at the holding areas, since the delay for aircraft which need 
exceptionally long holds is usually predictable. Congestion at the holding area can limit the 
amount of re-sequencing that can be performed, as described by Atkin et al. (2006a), and 
mean that the best sequences become unavailable.  
 
There are two stages to TSAT allocation. The first is to predict a take-off time for aircraft, and 
the second is to use this take-off time to determine an ideal pushback time. The ideal 
pushback times are then used in conjunction with a consideration of the contention between 
the aircraft at the stands to determine TSATs. Take-off sequence prediction utilises the fact 
that the controllers at Heathrow are highly skilled and will find good take-off sequences 
providing that the correct aircraft are available to them. Thus, sequence prediction involves 
assuming that the best sequence which is found by the algorithm is the one which the 
controllers will adopt, however this obviously assumes that a measure of the value of a take-



off sequence (in terms of the desirability to a runway controller) is available. Providing a 
better understanding of the relative effects of the three main objectives, to obtain the 
necessary insight to tune an objective function, is the focus of this paper. 
 
The take-off sequencing stage is of primary interest in this paper, but an understanding of 
stand contention at Heathrow is also required. The contention rules at the stands are modelled 
as minimum separation requirements between pushback times for aircraft. Runway 
separations and pushback time separations are both sequence-dependent, asymmetric and do 
not obey the triangle inequality, so it is not sufficient just to ensure compliance with 
separations for aircraft which are in consecutive positions in a push-back or take-off 
sequences. The pushback separations are obviously important for the TSAT allocation stage, 
to ensure that allocated TSATs are achievable, but also have to be considered in the take-off 
sequencing stage, since contention around the stands can delay the earliest take-off times for 
aircraft. Solution of the take-off sequencing problem therefore requires a simultaneous 
consideration of two sequence-dependent-separation sequencing problems (at the stands and 
the runway), which are linked together by the taxi times of the aircraft. 
 
One of the methods that is utilised to handle downstream congestion is the Calculated Time 
Of Take-off (CTOT), assigned by the Eurocontrol Central Flow Management Unit. Aircraft 
with CTOTs have a fifteen minute window within which take-off must occur. CTOTs ensure 
that there is a limit upon the number of aircraft entering any busy airspace sector or busy 
destination airport at the same time.  Complying with these CTOTs is important; however, in 
order to reduce the number which must be re-negotiated due to slight delays, a limited number 
of five-minute extensions are available to the controllers. Although these extensions are 
permitted, they should be avoided when possible, and limiting the number of extensions 
which are used is one of the objectives of take-off sequencing.  
 
The take-off sequencing problem is multi-objective. The first objective is, obviously, to keep 
delay down for aircraft, the second is to comply with CTOT windows, and the third is that a 
schedule must not excessively penalise individual aircraft. Despite the multi-objective nature 
of the problem, however, a single objective solution approach has to be used since only a 
single TSAT should be presented for each aircraft rather than a set of solutions from which a 
controller should select. The take-off sequence prediction element is merely an internal 
algorithm, and the intention is only to reveal the TSAT, not the take-off time. Forcing 
controllers to select from a set of internal take-off sequences associated with the TSATs is not 
appropriate.  
 
By necessity, the objective function has to consider all three objectives. The aim of the 
research described in this paper is to evaluate the effect upon the TSAT allocation system of 
varying the weights in the objective function that are used to determine the balance between 
take-off time-slot compliance, equity of delay and overall delay. For example, by reducing the 
importance of take-off time-slots, more extensions will be required, but the delay may 
potentially be improved by enabling sequences with a better throughput to be adopted. It may, 
thus, be better to take advantage of the permitted CTOT extensions rather than always trying 
to minimise the number used. It is also important to understand the way in which the overall 
delay is penalised by potential measures to ensure a degree of equity of delay between 
aircraft. In order to make an informed decision about the appropriate objective function for 
the real world problem, such an evaluation is vital. It is imperative that, at the very least, any 
increase in delay to account for CTOT compliance or limit any inequity between aircraft has 
been justified. 



 
Previous departure sequencing research at the airport by Atkin et al. (2007,2008b) and Atkin 
(2008) utilised an objective function where avoiding CTOT extensions was given an 
extremely high weight. Comparison with controller schedules showed that the selected 
objectives of the system were more concerned with avoiding the use of CTOT extensions than 
a human controller was. For example, there were cases where the overall delay for aircraft 
was (perhaps unnecessarily) increased in order to meet a tight CTOT. Nevertheless, 
significant delay benefits were still predicted from the use of a decision support system even 
with this extreme focus upon meeting CTOTs. The results in this paper aim to give an idea of 
the additional benefits which could be obtained by increasing the emphasis on delay reduction 
and allowing more extensions to be used. The aim is to provide the insights necessary to 
better determine the objective function to use in practice to predict trade-off sequences that 
the controller would select. 
 
Research into arrival and departure sequencing elsewhere (which are both instances of 
sequence-dependent separation problems) does not usually explicitly consider the trade-off 
between equity and delay. However, it is important for the inequity in aircraft delays to be 
managed, and there will always be a trade-off to be made between the total delay for aircraft 
and the equity of the division of that delay between the aircraft. It is common for 
considerations of equity to be handled by applying a limitation upon the movement of any 
specific aircraft (for instance using a maximum position shift approach (Trivizas, 1998). 
Furthermore, the concept of a time-slot which should be attained where possible, but which 
has extensions which may be utilised if necessary, is not often observed in the academic 
models. Time-slots are usually hard constraints where they are implemented at all, for 
example by the use of hard time-windows around the landing/take-off time for each aircraft 
(Beasley et al., 2000, 2004, Ernst et al., 1999). Similarly, the trade-off between equity of 
delay and total delay is not usually explicitly examined, although Beasley et al. (2001) did 
recognise the need for some degree of equity by using a non-linear objective function. In this 
research, we wish to perform the hard task of modelling the real-world operations, and thus 
we need to understand the trade-off that is actually taking place in terms of the increased 
delay for various levels of commitment to avoiding the use of CTOT extensions and for 
ensuring a more equitable allocation of delay. 
 
 
3 PROBLEM MODEL AND DESCRIPTION 
 
3.1 Definitions 
 
The following definitions for constants and variables are used throughout the model described 
in this paper: 
ptj Allocated pushback time for aircraft j. This will be assigned as the TSAT. 
eptj Earliest pushback time for aircraft j, an input to the algorithm. 
pdj Predicted pushback duration for aircraft j. The number of seconds that the system 

should assume that j will take to push back. 
cti, ctj Allocated cul-de-sac time for aircraft i or j (respectively). The time at which i or j will 

be ready to commence the taxi to the runway, without being delayed by other 
pushbacks. 

tdj Predicted taxi duration for aircraft j. The number of seconds that the aircraft is 
expected to (or did) take to taxi from the position at which it was when it started its 
engines to the holding area by the current departure runway. This specifically excludes 



any runway hold delay, and any time spent pushing back and starting engines since 
these are covered elsewhere in the model. 

btj A base-line time for aircraft j from which to measure delay. This provides a method to 
measure and penalise delay. In this paper this is set to the earliest take-off time for j if 
it was in isolation in the departure system (i.e. no queuing for take-off and no cul-de-
sac delay). 

ecj Earliest take-off time for aircraft j which will meet any requirements for the allocated 
CTOT. This is set to an extremely early time if the aircraft has no CTOT so that no 
constraint is implied. 

lcj Latest take-off time for aircraft j which will meet any requirements for the allocated 
CTOT. This is set to an extremely late time if the aircraft has no CTOT so that no 
constraint is implied. 

di, dj Predicted or actual take-off time for aircraft i or j respectively. 
csi, csj   Position of aircraft i or j (respectively) in the cul-de-sac sequence – the sequence in 

which aircraft commence their taxi to the runway, having pushed back and completed 
their engine start-up. 0 for the first aircraft to set off. If csi < csj  then i commences its 
taxi operation prior to j doing so. 

asi,asj The position of aircraft i or j (respectively) in the first-come-first-served take-off 
sequence. This is taken to be the sequence implied by sorting into ascending order of 
earliest take-off times of all aircraft, assuming no delays from contention with any 
other aircraft in the system. i.e. sorting the aircraft in ascending order of btj. 

tsi, tsj The position of aircraft i or j (respectively) in the take-off sequence. 0 for the first take-
off. If tsi < tsj  then i takes off before j does so. 

RSij Minimum runway separation. The minimum number of seconds which must elapse 
between the take-off times of aircraft i and j, when i takes off before j.
This value actually depends upon the time of day and the allocated runway as well as 
the characteristics of the pair of aircraft involved (i.e. should be a function of di as well 
as i and j), but can be treated as a constant for each pair of aircraft in the experiments 
described here. 

MSij Minimum runway separation. The minimum number of seconds which must elapse 
between the take-off times of aircraft i and j, when i takes off before j.
This value depends upon the time of day and the allocated runway but can be treated as 
a constant for each pair of aircraft in the experiments described here. 

IRHj Ideal runway hold for aircraft j. Can depend upon the predicted take-off time, but is 
treated as a constant (with value 300 seconds) for all aircraft in the experiments 
described here. 

MRHj Minimum runway hold for aircraft j. Can depend upon the predicted take-off time, but 
is treated as a constant (with value 60 seconds) for all aircraft in the experiments 
described here. 

 
 
3.2 Objectives and Constraints 
 
The model for the two stages of the TSAT allocation problem is described in sections 3.3 and 
3.4 and can be expressed by the following equations, inequalities and formulae: 
 

W1 C(lcj, dj) + W2  D(dj, btj) + W3  E(tsj, asj)  (1)  

ctj ≥ eptj + pdj  (2)  

ctj ≥ cti + MSij  ∀ i   s.t   csi < csj   (3)  



dj ≥ ctj + tdj + MRHj (4)  

dj ≥ ecj  (5)  

dj ≥ di + RSij   ∀ i   s.t   tsi < tsj (6)  

ptj = ctj − pdj  (7)  

ictj = max( eptj + pdj, dj − IRHj − tdj )  (8) 

∑ ( 100 max( 0, ctj − ictj )1.1 + max( 0, ictj − ctj )1.1 )  (9)  
 j          

TSAT allocation has two stages, which are described below. In the first stage involves 
predicting the take-off sequence, in order to predict take-off times and total delay for each 
aircraft. The second stage involves allocating achievable push-back times to aircraft, 
considering the cul-de-sac contention, so that an appropriate amount of the total delay is 
absorbed as stand hold. 
 
3.3 Take-off sequence prediction 
 
Take-off sequence prediction involves an assumption that the controllers will adopt the best 
take-off sequence, then attempting to find this sequence. This involves developing an 
evaluation function for a take-off sequence. The contribution of a single aircraft j to the 
overall cost can be expressed by Formula 1.  Formula 1 has three components. The first 
component (the function C(lcj, dj)) penalizes schedules which fail to meet take-off time-slots. 
Function C(lcj, dj) returns a cost of zero if j is within the allocated CTOT time-slot (i.e. dj ≤ 
lcj), a penalty cost of (500 + dj - lcj) if j is within a valid (five minute) CTOT extension (i.e. lcj 
≤ dj ≤ lcj+300) or a large penalty cost of (50,000 + 10*(dj - lcj)) if j is scheduled to take off too 
late for even an extension. 
 
The second component of Formula 1 (the function D(dj, btj)) penalises schedules according to 
the delay experienced by aircraft. Function D(dj, btj) returns a cost equal to  (dj - btj)α where 
the value of 1.0 was usually used for α, but the effects of using α=1.5 and α=2.0 are 
considered in Section 5. The third component (the function E(tsj, asj)) explicitly penalises 
positional movement of an aircraft within the sequence, favouring the first-come-first-served 
sequence. The function E(tsj, asj) was defined to return (tsj - asj)2 in the experiments 
performed for this paper. 
 
The aim of this paper is primarily to investigate the interaction of the weights W1, W2 and W3 
which alter the relative effects of the different components of the objective function. In 
particular, the aim is to provide the insights which are necessary in order to be able to select 
appropriate values for the weights and to understand the effects of the interaction between the 
objectives. 
 
Given the contribution to the cost for each individual aircraft, the overall cost of a take-off 
sequence can be measured as the sum of the costs for the individual aircraft in the schedule.  
Take-off sequence prediction then becomes a case of finding a take-off sequence for which 
the objective function, expressed by Formula 1, is minimised when summed over all aircraft j 
in the take-off sequence. This involves knowing for each aircraft the position in the take-off 
sequence and a predicted take-off time (which may involve knowing a feasible cul-de-sac 
sequence).  
 



Once a take-off sequence is known, it is possible to determine take-off times by assuming that 
each aircraft will take off as early as it can, given the various constraints upon the take-off 
times. To determine the earliest take-off time for an aircraft while it is still at the stands it is 
necessary to determine the earliest time at which the aircraft can complete its pushback. This 
earliest pushback time is limited by the contention with other aircraft which push back from 
stands which are close by, or by stands further away but on the same cul-de-sac. The cul-de-
sac time for an aircraft is here defined to be the time at which it has completed its pushback 
and can freely commence its taxi towards the holding area, without being delayed by other 
aircraft which are also pushing back. Airlines will declare a TOBT (Target Off-Block Time) 
for each aircraft, specifying the time at which they believe the aircraft will be ready to push 
back. The TSAT allocation algorithm should use this as an earliest pushback time (eptj for 
aircraft j), and seek to allocate a TSAT which is no earlier than the TOBT. This constraint 
upon the TSAT can be treated as a constraint upon the cul-de-sac time by adding on the 
pushback duration, as expressed by Inequality 2. 
 
It is possible to model the contention rules within cul-de-sacs using the cul-de-sac times of the 
aircraft. Cul-de-sac contention is of two forms. Firstly, aircraft that are on a cul-de-sac and 
near to the taxiways can block aircraft which push back further from the taxiways from 
leaving the cul-de-sac until they have themselves moved. In this case, the cul-de-sac time of 
the second aircraft must be after the cul-de-sac time of the first aircraft and there may be a 
minimum separation time that must be applied to maintain a gap between the aircraft. 
Secondly, in some cases an aircraft cannot even commence its pushback until another aircraft 
has left the cul-de-sac. This often occurs when aircraft are on stands which are close together. 
In this case a minimum separation equal to the pushback time of the second aircraft plus any 
time delay between the first aircraft leaving the cul-de-sac and the second being able to 
commence its pushback must be enforced between the cul-de-sac times which are applied to 
aircraft. Inequality 3 represents the effect upon the cul-de-sac time of delays due to the 
minimum cul-de-sac time separations.  
 
Since the constraints upon the earliest pushback time can be modelled as constraints upon the 
cul-de-sac time (Inequality 2), and cul-de-sac contention can be modelled as sequence-
dependent minimum separations between the cul-de-sac times for aircraft (Inequality 3), the 
take-off sequencing element of the problem has to consider only cul-de-sac times not 
pushback times. Once a cul-de-sac time is known for an aircraft, it becomes possible to 
consider the constraints upon the take-off time. Inequality (4) expresses the fact that an 
aircraft cannot take off before it can reach the runway, where the minimum runway hold 
(MRHj for aircraft j) represents the minimum time that an aircraft will be ensured to have 
available to traverse the holding area and line up for take-off. This can vary between aircraft, 
but a value of one minute was used for all aircraft in the experiments described in this paper.  
 
The second constraint upon the take-off time is that aircraft with CTOTs should not take off 
before the start of the fifteen minute slot implied by the allocated CTOTs. This constraint can 
be expressed by Inequality 5.  
 
Finally, the minimum runway separations (defined in this paper as RSij for any ordered pair of 
aircraft i and j, when i takes off before j) must be obeyed for aircraft. These separation values 
depend upon the departure routes, speed groups and weight classes of the two aircraft and can 
vary depending upon the times at which the aircraft take off and the take-off runway that is 
used. Although the developed algorithm handles this variation, the datasets used for the tests 
are for a single runway and cover time periods for which the separation rules were fixed. For 



the experimental results presented in this paper, the value of RSij can be treated as a constant 
(independent of di) for any specific pair of aircraft i and j and the constraint upon the take-off 
time can thus be expressed by Inequality 6. 
 
Given the above described constraints upon the take-off times, and the fact that the earliest 
take-off time for an aircraft depends upon both the take-off sequence (from Inequality 6) and 
the cul-de-sac sequence (from Inequalities 3 and 4) the aim of the take-off sequence 
prediction algorithm can be considered to be to determine the take-off sequence to use, and 
potentially to also have to consider the cul-de-sac sequencing that will be necessary. 
 
3.4 The TSAT allocation stage 
 
Once predicted take-off times are known for aircraft, an ideal cul-de-sac time can be 
determined by assuming that any delay beyond an ideal maximum runway hold value is 
absorbed as stand hold. The ideal runway hold (IRHj for aircraft j) was assumed to be five 
minutes for all aircraft in the experiments described in this paper. The ideal cul-de-sac time 
(ictj for aircraft j) can then be determined using Equation 8. 
 
Given ideal cul-de-sac times for each aircraft, the cul-de-sac times to allocate are determined 
such that the cost of deviation between the ideal and allocated cul-de-sac times as expressed 
by Formula 9 is minimised, subject to the constraints upon the cul-de-sac times that are 
implied by Inequalities 2, 3 and 4. Formula 9 aims to find cul-de-sac times close to the ideal 
times, with a preference for pushing back early (increasing the delay at the runway hold, and 
the slack to allow for late arrivals at the holding area) rather than late, and with a non-linear 
penalty for deviations in order to prefer a more equitable allocation of any necessary 
deviations from ideal times. 
 
Once a cul-de-sac time is known for each aircraft, a push-back time may be calculated using 
Equation 7, by assuming that it is always better to delay an aircraft at the stand prior to 
pushback than within the cul-de-sac once the engines have been started. The allocated 
pushback time is then reported as the TSAT to allocate, specifying the time at which the 
aircraft should commence its pushback prior to starting its engines. 
 
 
4 SOLUTION APPROACH 
 
The two problems are solved using different solution algorithms. The take-off sequencing 
stage is by far the harder of the two problems, and takes up the majority of the solution time, 
since it requires concurrent solution of both the take-off sequencing and cul-de-sac 
sequencing problems. The solution approaches for both stages are described below. 
 
4.1 Solution method for the take-off sequencing problem 
 
One major problem for the take-off sequencing problem is that individual aircraft may need to 
move a long way from the first-come-first-served sequence. The two main reasons that some 
aircraft may need to be delayed or prioritised in the departure sequence are in order to meet a 
take-off time-slot due to an allocated CTOT, or (to a lesser extent) due to the differing 
demands upon different departure routes, as discussed in Section 5. Sometimes the delay for 
CTOT compliance (or potentially, but less often, the advancement) can be a significant 
distance in the sequence, as discussed Section 5. These characteristics of the best schedules 



prevent the successful application of solution approaches which simplify the sequencing 
problem by limiting the maximum number of positions that a single aircraft can be moved 
into such as those proposed by Dear and Sherif (1989,1991) or Trivizas (1998). One of the 
aims of this paper is to provide greater insight into the trade-offs between the delay, CTOT 
compliance and positional shifts in the schedules. They also have to be overcome by the 
selected approach. 
 
The basis of the solution approach for the take-off sequencing element is the application of a 
rolling window across the take-off sequence and the optimal sequencing of the aircraft within 
the window. Obviously, the application of a window applies a limitation based upon the 
window size to the positional movement of the aircraft in the schedule. The developed 
solution approach copes with the problem of aircraft having to move a long way in the 
schedule in three ways. Firstly, the window is rolled forwards from the first take-off to the 
last, with an overlap of all but one aircraft. Subsequent positions of the window can, therefore, 
delay aircraft further in the sequence when required. Secondly, multiple passes of the 
algorithm are applied, where each pass involves starting the window at the first aircraft in the 
sequence which resulted from the previous pass and rolling the window to the end. 
Subsequent passes can, therefore, be used to advance aircraft earlier in the take-off sequence 
in cases where they need to be advanced by more places than would be possible in a single 
window. Finally, a heuristic generation method is used to create an initial sequence which 
allows for potential advancements and delays to account for CTOTs. 
 
The initial take-off sequence, which will be improved using the rolling window approach, is 
produced by generating an estimated take-off time for each aircraft, assuming a five minute 
delay beyond the earliest take-off time for the aircraft. If the estimation is later than the end of 
the take-off time-slot for the aircraft then the end of the take-off time-slot is instead, unless 
this is unachievable, in which case the earliest take-off time for the aircraft is used, thus 
advancing aircraft which have tight CTOTs. If the estimation is earlier than the earliest take-
off time for the allocated CTOT, then the earliest time for the CTOT is used instead, delaying 
aircraft which will need to delay due to a CTOT. These estimated take-off times are then used 
to build an initial take-off sequence by ordering aircraft by non-decreasing estimated take-off 
time. 
 
4.1.1 The rolling window branch-and-bound algorithm 
 
The main take-off sequencing algorithm progressively improves the existing take-off 
sequence.  A window size of nine aircraft was used for the experimental results presented in 
this paper, although the window size is a parameter of the selected algorithm.  The algorithm 
optimally sequences the nine aircraft within the current window, ignoring any later take-offs 
but considering the take-off sequence and predicted take-off times for aircraft which take off 
earlier than the current window to be inviolate. The algorithm starts at the first nine aircraft, 
sequences these then fixes the position and take-off time of the first aircraft in the window. 
The window is then moved forward by one aircraft and the second to tenth aircraft are 
sequenced, after which the first aircraft in the window is again fixed (as the second aircraft in 
the overall sequence). This process continues, advancing the window by one aircraft at a time. 
When the last window position is reached the take-off sequence and times are adopted for all 
aircraft in the window and, an overall take-off sequence will have been produced. Four passes 
of the algorithm were utilised for the results presented in this paper, in order to attempt to 
improve the sequence further on each pass. Once the final pass has been completed, the 



resulting take-off sequence is passed to the TSAT allocation system, along with the predicted 
take-off times, so that TSATs can be determined for each aircraft. 
 
Optimising the sequence of aircraft within the window involves determining a take-off time 
for each aircraft. Due to the separation rules, take-off times can only be predicted if the take-
off times of earlier take-offs are known. This is the reason that aircraft which take-off prior to 
the current window have to be considered and why the window has to roll from first to last 
aircraft in the sequence. A branch-and-bound algorithm is used to optimally sequence the 
aircraft within the current window. All of the aircraft are taken out of the sequence then added 
back in one at a time, in potential take-off order, so that, at each stage, the take-off times for 
all previous aircraft are known. As each aircraft is added, the take-off time is predicted and 
the cost of the new aircraft in the sequence is determined using Formula 1. Lower bounds are 
then determined for the take-off times for the remaining aircraft. Using these take-off time 
lower bounds, lower bounds for the three components of the objective function are 
determined independently by ordering the remaining aircraft optimally for each objective in 
turn (for instance into first-come-first-served order for the equity objective), assigning the 
lower bound take-off times to the aircraft and determining the consequent cost. Summing the 
three components of the cost gives a lower bound for the cost of all sequences which start 
with the current sub-sequence, allowing pruning based on the sub-sequence if the lower 
bound of the cost exceeds the cost of a known full take-off sequence. At the end of this 
process, the take-off sequence with the lowest cost is adopted. 
 
4.1.2 Take-off time prediction 
 
As discussed earlier, take-off time prediction involves knowing a cul-de-sac sequence as well 
as a take-off sequence. However, the number of different cul-de-sacs at Heathrow is large 
enough that aircraft which are close together in the take-off sequence are often allocated to 
stands which are sufficiently far apart that cul-de-sac contention is not a problem. It only 
becomes a problem when the delay for an aircraft (which can be considered as the slack 
between the earliest take-off time and actual take-off time) is insufficient to absorb the 
additional delay at the stand which results from the cul-de-sac contention. Unfortunately, cul-
de-sac contention is a problem often enough that it cannot be ignored. Experimentation 
revealed that there were cases where the best schedule found (i.e. that which would have 
otherwise been adopted) when cul-de-sac contention was ignored could not actually be 
achieved when cul-de-sac contention was considered. i.e. on occasions, the delays at the cul-
de-sac were such that the predicted take-off times could no longer be achieved once cul-de-
sac contention was considered, leaving an infeasible problem to be solved at the second 
(TSAT allocation) stage.  
Although cul-de-sac contention cannot be ignored, the developed solution approach takes 
advantage of the relative infrequency of cul-de-sac contention delaying take-off times by first 
checking whether the cul-de-sac sequencing problem actually has to be solved before 
attempting to solve it. A potential cul-de-sac time is determined for each aircraft as it is added 
to the take-off sequence, chosen to be the earliest time which will meet Inequalities 2 and 3, 
making the initial assumption that all aircraft which take-off before the new aircraft also leave 
the cul-de-sacs earlier (i.e. are earlier in the cul-de-sac sequence). The earliest take-off time 
which will meet Inequalities 5 and 6 is then determined and compared against the earliest time 
which will meet Inequality 4. If Inequality 4 gives a time which is no later than that from 
Inequalities 5 and 6 (i.e. Inequalities 5 or 6 are the binding constraints upon the take-off time) 
then the potential cul-de-sac time is adopted and recorded, along with the take-off time which 
was determined from Inequalities 5 and 6. The algorithm then progresses to calculating the 



cost for the aircraft and adding the next aircraft to the sequence without attempting to 
optimise the cul-de-sac times. However, if Inequality 4 gives a later take-off time (so that 
Inequality 4 is the binding constraint), then an attempt is made to find an earlier cul-de-sac 
time. To do this, a lower bound for the cul-de-sac time is determined, by considering that it 
must leave the cul-de-sac after an aircraft which takes off earlier if not doing so would delay 
the take-off time of the earlier aircraft. If this lower bound is achieved by the current potential 
cul-de-sac time then the cul-de-sac time and (consequent) take-off time are both adopted 
without further work. If not then the cul-de-sac sequencing problem has to be solved. This 
involves finding the cul-de-sac sequence which will minimise the take-off time of this aircraft 
without delaying the take-off times of earlier take-offs (the potential cul-de-sac times for 
earlier aircraft can be modified, however). This problem is a simplified version of the problem 
considered in Section 4.2 since the same constraints apply, however the search can cease as 
soon as any cul-de-sac sequence is found which obtains the earliest take-off time which is no 
later than the earliest time which will meet Inequalities 5 and 6. Experimental results showed 
that the cul-de-sac sequencing sub-problem had to be solved very infrequently and that in the 
majority of cases the problems could be solved without enforcing a delay upon the take-off 
time (i.e. re-sequencing enabled the earliest time from Inequalities 5 and 6 to be achieved). 
Furthermore, the problem sizes that needed to be considered were usually very small, since 
only aircraft with overlapping time windows and required cul-de-sac separations need to be 
considered in the problem, as discussed in Section 4.2.  
 
4.2 Solution method for the TSAT allocation problem 
 
Once a take-off sequence has been determined, the take-off times and potential cul-de-sac 
times are passed to the TSAT allocation algorithm. This algorithm attempts to minimise the 
value of Formula 9, subject to the constraints upon the cul-de-sac time implied by Inequalities 
2, 3 and 4. Allocated TSATs must be on minute boundaries, so there are usually very few 
options for the potential cul-de-sac times for each aircraft. Furthermore, the full problem can 
be decomposed into a number of relatively small problems (up to nine aircraft in the worst 
case on the test datasets), each consisting of those aircraft which have cul-de-sac contention 
with each other and which have time-slots for the cul-de-sac times which are close enough 
together to be able to influence each other. 
 
Given a sub-problem consisting of aircraft which are in contention at the stands, the cul-de-
sac sequencing problem is again solved using a branch-and-bound algorithm. A rolling 
window approach is again utilised if the problem size grows beyond a given limit. In that case 
an initial sequence is built using the predicted potential (and known to be feasible) cul-de-sac 
times from the take-off sequencing stage and passing a window over the sequence, optimising 
the sequence of the aircraft within the window while assuming that the sequence of the other 
aircraft is fixed.  
 
 
5 RESULTS 
 
Experiments were performed using ten datasets containing historic data covering 110 aircraft 
in each dataset. 110 aircraft was sufficient to cover at least two hours of take-offs, thus 
providing an opportunity to observe the (relatively) long term effects of earlier sequencing. 
The datasets contained information about the historic pushback times, taxi durations and take-
off times, as well as the necessary details to determine any cul-de-sac contention and take-off 
separations.  



 
The experimental results which are presented in this paper evaluate schedules according to 
three values, one of which measures each of the objectives: CTOT compliance, delay and 
equity. Firstly, the number of CTOTs which were missed (i.e. for which extensions were 
required or where even extensions were missed) is reported. Secondly, the total delay, 
summed across all 110 aircraft, is reported. Although all times are maintained in seconds, the 
results are presented in minutes to simplify the values. Delay is measured as the difference 
between the predicted take-off time and earliest time at which the aircraft could have reached 
the holding area, in the absence of any stand hold or contention with other aircraft, i.e. (dj - 
ecj) for each aircraft j. The third value which is reported is the sum of the squares of the 
positional movement of each aircraft in the take-off sequence (i.e. (asj - tscj)2 for each aircraft 
j). This is used as an approximation of the inequity in the take-off sequence since it provides a 
weighted measure of the deviation between the take-off sequence and first-come-first-served 
sequence. The shortcomings of this measure for this problem are discussed below.  
 
Experiments were performed by varying the different weights W1, W2 or W3. Values of 
W1=1, W2=100 and W3=100 were found to give balanced weights to each of the objectives, 
such that increasing one of these weights while the other two were fixed had a perceptible 
effect upon the schedules which were produced. Further experiments were then performed to 
compare the pair-wise effects of the three objectives. W1 was varied from 0 to 99 in steps of 
1, and W2 and W3 were varied from 0 to 9900 in steps of 100 due to their proportionately 
lower effect upon the sequencing. 
 
The cost for inequity was never set to zero in these experiments (i.e. W3≥1). This was 
extremely useful for removing symmetries in the problem. With 110 aircraft in a dataset, there 
will be many aircraft with the same weight class, speed group and departure route as other 
aircraft. When two aircraft leave the stands at similar times and a linear cost for delay is 
applied, reversing the take-off sequence for these two aircraft will result in an identically 
costing sequence, assuming that both aircraft can achieve both take-off times. There is 
nothing within the branch and bound method to take advantage of this symmetry so the 
solution space is greatly increased and solution pruning can be greatly impaired. By ensuring 
that a slight penalty for inequity is applied, these otherwise identical schedules have different 
costs and the solution speed was noticeably increased. Unless otherwise stated, removing 
consideration of one element of the objective function meant setting W1 to 0, W2 to 0 or W3 to 
1. Comparison of results with and without the equity cost (W3=0 or W3=1) showed that its 
effect was small enough to be overwhelmed by values of W1=1 or W2=100, and to have no 
effect upon the delay and CTOT compliance results in these experiments. However, the 
breaking of the symmetries in the problem reduced the solution time considerably and ensured 
that consistent and comparable schedules were produced. Without this symmetry breaking it 
was extremely difficult to determine whether the schedules produced by two sets of weights 
were actually equivalent. Unfortunately, despite the similarity between the characteristics of 
some aircraft, there are too many different combinations of aircraft characteristics to allow a 
grouping approach such as that proposed by Psaraftis (1980) to be useful.  
 
Experiments were performed to investigate the combinations of weights for different 
objectives. Since it is only the relative values of the weights which matter, selected results are 
presented graphically for each pair of weights in Figures 1 to 5, showing the effect of 
increasing first one then the other weight rather than reporting full results for each pair of 
potential weights. This is equivalent to showing the first row and first column of a table cross-
referencing the values of the weights. The centre-point of each graph, labelled ‘balanced 



costs’ is where the weights are of the relatively balanced values (W1=1,W2=100 or W3=100). 
Moving to the left of this point, one of the weights will gradually gain value, while moving to 
the right the other will gain value. The far left-most point has zero value for the one of the 
weights, and the far right-most point has zero value for the other weight. The x-axis of each of 
the graph can be considered to measure the ratios of the weights, starting with only a weight 
for the first objective, then having a ratio of 99:1, through a set of 98 further results with the 
ratio dropping gradually to 1:1, then rising gradually to 1:99 over the next 98 results, before 
the final point has only a weight for the second objective.  
 
5.1 Delay reduction vs CTOT compliance  
 
The effects of varying the weights for the CTOT compliance (W1) and delay (W2) can be 
observed in Figure 1. This is perhaps the most important trade-off to be aware of in these 
results, since it was the emphasis upon CTOT compliance that was previously identified as 
being a potential deviation between the selected objective function and the real controller 
behaviour. Two sets of points are plotted on the graph as lines. The top line on the graph 
shows the number of CTOTs which were missed and the bottom line the total delay. On the 
far left of the graph in Figure 1 is the solution when no CTOT miss cost is applied at all 
(W1=0). The next point has a large delay cost and a moderate CTOT cost (W1=1,W2=9900), 
then the delay cost is gradually reduced in steps of 100 until the centre point (labelled 
balanced costs, where W1=1,W2=100) is reached. From the centre point, the CTOT cost was 
gradually increased, leaving the delay cost at a moderate value (W2=100, W1 increased in 
steps of 1), so that the penultimate point on the right has a value of W1=99, W2=100). The 
point on the far right had no cost for delay (W1=1,W2=0). 
 
 

 
Figure 1: Graph of total delay and number of CTOTs missed as W1 and W2 are varied. 

 



Figure 1 provides comparative results of the total delay for all aircraft (in minutes) and the 
total number of CTOTs which were missed. Since there are 110 aircraft per dataset and ten 
datasets, a total delay value of 1100 represents a mean delay of one minute per aircraft. The 
mean delay per aircraft for the results in Figure 1 is thus between 5 minutes 2 seconds and 5 
minutes 9 seconds. 
 
The results in Figure 1 show an obvious trade-off between these two objectives in the best 
solutions found, so improvements for one objective correspond to losses for the other. They 
also show that there are only a limited number of different solutions which are adopted, as can 
be seen from the many horizontal regions of the graph, determined by the limited number of 
possible CTOTs that can be missed. Finally, the extreme points (where one or other of the 
weights is zero) do not follow the trend of the graph. For example, the far right-most point 
(where W1=1,W2=0)  has a higher number of CTOTs missed than the point immediately to the 
left of it (W1=99,W2=100). 
 
In order to gain further insight into the trade-off the values for the three objectives at the 
extreme points are shown in Table 1 for each of the ten datasets. The column labelled “D.S.” 
specifies the dataset number. The columns labelled “#C” specify the number of CTOTs which 
were missed. The columns labelled “Delay” specify the total delay for all aircraft, in minutes. 
The columns labelled  “S.P.D.” show the sum of the Squares of the Positional Deviation from 
the first-come-first-served sequence. So a schedule with “S.P.D.” of 0 is the first-come-first-
served sequence. Results are given for four experimental cases, labelled ECD1 to ECD4 (for 
Experiment, CTOT vs Delay), for different weights of the objective function. 
 
The results in Table 1 provide more insight into what is actually happening. For example, 
comparison of the results for ECD1 and ECD2 shows that, in eight of the ten datasets, adding 
a small penalty for missing CTOTs did not increase the delay, although in two of these cases 
(datasets 7 and 10) the addition of the penalty meant that the number of CTOTs missed was 
decreased even though the delay was not increased. In both of these cases (and in datasets 4, 
5, 6 and 9), the measure of inequity in the sequence was also increased by the addition of a 
penalty for CTOT compliance. Datasets 4 and 9 are examples where the addition of the 
penalty for CTOT compliance actually altered the schedule produced (the S.P.D. values 
changed) but schedules with the same delay were found. These both illustrate the presence of 
symmetries within the problem and foreshadow the trade-off between CTOT compliance and 
equity which will be observed later. 
 

Table 1: Results showing number of CTOTs missed (#C), total minutes delay 
and inequity (squared positional deviation, S.P.D.) for extreme cases of 

CTOT compliance vs delay, with a very low cost for positional inequity (W3=1) 
 ECD1: W1=0,W2=100 ECD2: W1=1,W2=9900 ECD3: W1=99,W2=100 ECD4: W1=1,W2=0 

D.S. #C Delay S.P.D. #C Delay S.P.D. #C Delay S.P.D. #C Delay S.P.D. 
1 1 29784 400 1 29784 400 0 30444 360 0 106320 86 
2 0 27896 328 0 27896 328 0 27896 328 0 89523 160 
3 1 30230 530 1 30230 530 0 30410 544 0 98425 90 
4 1 25264 186 1 25264 204 1 25264 204 1 48424 30 
5 4 37710 1270 2 37830 1508 0 38070 1556 1 108460 1306 
6 2 35084 550 1 34974 570 0 35694 568 0 85480 146 
7 3 30120 562 2 30120 628 1 30600 646 1 71220 376 
8 2 29558 336 2 29558 336 1 29738 342 1 67898 112 
9 7 48987 1904 7 48987 1948 4 50598 2118 4 105639 640 
10 7 38217 600 6 38217 768 4 40917 874 5 80064 1226 



Comparison of the results for ECD2 and ECD3 reveals the way in which the ratio of the 
weights for CTOT compliance and delay affect the schedules which are produced. Datasets 2 
and 4 gave identical results for ECD2 and ECD3 regardless of the weights that were applied. 
This shows that the normal trade-off between CTOT compliance and delay in the good 
schedules (as seen by the trend in Figure 1 for the sum over all datasets) was not present in 
these datasets. Thus, at some times of the day it is possible to obtain the best CTOT 
compliance even without an increase in delay. This kind of information can be hidden in total 
results over all datasets. In the other cases, the difference between the best schedules with a 
high delay cost and the best schedules with a high CTOT miss cost is only a few CTOTs (1 in 
5 cases, 2 in 2 cases and 3 in 1 case). The delay varies by less than 1% in 5 cases and by 
1.5%, 2%, 2.2%, 3.2% and 6.6% in the other cases. The increase in delay for achieving the 
better CTOT compliance can, thus, be observed to vary greatly over the different datasets. 
The potential benefits of altering the weights can, therefore, vary greatly according to the time 
of the day. The effects of removing CTOT constraints when sequencing at the holding area 
were significantly greater than this (Atkin et al., 2006a), illustrating the greater flexibility to 
cope with delays and advancements for CTOTs when re-sequencing at the stands. 
 
Comparison of the results for ECD3 and ECD4 reveals that the CTOT compliance in datasets 
5 and 10 more CTOT slots are missed than when only CTOT compliance is penalised than 
when both CTOT compliance and delay are penalised. The problems raised by penalising 
CTOT compliance without a delay penalty are discussed in more detail later and are related to 
a lack of an incentive towards producing low delay schedules when CTOTs are not present 
(since W3=1, the first-come-first-served sequence is preferred) leading to a large cumulative 
delay so that later aircraft with CTOTs cannot achieve them. 
 
5.2 Equity of positional deviation vs CTOT compliance 
 
Any positional movement of an aircraft within a sequence can be perceived to be unfair. For 
example, when the occupants of an aircraft with a positional delay observe other aircraft 
overtaking it in the queues in the holding area. Even when some of the overtaking is 
implicitly taking place at the stands (via stand holds), cost considerations mean that it is 
important not to penalise some airlines more than others. One way of limiting this kind of 
inequity in the take-off sequence is to penalise positional movement, or to apply a maximum 
position shift to aircraft, as discussed earlier. The results in this section will show that neither 
approach is appropriate for the Heathrow take-off problem. 
 
Experiments were performed to determine the effects of varying the ratio between W1 and 
W3. The results are shown in Figures 2 and 3. In each case the total squared positional 
deviation across all ten datasets is shown along with the total number of CTOTs which were 
missed. Figures 2 and 3 differ in the value that was used for the delay cost weight W2. W2 was 
set to 0 for the results shown in Figure 2 and to 100 for the results shown in Figure 3. In both 
cases, the far left result is for a reasonable CTOT cost and a low equity cost (W1=1,W3=1), 
and the far right is for only an equity cost, not a CTOT cost (W1=0,W3=100). The second 
value from the left shows the results for a high cost for CTOT misses and only a moderate 
cost for positional inequity (W1=99,W3=100), then the CTOT miss cost decreases until the 
point labelled “balanced costs” (reducing W1 in steps of 1 until the centre point has value 
W1=1,W3=100) after which point the equity cost is increased in steps of 100 until the 
penultimate point has the weights W1=1,W3=9900. 
 



Figure 2: Total squared positional delay and number of CTOTs missed, with no penalty  
for delay (W2=0), for varying values of W1 and W3 in the objective function 
 
 

 
Figure 3: Total squared positional delay and number of CTOTs missed, with a penalty  

for delay (W2=100), for varying values of W1 and W3 in the objective function 
 



 
In both Figure 2 and Figure 3, a trade-off between the number of CTOT misses and the 
positional inequity is apparent, although the graph in Figure 2 is far from monotonically 
increasing (for CTOT misses) or decreasing (for equity) as the penalty for missing CTOTs is 
decreased or the equity penalty is increased. As discussed earlier, the reason for this is the 
conflict between CTOT compliance and positional delay within the optimisation windows. 
Large delays can be accumulated when aircraft with CTOTs are not present. The cost of 
positional deviation compared with the relatively small cost for changing the amount by 
which a CTOT is missed will often mean that aircraft within the current window which cannot 
immediately achieve their CTOTs will be sequenced into first-come-first-served sequence. 
What happens within an optimisation window is, therefore, very sensitive to the selection of 
aircraft with CTOTs which are present. This sensitivity to particular aircraft makes the 
schedule less stable since the value of the local solution within the window is far less related 
to the value of the overall schedule. As the cost for equity of positional deviation grows, the 
positional inequity can drop to very low values and the number of CTOTs missed can be very 
large. The schedules thus converge very quickly to the first-come-first-served sequence as the 
cost of positional deviations is increased, since any aircraft which cannot achieve a CTOT 
within a single window is forced into the first-come-first-served sequence. The addition of a 
delay penalty helps to reduce this sensitivity by improving the relationship between the value 
of the partial sequence within the window and the value of the full take-off sequence, 
reducing the accumulated delay and making it more likely that aircraft can achieve the 
CTOTs within a single optimisation window. This has the effect of reducing the number of 
CTOTs which are missed but greatly increasing the perceived inequity in the schedule. 
 
The values for the extreme points of Figures 2 and 3 are shown in Tables 2 and 3 for each of 
the datasets individually. Table 2 shows the results with W2=0, and Table 3 with W2=100, to 
match the results in Figures 2 and 3, respectively. As expected, since delay is not penalised in 
ECE1 to ECE4, the delay in these schedules is much higher than in the schedules produced by 
ECE5 to ECE8, but the number of CTOTs missed is greatly reduced and the positional 
inequity is greatly increased. Even with the delay penalty some datasets (5, 9 and 10) have 
very large numbers of CTOTs missed, but without the delay penalty far more are missed in 
almost all of the datasets.  
 
An interesting relationship between delay, CTOT compliance and positional equity is shown 
in these results. It can be illustrated by considering an aircraft A which has to wait for the start 
of a CTOT slot, as enforced by Inequality 5. There are two options from which a controller 
has to decide upon for aircraft which arrive at the holding area after this one. Either these 
aircraft can take off before A, utilising the otherwise wasted runway capacity, or they can take 
off after A. If an aircraft takes off before A it will be overtaking, so the take-off sequence will 
deviate more from the first-come-first-served sequence, and the sequence with the overtaking 
could be perceived as being less equitable than the sequence where the aircraft waits to take 
off until after A. However, in this case, the overtaking actually has no adverse effect upon 
aircraft A. This is the major reason why a high penalty for positional equity is counter 
productive for take-off sequencing. When a penalty is applied for delay here, the objective to 
reduce delay encourages other aircraft to take-off before A since doing so will reduce the 
overall delay, and increases the measured inequity in the sequence.  
 
In fact a similar thing also occurs when there are a lot of aircraft queued for a busy departure 
route. Due to the departure rate restrictions along some routes a large delay can sometimes 
accumulate for the later aircraft. This is unavoidable. In this case it is desirable to allow 



aircraft for other routes to overtake these aircraft since they can do so without delaying the 
take-off times of the overtaken aircraft.  Penalising positional movement will prevent this 
from happening. 
 
Investigation of the sequences which were obtained for dataset 5 illustrates the interaction of a 
strong emphasis on equity and aircraft with CTOTs or which are queued for a busy departure 
route. In ECE6, two aircraft in dataset 5 were assigned a positional delay of fourteen places 
and one a delay of twelve places. In contrast, in ECE7 the maximum positional movement in 
dataset 5 was two places (three aircraft were advanced two places, 25 were advanced one 
place, 25 were delayed one place and 3 were delayed two places). Consideration of the actual 
delay that aircraft suffer identifies the three problematic aircraft immediately for ECE6 since 
they are the only ones with high delay values, but also reveals that, for ECE7, all of the other 
aircraft around these also suffer a large delay since they are not permitted to overtake to take 
advantage of the empty runway at that time. Obviously, this would never be allowed to 
happen in practice. 

 
 

Table 2: Results showing number of CTOTs missed (#C), total minutes delay 
and inequity (squared positional deviation, S.P.D.) for extreme cases of  
CTOT compliance vs equity, when no cost is applied to penalise delay 

 ECE1: W1=1,W3=1 ECE2: W1=99,W3=100 ECE3:W1=1,W3=9900 ECE4: W1=0,W3=100 
D.S. #C Delay S.P.D. #C Delay S.P.D. #C Delay S.P.D. #C Delay S.P.D. 

1 0 106320 86 0 106320 86 7 136860 2 7 140520 0 
2 0 89523 160 0 89523 160 5 99003 0 5 99003 0 
3 0 98425 90 0 98425 90 1 127645 0 1 127645 0 
4 1 48424 30 1 48424 30 4 55804 4 4 53464 0 
5 1 108460 1306 1 108460 1306 28 200860 2 28 200860 0 
6 0 85480 146 0 85480 146 14 122440 2 14 122380 0 
7 1 71220 376 1 71220 376 27 145080 8 28 154080 0 
8 1 67898 112 1 67898 112 8 79178 0 8 79178 0 
9 4 105639 640 4 105639 640 29 176868 4 29 177888 0 

10 5 80064 1226 5 80064 1226 44 153144 10 41 144684 0 
 

Table 3: Results showing number of CTOTs missed (#C), total minutes delay 
and inequity (squared positional deviation,S.P.D.) for extreme cases of  

CTOT compliance vs equity, when a cost is applied to penalise delay (W2=100) 
 ECE5: W1=1,W3=1 ECE6: W1=99,W3=100 ECE7: W1=1,W3=9900 ECE8: W1=0,W3=100 

D.S #C Delay S.P.D. #C Delay S.P.D. #C Delay S.P.D. #C Delay S.P.D. 
1 1 29784 400 0 30444 360 1 43644 62 1 29784 400 
2 0 27896 328 0 27896 328 1 42716 74 0 27896 328 
3 1 30230 530 0 30410 544 1 46790 40 1 30230 530 
4 1 25264 204 1 25264 204 1 28264 52 1 25264 186 
5 0 38070 1376 0 38370 1272 14 87450 74 4 37650 1144 
6 1 35154 544 0 35694 568 4 60682 52 2 35084 550 
7 2 30120 628 1 30600 646 8 75060 124 3 30120 562 
8 2 29558 336 1 29738 342 2 39038 52 2 29558 336 
9 6 49707 2062 4 50598 2118 18 115785 108 7 48987 1904 
10 5 38637 800 4 41157 824 20 68637 66 7 38217 600 

 
 
The ECE1 and ECE2 results show the values of the schedules which were obtained with a 
high penalty for CTOT compliance and a low penalty for inequity. The fact that the same 
schedules were found for both is hardly surprising since the ratio of W1 to W3 is very similar 



in both cases. In contrast, the results for ECE5 and ECE6 show the effect of the presence of 
the delay cost when the weights for CTOT compliance and equity are raised from W1=1 and 
W3=1 to W1=99 and W3=100 respectively. ECE5 has a comparatively high weight for delay 
compared with ECE6, and the improved CTOT compliance for ECE6 in many cases is only to 
be expected. 
 
The results for datasets 1, 2, 3 and 8 are identical for ECE5 and ECE8. They were also 
identical for ECD1 and ECD2. This indicates that, in these cases, the CTOT compliance is 
obtained anyway for the low delay schedule. Considering the delay values in ECD1 or ECE1, 
it is obvious that these are also some of the lowest delay schedules (dataset 4 is the other low 
one) and were from the quieter times of the day (the intuitive conclusion that delay is related 
to the number of aircraft queuing for the runway is supported by the observations which were 
made by Idris et al., 2002). The number of possible sequences is highly related to the mean 
delay – since aircraft can only switch positions in the better schedules with other aircraft 
which can attain the same take-off times. In this case it is not so surprising that the number of 
good schedules is limited and that the better CTOT compliance schedules also have low 
delays. 
 
5.3 Total delay vs equity of positional delay 
 
Finally, the relationship between total delay and equity of positional deviation has also been 
considered. The trade-off is illustrated in Figure 4. It is possible to observe from Figure 4 that 
these two objectives are in conflict in the better take-off sequences, as expected given the 
earlier observations. As the cost for delay is increased the positional inequity increases 
(although previous observations should have clarified that this may not be a problem) until it 
reaches a peak and levels off. 
 

 
Figure 4: Total squared positional delay and total delay, with no penalty for CTOT 

 compliance  (W1=0), for varying values of W2 and W3 in the objective function 



The purpose of the TSAT allocation system is, obviously, to allocate TSATs, thus it is 
possible to also observe the breakdown of the predicted delay between stand delay (without 
the engines running) and runway hold delay (with the engines running), and to observe the 
performance of the TSAT allocation system in terms of the amount of the time that the system 
allocates to stand hold. The stand delay and runway hold delay are also plotted in Figure 4. 
Obviously, the sum of these two delays is the total delay. One encouraging feature of Figure 4 
is that, as the overall system delay increases, the majority of the additional delay is absorbed 
as stand hold rather than as runway hold (when the engines would be running and fuel usage 
would increase). A slight increase in total runway hold should be expected, however, when 
the overall delay increases since only hold beyond the threshold value (five minutes in these 
experiments) is absorbed as stand hold. In the good schedules, many aircraft will have lower 
than the five minute threshold runway hold. As the delay in the schedule increases the delay 
for these aircraft will increase and, until it reaches the five minute threshold, this will be 
observed as increased total runway hold not stand hold. Figure 4 indicates that the TSAT 
system is correctly performing its desired function. 
 
Table 4 shows the results for the extreme values of the weights for each of the individual 
datasets. For EDE1, the cost for positional inequity is high and there is no cost for delay or 
CTOT misses so the first-come-first-served sequence is, obviously, optimal and these are the 
sequences which the algorithm adopts (shown by values of S.P.D. of 0). 
 
 

Table 4: Results showing number of CTOTs missed (#C), total minutes delay  
and inequity (squared positional deviation, S.P.D.) for extreme cases of  

equity vs delay, with no cost for CTOT misses (W1=0) 
 EDE1: W2=0, W3=100 EDE2:W2=100,W3=9900 EDE3:W2=9900,W3=100 EDE4: W2=100,W3=1 

D.S #C Delay S.P.D. #C Delay S.P.D. #C Delay S.P.D. #C Delay S.P.D. 
1 7 140520 0 1 43644 62 1 29784 400 1 29784 400 
2 5 99003 0 1 42716 74 0 27896 328 0 27896 328 
3 1 127645 0 1 46790 40 1 30230 530 1 30230 530 
4 4 53464 0 1 28264 52 1 25264 186 1 25264 186 
5 28 200860 0 14 84810 72 4 37710 1270 4 37710 1270 
6 14 122380 0 4 60682 52 2 35084 550 2 35084 550 
7 28 154080 0 9 77100 110 3 30120 562 3 30120 562 
8 8 79178 0 2 39038 52 2 29558 336 2 29558 336 
9 29 177888 0 20 123345 82 7 48987 1904 7 48987 1904 
10 41 144684 0 20 68637 66 7 38217 600 7 38217 600 
 
 
Figure 5 shows how the results vary when a penalty is also applied for missing CTOTs (W1=1 
rather than W1=0) and Table 5 shows the results for the extreme values in Figure 5. The trade-
off between delay and equity of positional delay is again obvious. Adding the penalty for 
missing CTOTs increases the delay slightly, as expected, but not for all datasets when the 
penalty for delay (W2) is high. As expected, the CTOT compliance is improved when a 
penalty for CTOT misses is added, and the positional inequity is also increased due to the 
movement required to meet CTOTs in the presence of a penalty for delay. 
 



 
Figure 5: Total squared positional delay and total delay for schedules with a penalty 

 for missing CTOTs (W1=1), for varying values of W2 and W3 in the objective function 
 

Table 5: Results showing number of CTOTs missed (#C), total minutes delay 
and inequity (squared positional deviation, S.P.D.) for extreme cases of 

equity vs delay, with a cost for CTOT misses (W1=1) 
 EDE5: W2=0, W3=100 EDE6:W2=100,W3=9900 EDE7:W2=9900,W3=100 EDE8: W2=100,W3=1 

DS #C Delay S.P.D. #C Delay S.P.D. #C Delay PD #C Delay S.P.D. 
1 0 106320 86 1 43644 62 1 29784 400 0 30444 360 
2 0 89523 160 1 42836 78 0 27896 328 0 27896 328 
3 0 98425 90 1 46910 58 1 30230 530 0 30410 544 
4 1 48424 30 1 28384 58 1 25264 204 1 25264 204 
5 1 108460 1306 18 100410 344 0 38070 1376 0 38070 1556 
6 0 85480 146 2 61342 80 1 35154 544 0 35694 568 
7 1 71220 376 3 54180 322 2 30120 628 1 30600 646 
8 1 67898 112 1 38798 68 2 29558 336 1 29738 342 
9 4 105639 640 13 97239 390 6 49707 2062 4 50598 2118 

10 5 80064 1226 10 67224 472 5 38637 800 4 40917 874 
 
 
5.4 The problem of applying a high weight for positional equity 
 
The problems (that were discussed earlier) with heavily penalising positional inequity in the 
sequence mean that a high penalty for positional inequity cannot be applied without adverse 
side-effects on those occasions when aircraft require a long delay for the start of CTOT or 
where certain departure routes are busier than others. Both of these occurrences are common. 
At these times there would be a choice of whether to accept a large positional delay (allowing 
aircraft which do not need to wait to overtake the delayed aircraft) or to accept unnecessary 
delays for other aircraft merely to avoid perceived positional inequity. 
 



Penalising positional movement at first appears to be both a good way for measuring inequity 
and for penalising inequity, since it applies a penalty based upon the number of aircraft which 
an airline/pilot will observe to overtake their aircraft. However, the above cases show that this 
is not actually the case. A low (but non-zero) cost for positional inequity can be a good thing 
for breaking the symmetries in the problem and preferring more equitable schedules, but too 
great a cost will prevent the system from accurately modelling what would happen in real life. 
 
In fact, a low cost for positional inequity was used by Atkin (2008) and Atkin et al. 
(2007,2008b) with great success when scheduling within the holding area, but this was only 
successful because the holding area structure itself limited the schedule sufficiently to avoid 
unnecessary long delays for aircraft (Atkin, 2008). Scheduling at the stands is far more 
flexible but some degree of equity must still be ensured. An alternative method is required. 
 
5.5 Comparison with the real schedules 
 
Now that a better understanding of the trade-offs between the objectives has been obtained, a 
comparison with the manual/real results is worthwhile. Three things must be clarified, 
however, when considering the manual schedules. Firstly, it is apparent that some CTOTs 
were renegotiated on the day and this is not reflected in the datasets. Unfortunately data about 
modified CTOTs was not available so the automated tests have assumed that the original 
CTOTs which applied to the aircraft were maintained. In particular, those aircraft which have 
a long wait for a CTOT will usually attempt to renegotiate an earlier slot if one becomes 
available, and this often happens. This means that the long delays (and perceived inequity) in 
the automated schedules while aircraft await the start of a CTOT slot do not occur to the same 
extent for the real schedules. One effect of this is a rise in the apparent number of CTOTs that 
were missed in the real schedule, since this count does not allow for the fact that some of 
these will have been renegotiated and hence not require extensions. The second thing to note 
is that the controllers were producing these schedules in real time, considering only a few 
aircraft at once, with imperfect knowledge of what would happen in future. The limited 
planning horizon that has to be utilised by controllers can reduce the potential for long term 
gains (Atkin et al., 2006b) as can the lack of exact knowledge about aircraft taxi times (Atkin 
et al., 2008b).  The third thing to clarify is that the controllers were working within the 
restrictions of the holding area structures at Heathrow. The holding area structure restricts the 
possible re-sequencing (Atkin et al., 2006a), giving the controllers a harder problem to solve. 
Controllers sometimes have to utilise additional extensions in order to avoid significant losses 
of runway capacity or unfairly long delays for other aircraft, which is, of course, why these 
discretionary extensions exist. This can be exacerbated by the holding area structure since it 
may be impossible for aircraft with CTOTs to overtake other aircraft in the holding area in 
order to achieve take-off within a CTOT time-slot. One side-effect of TSAT allocation should 
be a reduction in holding area congestion, enabling controllers to avoid that kind of situation. 
 
With the above considerations in mind, Table 6 presents comparative results for the real 
schedules and some automatically generated ones summed across the ten test datasets. The 
first row presents the real results that the controllers attained, showing both the number of 
CTOTs missed (with the note that some of these will have been renegotiated so would not 
actually have been missed), the total minutes delay (measured as the total time from holding 
area arrival to take-off over all 1100 aircraft in the 10 datasets), and the total squared 
positional deviation from the first-come-first-served sequence based upon holding area arrival 
time. The positional deviation in the real schedules is very low, but the number of CTOT 
misses is high. In fact consideration of the real schedules shows that the majority of misses 



were in datasets 8, 9 and 10. These datasets were problematic due to the high number of 
CTOTs allocated at a time of high runway demand. Accumulated delay meant that a number 
of CTOTs had to be renegotiated or missed. The TSAT allocation system also required 
significantly more CTOT extensions for datasets 9 and 10 than for the other datasets because 
of this problem. The real take-off times imply that a significant number of these CTOTs had 
obviously been renegotiated, so probably did not require the use of extensions. 
 
The remaining rows of Table 6 show the results from the TSAT allocation system for various 
objective function weights and include a breakdown of the delay into stand hold and runway 
hold since this is the primary expected gain of the system. The second set of results is for the 
first-come-first-served sequence (W1=0,W2=0,W3=100) and the third is for a concentration 
upon CTOT compliance without a delay penalty (W1=1,W2=0,W3=1). The remaining results 
are for W1=1, W3=1 and varying weights and powers for the delay. The fourth set of results 
has a moderate weight for delay while the fifth has a high weight for delay. The sixth and 
seventh are similar but the delay (in seconds) is raised to the power of 1.5 prior to applying 
the weight in the objective function, i.e. α=1.5 in function D(dj, btj). In the eighth and ninth 
the seconds delay is squared prior to applying the weight in the objective function, i.e. α=2.0 
in function D(dj, btj). 
 

Table 6: Comparison of automated vs real results, utilising a linear and  
non-linear cost for delay in order to promote equity of delay 

Schedule 

Total 
number of 

CTOTs 
missed 

Total 
minutes 
delay 

Total 
minutes 
runway 

hold 

Total 
minutes 

stand hold 

Total 
squared 

positional 
deviation 

Manual/real 35 7629 7626 0 4430 
First-come-first-

served 
165 21662 5546 16116 0 

No delay cost, W2=0 13 14358 5473 8885 4172 
Linear, W2=100 19 5574 4086 1488 7208 
Linear, W2=9900 23 5548 4074 1474 7220 

Power 1.5, W2=100 23 5585 4153 1432 5296 
Power 1.5, W2=9900 25 5595 4165 1430 5118 

Squared, W2=100 28 5707 4248 1458 4408 
Squared, W2=9900 28 5707 4248 1458 4408 

 
The manual results reveal that the schedules that the controllers generate are extremely 
equitable in terms of positional delay. Part of the reason for this is the strong preference for 
equity, but another reason is the limited planning horizon over which their workload forces 
them to work. There are limits to how far ahead they can look, since there is so little thinking 
time available to them. It should also be noted that the controllers perform exceptionally well 
in the circumstances in which they work (Atkin et al., 2007) and the reduction in delay 
between the first-come-first-served sequences and the controller produced sequences shows 
just how valuable their work is in keeping the throughput of the runway high.  
 
The results in Table 6 for the TSAT allocation system show that the system can find 
schedules which are predicted to have lower overall delays that those which the controllers 
actually adopted, and furthermore it is able to find schedules which are as equitable as the 
controller-produced ones when the measure of delay is squared in the objective function. 
Moreover, the penalty paid in terms of the increase in overall delay from favouring schedules 



with minimal squared delay rather than minimal delay is relatively low (around 150 minutes) 
compared with the potential predicted overall benefits (around 1900 minutes).  
 
Although these results indicate that perhaps the most appropriate cost for the delay involves 
squaring it in the objective function, further investigation needs to be performed into actual 
controller preferences, to determine whether a slightly lower power would be appropriate or 
not. A power of 2 appears to give results which best model the positional equity of controller 
produced schedules, but the question now is whether these were produced by preference or 
necessity (for instance from a limited planning horizon or congested holding area), and only 
tuning against feedback from real controllers (rather than historic data) will ever really 
capture these preferences. What these results do provide is a starting point as to how to model 
the current controller preferences and an indication that currently produced schedules show a 
very strong preference for equity of delay. 
 
Of course the TSAT allocation system does not attempt to perform take-off sequencing for 
runway controllers. The main benefit of a TSAT allocation system can actually be observed in 
the contents of the fifth (rather than the third) column of Table 6. Namely, that it allows some 
of the hold to be absorbed at the stand rather than the runway. These results predict that 
significant amounts of the delay can be absorbed at the stand rather than with the engines 
running, with consequent environmental and financial benefits. 
 
If the main reason for controllers not achieving the same kind of delay as the automated 
system is the lack of knowledge of aircraft sufficiently early enough to be able to utilise that 
knowledge in the sequencing, or from congestion in the holding areas, then a system which 
holds aircraft appropriately, removing from their consideration aircraft which are obviously 
unsuitable for take-off at that time, and thus ensuring a more appropriate selection of aircraft 
at the holding area should simplify the problem for the controllers and enable them to perform 
even better than they currently do. It is possible, therefore, that a TSAT allocation system 
could enable the controllers to bridge the gap between the delay predicted by these results and 
the actual delay that they achieve, and to do so without the TSAT allocation system ever 
giving any advice to controllers about which sequences to adopt. Furthermore, since the take-
off time prediction method is known to be pessimistic (Atkin et al., 2007) because controllers 
can safely reduce some of the separations at their discretion, but the TSAT allocation system 
does not assume that this is done, it is entirely possible that controllers could produce better 
schedules that those which are predicted here if only their workload could be appropriately 
reduced (for example by removing aircraft that they do not need to consider at that time, and 
by reducing the congestion at the holding area). 
 
 
6 CONCLUSIONS 
 
This is a very practical public transport scheduling problem and the performance of the TSAT 
system will affect around 68 million passengers per year (based on the 2007 passenger 
figures, BAA, 2007). Holding the correct aircraft at the stands for the correct amount of time 
is important in order to reduce fuel cost and pollution but not to reduce runway throughput; in 
fact it may increase runway throughput, by reducing congestion at the runway holding point. 
The aim of the TSAT allocation system is not to generate a required take-off sequence, but to 
predict the sequences that controllers would like, and ensure that they are not prohibited, 
while also reducing the number of inappropriate aircraft at the holding area. It is, therefore, 
imperative to adequately understand the trade-off between the various objectives which are 



used to make the hold decisions. The results which were presented in this paper have shown 
that all three objectives (delay, equity and CTOT compliance) are mutually in conflict in the 
better take-off sequences. However, they have also shown that occasionally the schedules 
with the best delay also have the best CTOT compliance, so reducing delay does not always 
adversely affect the CTOT compliance.  These results show the importance of tuning a TSAT 
allocation system over a variety of different time periods, since the problem can change 
depending upon the delay for aircraft in the system at the time. 
 
Importantly, the results in this paper have shown that, although it may seem like a good idea 
for favouring more equitable take-off sequences, applying a high penalty to positional 
inequity is actually an extremely bad idea in some circumstances and the resulting sequences 
would not match operational practice. On the other hand, the results have also shown that the 
schedules which the controllers produce have a very low total squared positional deviation 
from the first-come-first-served sequence. This implies that they are very equitable in terms of 
positional deviation. It has been observed that a non-linear objective function for the delay 
(for example, aiming to minimise squared delay rather than delay itself) generates sequences 
which have positional deviations closer to those in the manually produced schedules. Care 
must be taken, however, since the automatically produced sequences should have had a 
greater positional inequity than the manually generated ones due to the presence of long 
CTOT delays in the datasets, which the real take-off times showed had obviously been 
renegotiated in the real sequences. It is possible, therefore, that the weighting for equity was 
too high for other parts of the sequences, thus making up for the positional inequity where 
there were long delays. This implies that the squaring of the delay may actually be too much. 
 
These results predict that, even with a heavy penalty applied for inequity of delay, it is 
possible to find schedules with a predicted delay significantly lower than the delay for the real 
schedules. Of course, for these experiments the system had perfect knowledge and a 
predictable environment, neither of which the controllers have in practice. Previous work with 
take-off sequencing (for example, Atkin et al. 2007) has shown that small schedule 
improvements, which were only possible from looking ahead to foresee problems, could have 
large delay benefits due to the cumulative effects of separations upon delay. Perhaps more 
importantly, predictions indicate that it should be possible to absorb significant amounts of 
the necessary delay at the stand rather than at the holding area. The hope is that, with 
increased knowledge at the stand, and the time to consider more aircraft in the sequencing, a 
more appropriate selection of aircraft can be provided to the controller at the holding area, 
reducing the complexity of the problem and enabling the controllers to outperform even the 
predictions from these results. 
 
The results in this paper should provide the necessary insights to allow the tuning of the 
TSAT system towards controller preferences. What remains to be discovered is what these 
preferences actually are and whether historical results actually show the desired sequences, or 
those which were enforced upon controllers by the limited planning horizon or holding area 
structure. Since the TSAT allocation system that has been described in this paper is currently 
being integrated into a NATS system for CDM at Heathrow, a tuning phase will follow prior 
to going live, utilising the trade-off results which were described in this paper in order to more 
accurately reflect the desirable take-off sequences at Heathrow. Of course, the minimum and 
ideal runway hold values that are used ensure that a pool of aircraft will be available to a 
controller, and thus that any take-off sequence priorities in the algorithm need not be utilised 
by the controller, but it is important to ensure that the algorithm is tuned to controller 



behaviour in order to ensure that the pool of aircraft available includes the appropriate aircraft 
for the controller. 
 
 
REFERENCES 
 
Atkin, J.A.D. (2008). On-line decision support for take-off runway scheduling at London 

Heathrow airport. Ph.D. thesis, The University of Nottingham. 
Atkin, J.A.D., Burke, E.K., Greenwood, J.S., Reeson, D. (2006a). An examination of take-off 

scheduling constraints at London Heathrow airport. Electronic proceedings of the 10th 
International Conference on Scheduling of Public Transport (CASPT), Leeds, UK. 

Atkin, J.A.D., Burke, E.K., Greenwood, J.S., Reeson, D. (2006b). The effect of the planning 
horizon and freezing time on take-off sequencing. Proceedings of the 2nd International 
Conference on Research in Air Transportation (ICRAT), Belgrade, Serbia and 
Montenegro. 

Atkin, J.A.D., Burke, E.K., Greenwood, J.S., Reeson, D. (2007) Hybrid meta-heuristics to aid 
runway scheduling at London Heathrow airport. Transportation Science 41(1), 90-106. 

Atkin, J.A.D., Burke, E.K., Greenwood, J.S., Reeson, D. (2008a) A meta-heuristic approach 
to aircraft departure scheduling at London Heathrow airport. M Hickman, P 
Mirchandani, S Voss, eds., Computer Aided Systems of Public Transport. Lecture Notes 
in Economics and Mathematical Systems, Springer, Berlin. 

Atkin, J.A.D., Burke, E.K., Greenwood, J.S., Reeson, D. (2008b) On-line decision support for 
take-off runway scheduling with uncertain taxi times at London Heathrow airport. The 
Journal of Scheduling 11(5), 323-346.  

BAA. (2007)  BAA Limited Annual Report, 2007. Available at : http://www. 
baa.com/assets/B2CPortal/Static%20Files/AReport_final07.pdf 

Beasley, J.E., Krishnamoorthy, M., Sharaiha, Y.M., Abramson, D. (2000). Scheduling aircraft 
landings - the static case. Transportation Science 34, 180-197. 

Beasley, J.E., Sonander, J., Havelock, P. (2001) Scheduling aircraft landings at London 
Heathrow using a population heuristic. Journal of the Operational Research Society 52, 
483-493. 

Beasley, J.E., Krishnamoorthy, M., Sharaiha, Y.M., and Abramson, D. (2004). “Displacement 
problem and dynamically scheduling aircraft landings." Journal of the Operational 
Research Society, 55(1), 54-64 

Dear, R.G. and Sherif, Y.S. (1989). The dynamic scheduling of aircraft in high density 
terminal areas. Microelectronics and Reliability 29(5), 743-749. 

Dear, R.G. and Sherif, Y.S. (1991). An algorithm for computer assisted sequencing and 
scheduling of terminal area operations. Transportation Research Part A, Policy and 
Practice 25, 129-139. 

Ernst, A.T., Krishnamoorthy, M., Storer, R.H. (1999) Heuristic and exact algorithms for 
scheduling aircraft landings. Networks 34, 229-241. 

Eurocontrol Experimental Centre. (2005) London Heathrow CDM WP1, EEC Note No. 
03/05. 

Idris, H.R., Clarke, J.-P., Bhuva, R., Kang, L. (2002) Queuing model for taxi-out time 
estimation. Air Traffic Control Quarterly, ATCA Publications 10(1), 1-22. 

Psaraftis H.N. (1980) A dynamic programming approach for sequencing groups of identical 
jobs. Operations Research 28(6), 1347– 1359 

Trivizas, D.A. (1998) Optimal scheduling with maximum position shift (MPS) constraints: A 
runway scheduling application. Journal of Navigation 51, 250-266 


